Análise de Algoritmos

Parte destes slides são adaptações de slides

do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

U: conjunto de itens.

k: capacidade do cache.

 d_1, \ldots, d_m : sequência de itens de U.

U: conjunto de itens.

k: capacidade do cache.

 d_1, \ldots, d_m : sequência de itens de U.

Algoritmo de manutenção de cache:

Dada uma coleção de k itens de U e um novo item d, decidir qual dos k itens será desalojado para dar espaço para d.

U: conjunto de itens.

k: capacidade do cache.

 d_1, \ldots, d_m : sequência de itens de U.

Algoritmo de manutenção de cache:

Dada uma coleção de k itens de U e um novo item d, decidir qual dos k itens será desalojado para dar espaço para d.

Exemplo: Se k = 9, d = 3 e o cache está assim:

7	2	1
8	5	9
4	0	6

U: conjunto de itens.

k: capacidade do cache.

 d_1, \ldots, d_m : sequência de itens de U.

Algoritmo de manutenção de cache:

Dada uma coleção de k itens de U e um novo item d, decidir qual dos k itens será desalojado para dar espaço para d.

Exemplo: Se k = 9, d = 3 e o cache está assim:

7	2	1
8	5	9
4	0	6

Quem devemos desalojar?

U: conjunto de itens.

k: capacidade do cache.

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

7	2
1	8

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

7	2
1	8

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

7	2
1	5

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

7	2
1	5

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

9	2
1	5

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

4	2
1	5

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

 4
 2

 1
 5

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

4	2
1	0

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

4	2
1	0

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

4	2
1	6

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

 4
 2

 1
 6

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

U: conjunto de itens.

k: capacidade do cache.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

(mais distante no futuro)

Exemplo: d = (7, 2, 1, 2, 8, 5, 7, 9, 4, 2, 5, 0, 6, 3, 1, 4, 2, 8, 9):

4	2
1	3

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

Por que esta política é ótima?

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

Por que esta política é ótima?

Um escalonamento é reduzido se traz um item para o cache apenas quando este item é requisitado.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

Por que esta política é ótima?

Um escalonamento é reduzido se traz um item para o cache apenas quando este item é requisitado.

Lema: Dado um escalonamento S, sempre existe um escalonamento reduzido que tem no máximo o mesmo número de falhas que S.

Prova feita na aula.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

 S_{FF} : escalonamento obtido pela política acima.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

 S_{FF} : escalonamento obtido pela política acima.

S: escalonamento reduzido que faz as mesmas primeiras j decisões que S_{FF} .

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

 S_{FF} : escalonamento obtido pela política acima.

S: escalonamento reduzido que faz as mesmas primeiras j decisões que S_{FF} .

Afirmação: Existe um escalonamento reduzido S' que faz as mesmas j+1 primeiras decisões que S_{FF} e tem no máximo o mesmo número de falhas que S.

Prova feita na aula.

Algoritmo ótimo de caching:

Dada uma sequência d_1, \ldots, d_m de requisições de U, a cada instante, se necessário, desalojamos do cache o item que demorará mais para ser requisitado de novo.

 S_{FF} : escalonamento obtido pela política acima.

S: escalonamento reduzido que faz as mesmas primeiras j decisões que S_{FF} .

Afirmação: Existe um escalonamento reduzido S' que faz as mesmas j+1 primeiras decisões que S_{FF} e tem no máximo o mesmo número de falhas que S.

Prova feita na aula.

Consequência: S_{FF} é ótimo.

Algoritmo de manutenção de cache:

Dada uma coleção de k itens de U e um novo item d, decidir qual dos k itens será desalojado para dar espaço para d.

 S_{FF} : escalonamento obtido pela política anterior.

Lema: S_{FF} é ótimo.

Algoritmo de manutenção de cache:

Dada uma coleção de k itens de U e um novo item d, decidir qual dos k itens será desalojado para dar espaço para d.

 S_{FF} : escalonamento obtido pela política anterior.

Lema: S_{FF} é ótimo.

Problema: não conhecemos d de ante-mão...

Algoritmo de manutenção de cache:

Dada uma coleção de k itens de U e um novo item d, decidir qual dos k itens será desalojado para dar espaço para d.

 S_{FF} : escalonamento obtido pela política anterior.

Lema: S_{FF} é ótimo.

Problema: não conhecemos d de ante-mão...

Era melhor uma política online e S_{FF} não é online...

LRU: least recently used

MRU: most recently used

LRU: least recently used

MRU: most recently used

Algoritmos de marcação por fases:

C: itens que estão no cache.

Cada item de C está marcado ou desmarcado.

