Análise de Algoritmos

Estes slides são adaptações de slides

do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Introdução

CLRS 2.2 e 3.1 AU 3.3, 3.4 e 3.6

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Exemplo: número de inversões

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Uma inversão é um par (i, j) de índices de p tal que i < j e p[i] > p[j].

Entrada:

Exemplo: número de inversões

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Uma inversão é um par (i, j) de índices de p tal que i < j e p[i] > p[j].

Entrada:

Saída: 11

Inversões:
$$(1,3)$$
, $(2,3)$, $(4,5)$, $(2,6)$, $(4,6)$, $(5,6)$, $(4,7)$, $(4,8)$, $(7,8)$, $(4,9)$ e $(7,9)$.

```
CONTA-INVERSÕES (p, n)
1 c \leftarrow 0
2 para i \leftarrow 1 até n-1 faça
3 para j \leftarrow i+1 até n faça
4 se p[i] > p[j]
5 então c \leftarrow c+1
6 devolva c
```

```
CONTA-INVERSÕES (p, n)
1 c \leftarrow 0
2 para i \leftarrow 1 até n-1 faça
3 para j \leftarrow i+1 até n faça
4 se p[i] > p[j]
5 então c \leftarrow c+1
6 devolva c
```

Se a execução de cada linha de código consome 1 unidade de tempo, o consumo total é ...

Se a execução de cada linha de código consome 1 unidade de tempo, o consumo total é:

linha	todas as execuções da linha		
1	=	1	
2	=	n	
3	=	$\sum_{i=2}^{n} i = (n+2)(n-1)/2$	
4	=	$\sum_{i=1}^{n-1} i = n(n-1)/2$	
5	\leq	$\sum_{i=1}^{n-1} i = n(n-1)/2$	
6	=	1	
total	<u> </u>	$(3/2)n^2 + n/2 + 1$	

Se a execução de cada linha de código consome 1 unidade de de tempo, o consumo total é:

linha	todas as execuções da linha		
1	=	1	
2	=	n	
3	=	$\sum_{i=2}^{n} i = (n+2)(n-1)/2$	
4	=	$\sum_{i=1}^{n-1} i = n(n-1)/2$	
5	\leq	$\sum_{i=1}^{n-1} i = n(n-1)/2$	
6	=	1	
total	<u> </u>	$(3/2)n^2 + n/2 + 1$	

O algoritmo CONTA-INVERSÕES consome não mais que $(3/2)n^2 + n/2 + 1$ unidades de tempo.

Se a execução de cada linha de código consome um tempodiferente, o consumo total é:

linha	todas as execuções da linha		
1	=	1	$\times t_1$
2	=	n	$\times t_2$
3	=	(n+2)(n-1)/2	$\times t_3$
4	=	n(n-1)/2	$\times t_4$
5	\leq	n(n-1)/2	$\times t_5$
6	=	1	$\times t_6$
total		2	

เบเสเ

Se a execução de cada linha de código consome um tempo diferente, o consumo total é:

linha todas as execuções da linha

1
 =
 1

$$\times t_1$$

 2
 =
 n
 $\times t_2$

 3
 =
 $(n+2)(n-1)/2$
 $\times t_3$

 4
 =
 $n(n-1)/2$
 $\times t_4$

 5
 $\leq n(n-1)/2$
 $\times t_5$

 6
 =
 1
 $\times t_6$

total
$$\leq \left(\frac{t_3+t_4+t_5}{2}\right)n^2 + \left(t_2 + \frac{t_3-t_4-t_5}{2}\right)n + (t_1-t_3+t_6)$$

= $c_2n^2 + c_1n + c_0$,

onde c_2 , c_1 e c_0 são constantes que dependem da máquina.

Se a execução de cada linha de código consome um tempo diferente, o consumo total é:

linha todas as execuções da linha

1	= 1	$\times t_1$
2	= n	$\times t_2$
3	= (n+2)(n-1)/2	$\times t_3$
4	= n(n-1)/2	$\times t_4$
5	$\leq n(n-1)/2$	$ imes t_5$
6	= 1	$\times t_6$

total
$$\leq \left(\frac{t_3+t_4+t_5}{2}\right)n^2 + \left(t_2 + \frac{t_3-t_4-t_5}{2}\right)n + (t_1-t_3+t_6)$$

= $c_2n^2 + c_1n + c_0$,

onde c_2 , c_1 e c_0 são constantes que dependem da máquina. n^2 é para sempre! Está nas entranhas do algoritmo!

Notação O

Intuitivamente...

- $O(f(n)) \approx funções que não crescem mais rápido que <math>f(n)$
 - \approx funções menores ou iguais a um múltiplo de f(n)

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

Notação O

Intuitivamente...

- $O(f(n)) \approx funções que não crescem mais rápido que <math>f(n)$
 - \approx funções menores ou iguais a um múltiplo de f(n)

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

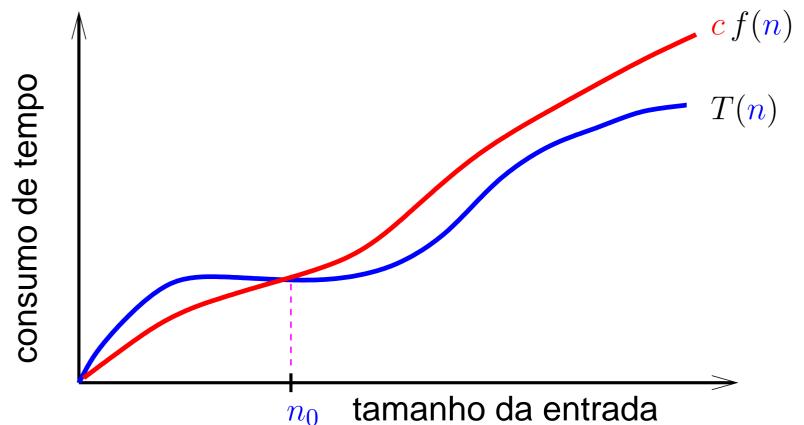
- $n^2 + 99n$ é $O(n^2)$
- $33n^2$ é $O(n^2)$
- $9n + 2 \text{ \'e } O(n^2)$
- $0,00001n^3 200n^2$ não é $O(n^2)$

Definição

Sejam T(n) e f(n) funções dos inteiros nos reais. Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \leq c f(n)$$

para todo $n \ge n_0$.

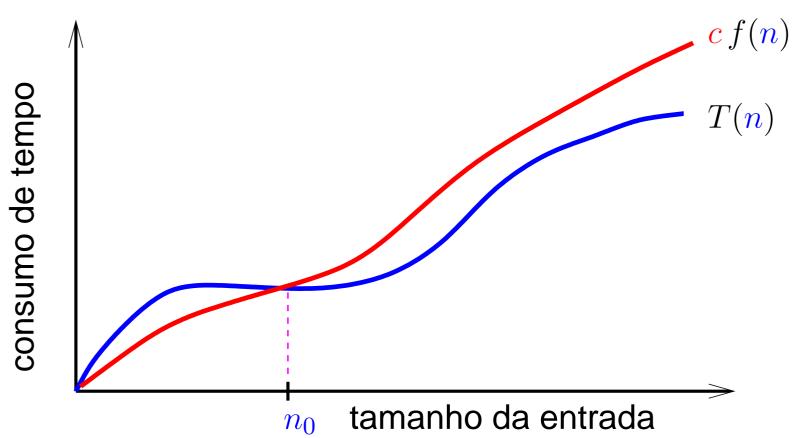


Mais informal

T(n) é O(f(n)) se existe c>0 tal que

$$T(n) \leq c f(n)$$

para todo n suficientemente GRANDE.



```
T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"
```

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para $n \ge 1$, temos que $0 \le 10n^2 \le 10n^3$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para $n \ge 1$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para $n \ge 1$, temos que $0 \le 10n^2 \le 10n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

Exemplo 2

 $\lg n \in O(n)$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para $n \ge 1$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

Exemplo 2

 $\lg n \in O(n)$.

Prova: Para $n \ge 1$, tem-se que $\lg n \le 1 n$.

Mais exemplos

Exemplo 3

$$20n^3 + 10n \log n + 5 \text{ \'e } O(n^3)$$
.