Fase: no início, todos os itens desmarcados.

LRU: least recently used

MRU: most recently used

Algoritmos de marcação por fases:

C: itens que estão no cache.

Cada item de C está marcado ou desmarcado.

Fase: no início, todos os itens desmarcados. recebe requisição do item *s*.

LRU: least recently used

MRU: most recently used

Algoritmos de marcação por fases:

C: itens que estão no cache.

Cada item de C está marcado ou desmarcado.

Fase: no início, todos os itens desmarcados.

recebe requisição do item s.

marca s.

LRU: least recently used

MRU: most recently used

Algoritmos de marcação por fases:

C: itens que estão no cache.

Cada item de C está marcado ou desmarcado.

Fase: no início, todos os itens desmarcados.

recebe requisição do item s.

marca s.

se $s \in C$, atende s e passa para o próximo.

Algoritmo:

C: itens que estão no cache.

Cada item de *C* está marcado ou desmarcado.

Fase: no início, todos os itens desmarcados.

recebe requisição do item s.

marca s.

se $s \in C$, atende s e passa para o próximo.

Algoritmo:

C: itens que estão no cache. Cada item de C está marcado ou desmarcado.

Fase: no início, todos os itens desmarcados. recebe requisição do item s. marca s. se $s \in C$, atende s e passa para o próximo.

se $s \notin C$,

se C está todo marcado desmarca todos os itens e começa nova fase deixando s para ser atendido nela.

Algoritmo:

C: itens que estão no cache. Cada item de C está marcado ou desmarcado. Fase: no início, todos os itens desmarcados. recebe requisição do item s. marca s. se $s \in C$, atende s e passa para o próximo. se $s \notin C$, se C está todo marcado desmarca todos os itens e começa nova fase deixando s para ser atendido nela. senão despeja de C um dos itens desmarcados, traz s no seu lugar e passa para o próximo.

Algoritmo:

C: itens que estão no cache.

Cada item de C está marcado ou desmarcado.

Fase: no início, todos os itens desmarcados. recebe requisição do item s. marca s.

se $s \in C$, atende s e passa para o próximo.

se $s \notin C$,

se *C* está todo marcado desmarca todos os itens e começa nova fase deixando *s* para ser atendido nela.

senão

despeja de C um dos itens desmarcados, traz s no seu lugar e passa para o próximo.

Note que LRU é um algoritmo de marcação.

Fixe uma sequência de requisições.

f(d): número mínimo de falhas para atender d.

Fixe uma sequência de requisições.

f(d): número mínimo de falhas para atender d.

Em cada fase, há pelo menos uma falha.

Fixe uma sequência de requisições.

f(d): número mínimo de falhas para atender d.

Em cada fase, há pelo menos uma falha.

De fato, em cada fase, há k+1 itens distintos requisitados.

Fixe uma sequência de requisições.

f(d): número mínimo de falhas para atender d.

Em cada fase, há pelo menos uma falha. De fato, em cada fase, há k+1 itens distintos requisitados.

Então $f(d) \ge r - 1$, onde r é o número de fases do algoritmo.

Fixe uma sequência de requisições.

f(d): número mínimo de falhas para atender d.

Em cada fase, há pelo menos uma falha. De fato, em cada fase, há k+1 itens distintos requisitados.

Então $f(d) \ge r - 1$, onde r é o número de fases do algoritmo.

O algoritmo de marcação faz no máximo k falhas por fase.

Logo, no total, faz no máximo $kr \leq kf(d) + k$ falhas.

Fixe uma sequência d de requisições.

f(d): número mínimo de falhas para atender d.

Em cada fase, há pelo menos uma falha. De fato, em cada fase, há k+1 itens distintos requisitados.

Então $f(d) \ge r - 1$, onde r é o número de fases do algoritmo.

O algoritmo de marcação faz no máximo k falhas por fase.

Logo, no total, faz no máximo $kr \leq kf(d) + k$ falhas.

Dizemos que tal algoritmo é k-competitivo.

Fixe uma sequência de requisições.

f(d): número mínimo de falhas para atender d.

Em cada fase, há pelo menos uma falha. De fato, em cada fase, há k+1 itens distintos requisitados.

Então $f(d) \ge r - 1$, onde r é o número de fases do algoritmo.

O algoritmo de marcação faz no máximo k falhas por fase.

Logo, no total, faz no máximo $kr \leq kf(d) + k$ falhas.

Dizemos que tal algoritmo é k-competitivo.

Em particular, o LRU é k-competitivo.

Sorteie um desmarcado uniformemente para despejar!

Sorteie um desmarcado uniformemente para despejar!