Mais exemplos

Exemplo 3

 $20n^3 + 10n \log n + 5 \text{ \'e } O(n^3).$

Prova: Para $n \ge 1$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

Mais exemplos

Exemplo 3

$$20n^3 + 10n \log n + 5 \text{ \'e } O(n^3).$$

Prova: Para $n \geq 1$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

Outra prova: Para $n \ge 10$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + n n \lg n + n \le 20n^3 + n^3 + n^3 = 22n^3.$$

Uso da notação O

$$O(f(n)) = \{T(n) : \text{existem } c \in n_0 \text{ tq } T(n) \leq cf(n), n \geq n_0 \}$$

"T(n) é O(f(n))" deve ser entendido como " $T(n) \in O(f(n))$ ".

"T(n) = O(f(n))" deve ser entendido como " $T(n) \in O(f(n))$ ".

" $T(n) \leq O(f(n))$ " é feio.

" $T(n) \ge O(f(n))$ " não faz sentido!

" $T(n) \not e g(n) + O(f(n))$ " significa que existem constantes positivas $c e n_0$ tais que

$$T(\mathbf{n}) \le g(\mathbf{n}) + \mathbf{c} f(\mathbf{n})$$

para todo $n \geq n_0$.

Nomes de classes O

classe	nome	
O(1)	constante	
$O(\lg n)$	logarítmica	
O(n)	linear	
$O(n \lg n)$	$n \log n$	
$O(n^2)$	quadrática	
$O(n^3)$	cúbica	
$O(n^k)$ com $k \ge 1$	polinomial	
$O(2^n)$	exponencial	
$O(a^n) \text{ com } a > 1$	exponencial	

```
CONTA-INVERSÕES (p,n)
```

```
\begin{array}{lll} \mathbf{1} & c \leftarrow 0 \\ \mathbf{2} & \mathsf{para} \ \pmb{i} \leftarrow 1 \ \mathsf{at\'e} \ \pmb{n} - 1 \ \mathsf{faça} \\ \mathbf{3} & \mathsf{para} \ \pmb{j} \leftarrow \pmb{i} + 1 \ \mathsf{at\'e} \ \pmb{n} \ \mathsf{faça} \\ \mathbf{4} & \mathsf{se} \ p[\pmb{i}] > p[\pmb{j}] \\ \mathbf{5} & \mathsf{ent\~ao} \ c \leftarrow c + 1 \\ \mathbf{6} & \mathsf{devolva} \ c \end{array}
```

```
CONTA-INVERSÕES (p, n)
       c \leftarrow 0
       para i \leftarrow 1 até n-1 faça
 3
              para j \leftarrow i + 1 até n faça
                     se p[i] > p[j]
 4
                           então c \leftarrow c+1
 5
 6
       devolva c
        linha
                 consumo de todas as execuções da linha
          5
                    ?
        total
```

```
CONTA-INVERSÕES (p, n)
       c \leftarrow 0
       para i \leftarrow 1 até n-1 faça
 3
              para j \leftarrow i + 1 até n faça
                    se p[i] > p[j]
 4
                          então c \leftarrow c+1
 5
 6
       devolva c
                consumo de todas as execuções da linha
        linha
                    O(1)
                   O(n)
                   O(n^2)
                   O(n^2)
                   O(n^2)
          5
                    O(1)
          6
                   O(3n^2 + n + 2) = O(n^2)
        total
```

Conclusão

O algoritmo CONTA-INVERSÕES consome $O(n^2)$ unidades de tempo.

Também escreve-se

O algoritmo CONTA-INVERSÕES consome tempo $O(n^2)$.

Notação Omega

Dizemos que T(n) é $\Omega(f(n))$ se existem constantes positivas c e n_0 tais que

$$c f(n) \leq T(n)$$

para todo $n \geq n_0$.