Análise:

Fase *j*:

item requisitado é fresco se não foi marcado na fase j-1 e é amanhecido caso contrário.

Sorteie um desmarcado uniformemente para despejar!

Análise:

Fase *j*:

item requisitado é fresco se não foi marcado na fase j-1 e é amanhecido caso contrário.

 $f_i(\mathbf{d})$: número de falhas da política ótima na fase j.

Sorteie um desmarcado uniformemente para despejar!

Análise:

Fase *j*:

item requisitado é fresco se não foi marcado na fase j-1 e é amanhecido caso contrário.

 $f_j(\mathbf{d})$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d})$$

Sorteie um desmarcado uniformemente para despejar!

Análise:

Fase *j*:

item requisitado é fresco se não foi marcado na fase j-1 e é amanhecido caso contrário.

 $f_i(d)$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d})$$

 c_j : número de itens frescos na fase j.

Sorteie um desmarcado uniformemente para despejar!

Análise:

Fase *j*:

item requisitado é fresco se não foi marcado na fase j-1 e é amanhecido caso contrário.

 $f_i(d)$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d})$$

 c_j : número de itens frescos na fase j.

Lema:
$$f_i(d) + f_{i+1}(d) \ge c_{i+1}$$

Fase *j*:

item desmarcado é fresco se não foi marcado na fase j-1.

 $f_j(\mathbf{d})$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d})$$

 c_j : número de itens frescos na fase j.

Lema: $f_j(d) + f_{j+1}(d) \ge c_{j+1}$

Fase *j*:

item desmarcado é fresco se não foi marcado na fase j-1.

 $f_j(\mathbf{d})$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d})$$

 c_j : número de itens frescos na fase j.

Lema: $f_j(d) + f_{j+1}(d) \ge c_{j+1}$

Prova: Na fase j, há requisição para k itens distintos.

Fase *j*:

item desmarcado é fresco se não foi marcado na fase j-1.

 $f_j(\mathbf{d})$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d})$$

 c_j : número de itens frescos na fase j.

Lema: $f_j(d) + f_{j+1}(d) \ge c_{j+1}$

Prova: Na fase j, há requisição para k itens distintos.

Na fase j+1, há requisição para c_{j+1} itens distintos destes.

Fase *j*:

item desmarcado é fresco se não foi marcado na fase j-1.

 $f_j(\mathbf{d})$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d})$$

 c_j : número de itens frescos na fase j.

Lema: $f_j(d) + f_{j+1}(d) \ge c_{j+1}$

Prova: Na fase j, há requisição para k itens distintos.

Na fase j+1, há requisição para c_{j+1} itens distintos destes.

Então um algoritmo ótimo incorre em $\geq c_{j+1}$ falhas.

Fase *j*:

item desmarcado é fresco se não foi marcado na fase j-1 e é amanhecido caso contrário.

 $f_i(d)$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d}).$$

 c_i : número de itens frescos na fase j. (Tome $c_1 = 0$.)

Lema: $f_i(d) + f_{i+1}(d) \ge c_{i+1}$

Fase *j*:

item desmarcado é fresco se não foi marcado na fase j-1 e é amanhecido caso contrário.

 $f_i(\mathbf{d})$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d}).$$

 c_i : número de itens frescos na fase j. (Tome $c_1 = 0$.)

Lema: $f_j(d) + f_{j+1}(d) \ge c_{j+1}$

Consequência:

$$2f(\mathbf{d}) - f_1(\mathbf{d}) - f_r(\mathbf{d}) = \sum_{j=1}^{r-1} (f_j(\mathbf{d}) + f_{j+1}(\mathbf{d})) \ge \sum_{j=1}^{r-1} c_{j+1}$$

Fase *j*:

item desmarcado é fresco se não foi marcado na fase j-1 e é amanhecido caso contrário.

 $f_i(\mathbf{d})$: número de falhas da política ótima na fase j.

$$f(\mathbf{d}) = \sum_{j=1}^{r} f_j(\mathbf{d}).$$

 c_i : número de itens frescos na fase j. (Tome $c_1 = 0$.)

Lema: $f_j(d) + f_{j+1}(d) \ge c_{j+1}$

Consequência:

$$2f(\mathbf{d}) - f_1(\mathbf{d}) - f_r(\mathbf{d}) = \sum_{j=1}^{r-1} (f_j(\mathbf{d}) + f_{j+1}(\mathbf{d})) \ge \sum_{j=1}^{r-1} c_{j+1}$$

Logo,
$$2 f(d) \ge \sum_{j=1}^{r} c_j$$
.

 X_j : número de falhas do algoritmo aleatorizado na fase j.

$$X = \sum_{j=1}^{r} X_j$$
.