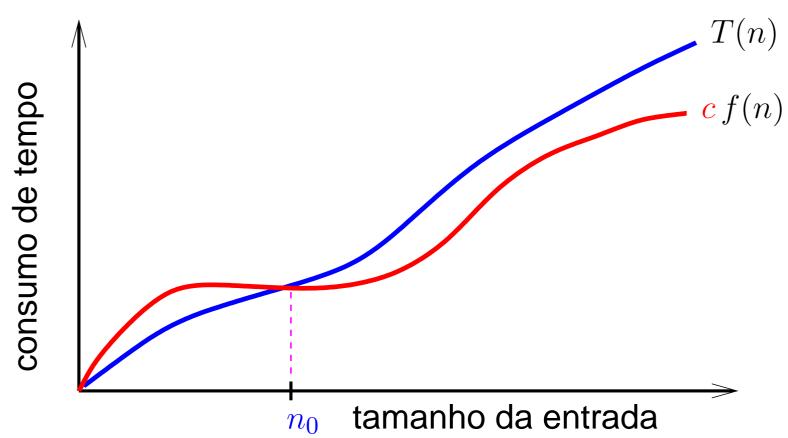


Mais informal

 $T(n) = \Omega(f(n))$ se existe c > 0 tal que

$$c f(n) \le T(n)$$

para todo *n* suficientemente **GRANDE**.



Exemplo 1

Se $T(n) \ge 0.001n^2$ para todo $n \ge 8$, então T(n) é $\Omega(n^2)$.

Exemplo 1

Se $T(n) \ge 0.001n^2$ para todo $n \ge 8$, então T(n) é $\Omega(n^2)$.

Prova: Aplique a definição com c = 0.001 e $n_0 = 8$.

O consumo de tempo do CONTA-INVERSÕES é $\mathrm{O}(n^2)$ e também $\Omega(n^2)$.

O consumo de tempo do CONTA-INVERSÕES é $O(n^2)$ e também $\Omega(n^2)$.

```
CONTA-INVERSÕES (p, n)
1 c \leftarrow 0
2 para i \leftarrow 1 até n-1 faça
3 para j \leftarrow i+1 até n faça
4 se p[i] > p[j]
5 então c \leftarrow c+1
6 devolva c
```

Exemplo 2

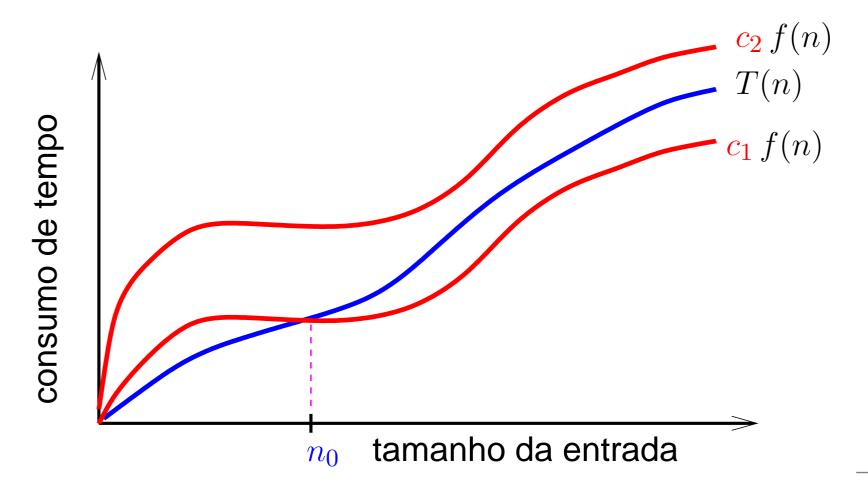
O consumo de tempo do CONTA-INVERSÕES é $\mathrm{O}(n^2)$ e também $\Omega(n^2)$.

linha	todas as execuções da linha			
1	=	1		
2	=	n		
3	=	(n+2)(n-1)/2		
4	=	$\frac{n(n-1)}{2}$		
5	\geq	0		
6	=	1		
total	>	$n^2 + n = \Omega(n^2)$		

Notação Theta

Sejam T(n) e f(n) funções dos inteiros no reais. Dizemos que T(n) é $\Theta(f(n))$ se

T(n) é O(f(n)) e T(n) é $\Omega(f(n))$.

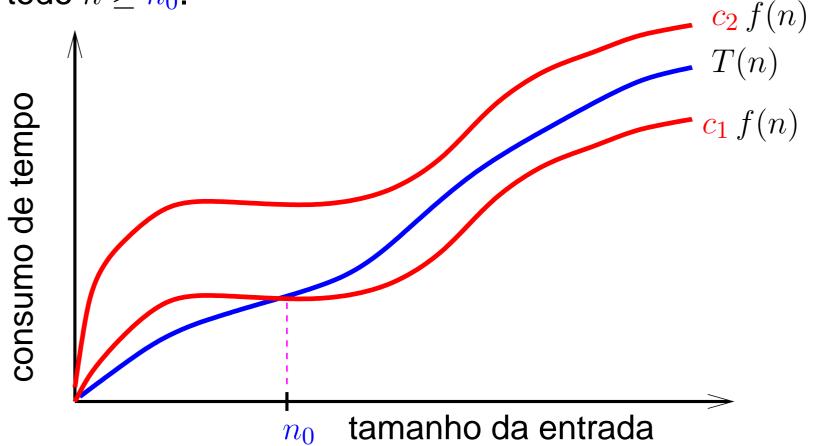


Notação Theta

Dizemos que T(n) é $\Theta(f(n))$ se se existem constantes positivas c_1, c_2 e n_0 tais que

$$c_1 f(n) \le T(n) \le c_2 f(n)$$

para todo $n \geq n_0$.



Intuitivamente

Comparação assintótica, ou seja, para *n* ENORME.

comparação	comparação assintótica
$T(n) \le f(n)$	T(n) é $O(f(n))$
$T(n) \ge f(n)$	$T(n)$ é $\Omega(f(n))$
T(n) = f(n)	$T(n)$ é $\Theta(f(n))$

Tamanho máximo de problemas

Suponha que cada operação consome 1 microsegundo (1 μs).

consumo de	Tamanho máximo de problemas (n)					
tempo (μs)	1 segundo	1 minuto	1 hora			
400n	2500	150000	9000000			
$20 n \lceil \lg n \rceil$	4096	166666	7826087			
$2n^2$	707	5477	42426			
n^4	31	88	244			
2^n	19	25	31			

Michael T. Goodrich e Roberto Tamassia, *Projeto de Algoritmos*, Bookman.

Crescimento de algumas funções

n	$\lg n$	\sqrt{n}	$n \lg n$	n^2	n^3	2^n
2	1	1,4	2	4	8	4
4	2	2	8	16	64	16
8	3	2,8	24	64	512	256
16	4	4	64	256	4096	65536
32	5	5,7	160	1024	32768	4294967296
64	6	8	384	4096	262144	1,8 10^{19}
128	7	11	896	16384	2097152	3,4 10 ³⁸
256	8	16	1048	65536	16777216	1,1 10 ⁷⁷
512	9	23	4608	262144	134217728	1,3 10^{154}
1024	10	32	10240	1048576	1,1 10 ⁹	1,7 10^{308}

Nomes de classes ⊖

classe	nome
$\Theta(1)$	constante
$\Theta(\log n)$	Iogarítmica
$\Theta(n)$	linear
$\Theta(n \log n)$	$n \log n$
$\Theta(n^2)$	quadrática
$\Theta(n^3)$	cúbica
$\Theta(n^k) \text{ com } k \ge 1$	polinomial
$\Theta(2^n)$	exponencial
$\Theta(a^n) \text{ com } a > 1$	exponencial

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" $100 \, n$ e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" $100 \, n$ e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

 $100 n \in \Theta(n)$ e $n \log_{10} n \in \Theta(n \lg n)$. Logo, \mathcal{A} é assintoticamente mais eficiente que \mathcal{B} .

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" $100 \, n$ e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

```
100 n \notin \Theta(n) e n \log_{10} n \notin \Theta(n \lg n).
Logo, \mathcal{A} é assintoticamente mais eficiente que \mathcal{B}.
```

 \mathcal{A} é mais eficiente que \mathcal{B} para $n \geq 10^{100}$.

```
10^{100} = \text{um } \textit{googol} \\ \approx \text{número de átomos no universo observável} \\ = \text{número } ENORME
```

Conclusão:

Lembre das constantes e termos de baixa ordem que estão "escondidos" na notação assintótica.

Em geral um algoritmo que consome tempo $\Theta(n \lg n)$, e com fatores constantes razoáveis, é bem eficiente.

Um algoritmo que consome tempo $\Theta(n^2)$ pode, algumas vezes, ser satisfatório.

Um algoritmo que consome tempo $\Theta(2^n)$ é dificilmente aceitável.

Do ponto de vista de AA, eficiente = polinomial.

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Note que o número de inversões pode ser $\Theta(n^2)$. Portanto, para isso, não podemos contar de uma em uma as inversões, como faz o algoritmo que vimos hoje. Temos que ser mais espertos...