Queremos estimar E[X].

 X_j : número de falhas do algoritmo aleatorizado na fase j.

$$X = \sum_{j=1}^{r} X_j$$
.

Queremos estimar E[X].

Note que

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

 X_j : número de falhas do algoritmo aleatorizado na fase j.

$$X = \sum_{j=1}^{r} X_j$$
.

Queremos estimar E[X].

Note que

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Considere a requisição do i-ésimo amanhecido na fase j.

 X_j : número de falhas do algoritmo aleatorizado na fase j.

$$X = \sum_{j=1}^{r} X_j$$
.

Queremos estimar E[X].

Note que

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Considere a requisição do i-ésimo amanhecido na fase j.

Cache: frescos $c \le c_j$ amanhecidos marcados i-1 amanhecidos desmarcados k-c-i+1

 X_j : número de falhas do algoritmo aleatorizado na fase j.

$$X = \sum_{j=1}^{r} X_j$$
.

Queremos estimar E[X].

Note que

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Considere a requisição do i-ésimo amanhecido na fase j.

Cache: frescos $c \le c_j$ amanhecidos marcados i-1 amanhecidos desmarcados k-c-i+1

Logo o número de amanhecidos fora do cache é c.

 X_j : número de falhas do algoritmo aleatorizado na fase j.

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Queremos estimar E[X], onde $X = \sum_{j=1}^{r} X_j$.

Considere a requisição do i-ésimo amanhecido na fase j. Número de amanhecidos fora do cache é c, assim

 X_j : número de falhas do algoritmo aleatorizado na fase j.

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Queremos estimar E[X], onde $X = \sum_{j=1}^{r} X_j$.

Considere a requisição do i-ésimo amanhecido na fase j. Número de amanhecidos fora do cache é c, assim

$$\Pr[\text{falha no } i\text{-\'esimo amanhecido}] = \frac{c}{k-i+1} \le \frac{c_j}{k-i+1}.$$

 X_j : número de falhas do algoritmo aleatorizado na fase j.

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Queremos estimar E[X], onde $X = \sum_{j=1}^{r} X_j$.

Considere a requisição do i-ésimo amanhecido na fase j. Número de amanhecidos fora do cache é c, assim

$$\Pr[\text{falha no } i\text{-\'esimo amanhecido}] = \frac{c}{k-i+1} \le \frac{c_j}{k-i+1}.$$

Logo
$$\mathrm{E}[X_j] \leq c_j + \sum_{i=c_j+1}^k \frac{c_j}{i} = c_j (1 + H_k - H_{c_j}) \leq c_j H_k$$
 e

 X_j : número de falhas do algoritmo aleatorizado na fase j.

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Queremos estimar E[X], onde $X = \sum_{j=1}^{r} X_j$.

Considere a requisição do i-ésimo amanhecido na fase j. Número de amanhecidos fora do cache é c, assim

$$\Pr[\text{falha no } i\text{-\'esimo amanhecido}] = \frac{c}{k-i+1} \le \frac{c_j}{k-i+1}.$$

Logo
$$E[X_j] \le c_j + \sum_{i=c_j+1}^k \frac{c_j}{i} = c_j (1 + H_k - H_{c_j}) \le c_j H_k$$
 e

$$E[X] = \sum_{i=1}^{r} E[X_j] \le \sum_{i=1}^{r} c_j H_k \le 2H_k f(\mathbf{d}) = O(\lg k) f(\mathbf{d}).$$

 X_j : número de falhas do algoritmo aleatorizado na fase j.

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Queremos estimar E[X], onde $X = \sum_{j=1}^{r} X_j$.

Considere a requisição do i-ésimo amanhecido na fase j. Número de amanhecidos fora do cache é c, assim

$$\Pr[\text{falha no } i\text{-\'esimo amanhecido}] = \frac{c}{k-i+1} \le \frac{c_j}{k-i+1}.$$

 X_j : número de falhas do algoritmo aleatorizado na fase j.

 $X_j = c_j$ falhas por itens frescos + falhas por amanhecidos.

Queremos estimar E[X], onde $X = \sum_{j=1}^{r} X_j$.

Considere a requisição do i-ésimo amanhecido na fase j. Número de amanhecidos fora do cache é c, assim

$$\Pr[\text{falha no } i\text{-}\acute{\text{esimo amanhecido}}] = \frac{c}{k-i+1} \leq \frac{c_j}{k-i+1}.$$

(k-i+1): número de amanhecidos desmarcados)

Temos que $E[X] = O(\lg k) f(d)$.

Portanto esse algoritmo é $O(\lg k)$ -competitivo.