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Note que o número de inversões pode ser $\Theta(n^2)$. Portanto, para isso, não podemos contar de uma em uma as inversões, como faz o algoritmo que vimos hoje. Temos que ser mais espertos...

Ideia: vamos ordenar e contar ao mesmo tempo!

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Note que o número de inversões pode ser $\Theta(n^2)$. Portanto, para isso, não podemos contar de uma em uma as inversões, como faz o algoritmo que vimos hoje. Temos que ser mais espertos...

Ideia: vamos ordenar e contar ao mesmo tempo!

Método: divisão e conquista.

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Note que o número de inversões pode ser $\Theta(n^2)$. Portanto, para isso, não podemos contar de uma em uma as inversões, como faz o algoritmo que vimos hoje. Temos que ser mais espertos...

Ideia: vamos ordenar e contar ao mesmo tempo!

Método: divisão e conquista.

Resultado: um algoritmo $O(n \lg n)$ para o problema do número de inversões de uma permutação!

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Duas opções: o MERGESORT e o HEAPSORT.

Qual deles parece mais adequado?

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Duas opções: o MERGESORT e o HEAPSORT.

Qual deles parece mais adequado?

Resposta: o MERGESORT.

Merge-Sort

Rearranja A[p ... r], com $p \le r$, em ordem crescente.

```
MERGESORT (A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT (A, p, q)

4 MERGESORT (A, q+1, r)

5 INTERCALA (A, p, q, r)
```

Método: Divisão e conquista.

Intercalação

Problema: Dados A[p ... q] e A[q+1... r] crescentes, rearranjar A[p... r] de modo que ele fique em ordem crescente.

Para que valores de *q* o problema faz sentido?

Entra:

	p				q				r
A	22	33	55	77	99	11	44	66	88

Intercalação

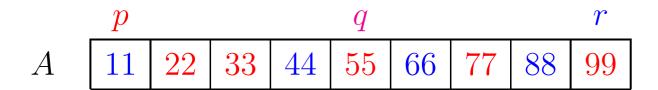
Problema: Dados A[p ...q] e A[q+1...r] crescentes, rearranjar A[p...r] de modo que ele fique em ordem crescente.

Para que valores de *q* o problema faz sentido?

Entra:

	p				q			r		
A	22	33	55	77	99	11	44	66	88	

Sai:



Intercalação

```
INTERCALA (A, p, q, r)
        \triangleright B[p ...r] é um vetor auxiliar
        para i \leftarrow p até q faça
               B[i] \leftarrow A[i]
 3
        para j \leftarrow q + 1 até r faça
               B[r+q+1-j] \leftarrow A[j]
 5
        i \leftarrow p
 6
       j \leftarrow r
        para k \leftarrow p até r faça
 8
               se B[i] \leq B[j]
 9
                     então A[k] \leftarrow B[i]
10
                               i \leftarrow i + 1
                     senão A[k] \leftarrow B[j]
12
                                j \leftarrow j-1
```

Adaptação do Merge-Sort

Conta o número de inversões de A[p ...r], com $p \le r$, e rearranja A[p ...r] em ordem crescente.

```
CONTA-E-ORDENA (A, p, r)

1 se p \ge r

2 então devolva 0

3 senão q \leftarrow \lfloor (p+r)/2 \rfloor

4 c \leftarrow \text{CONTA-E-ORDENA}(A, p, q) +

5 CONTA-E-ORDENA (A, q+1, r) +

6 CONTA-E-INTERCALA (A, p, q, r)

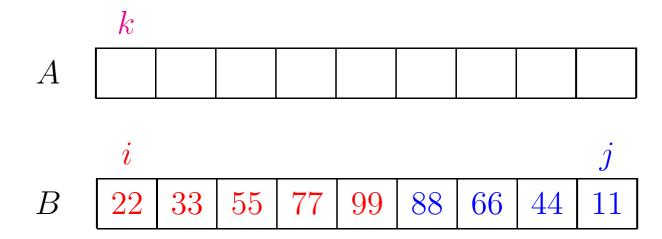
7 devolva c
```

Método: Divisão e conquista.

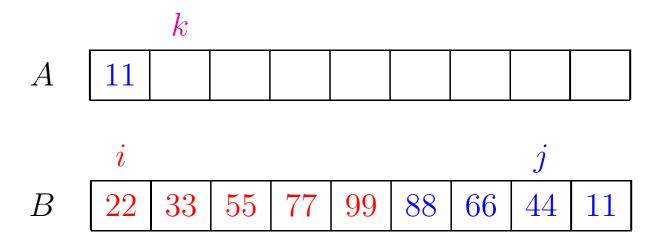
Contagem na intercalação

```
CONTA-E-INTERCALA (A, p, q, r)
        para i \leftarrow p até q faça
               B[i] \leftarrow A[i]
        para j \leftarrow q + 1 até r faça
              B[r+q+1-j] \leftarrow A[j]
 5
      i \leftarrow p
 6 \quad j \leftarrow r
 7 c \leftarrow 0
                                                           > inicializa o contador
 8
        para k \leftarrow p até r faça
 9
               se B[i] \leq B[j]
10
                     então A[k] \leftarrow B[i]
11
                               i \leftarrow i + 1
12
                     senão A[k] \leftarrow B[j]
13
                                j \leftarrow j-1
14
                                c \leftarrow c + (q - i + 1) \triangleright conta inversões
15
        devolva c
```

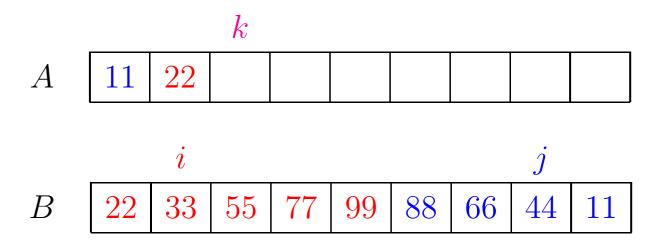

$$c = 0$$



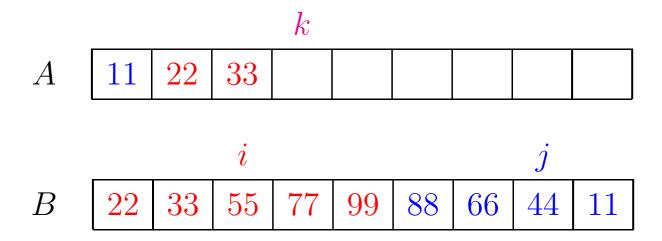
$$c = 0$$



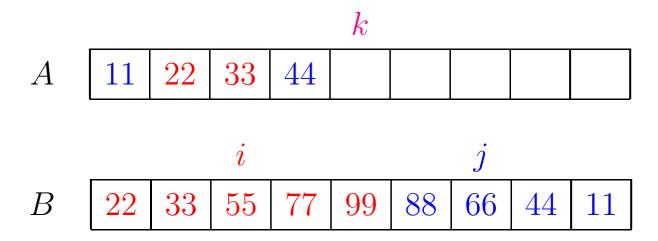
$$c = 0 + 5 = 5$$



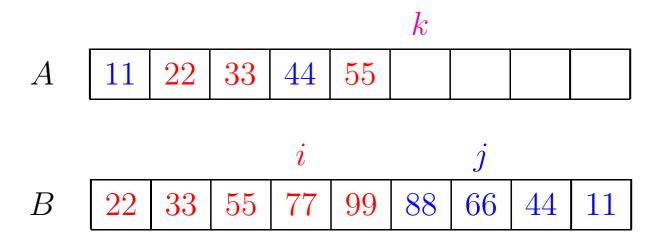
$$c = 5$$



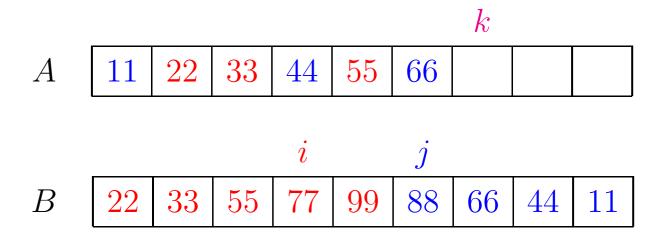
$$c = 5$$



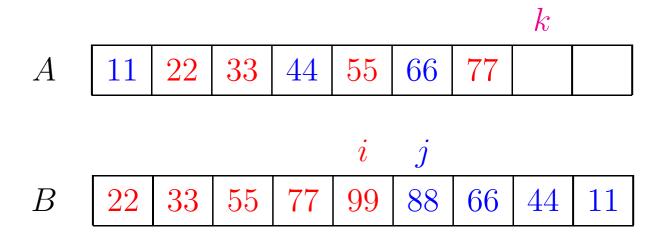
$$c = 5 + 3 = 8$$



$$c = 8$$



$$c = 8 + 2 = 10$$

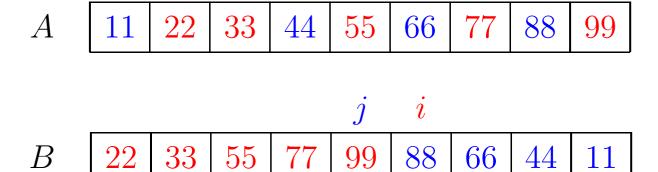


$$c = 10$$

Simulação

$$c = 10 + 1 = 11$$

Simulação



$$c = 11$$

Contagem na intercalação

```
CONTA-E-INTERCALA (A, p, q, r)
        para i \leftarrow p até q faça
               B[i] \leftarrow A[i]
        para j \leftarrow q + 1 até r faça
              B[r+q+1-j] \leftarrow A[j]
 5
      i \leftarrow p
 6 \quad j \leftarrow r
 7 c \leftarrow 0
                                                           > inicializa o contador
 8
        para k \leftarrow p até r faça
 9
               se B[i] \leq B[j]
10
                     então A[k] \leftarrow B[i]
11
                               i \leftarrow i + 1
12
                     senão A[k] \leftarrow B[j]
13
                                j \leftarrow j-1
14
                                c \leftarrow c + (q - i + 1) \triangleright conta inversões
15
        devolva c
```

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

linha	consumo de todas as execuções da linha
1	$\mathrm{O}(n)$
2	$\mathrm{O}(n)$
3	$\mathrm{O}(n)$
4	$\mathrm{O}(n)$
5–7	O(1)
8	O(n)
9	$\mathrm{O}(n)$
10–14	$\mathrm{O}(n)$
15	O(1)

total
$$O(7n+2) = O(n)$$

Conclusão

O algoritmo CONTA-E-INTERCALA consome O(n) unidades de tempo.

Também escreve-se

O algoritmo CONTA-E-INTERCALA consome tempo O(n).

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA.

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA. Vale a seguinte recorrência para T(n):

$$T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + O(n)$$

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA. Vale a seguinte recorrência para T(n):

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n)$$

Solução: $T(n) = O(n \lg n)$.

Prova?

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA.

Vale a seguinte recorrência para T(n):

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n)$$

Solução: $T(n) = O(n \lg n)$.

Prova?

Considera-se a recorrência simplificada

$$T(n) = 2T(n/2) + n$$

definida apenas para n potência de 2.

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA.

Vale a seguinte recorrência para T(n):

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n)$$

Solução: $T(n) = O(n \lg n)$.

Prova?

Considera-se a recorrência simplificada

$$T(n) = 2T(n/2) + n$$

definida apenas para n potência de 2.

Prova-se por indução em n que $T(n) = n + n \lg n = O(n \lg n)$.

Prova

Afirmação: A recorrência

tem como solução $T(n) = n + n \lg n$.

$$T(n) = \left\{ \begin{array}{ll} 1 & \text{se } n = 1 \\ 2\,T(n/2) + n & \text{se } n \geq 2 \text{, } n \text{ potencia de } 2 \end{array} \right.$$

Prova

Afirmação: A recorrência

$$T(n) = \left\{ \begin{array}{ll} 1 & \text{se } n=1 \\ 2\,T(n/2) + n & \text{se } n \geq 2 \text{, } n \text{ potencia de } 2 \end{array} \right.$$

tem como solução $T(n) = n + n \lg n$.

Prova: Por indução em n.

Base: n=1

$$T(1) = 1 = 1 + 1 \cdot 0 = 1 + 1 \lg 1.$$

Prova

Afirmação: A recorrência

$$T(n) = \left\{ \begin{array}{ll} 1 & \text{se } n=1 \\ 2\,T(n/2) + n & \text{se } n \geq 2 \text{, } n \text{ potencia de } 2 \end{array} \right.$$

tem como solução $T(n) = n + n \lg n$.

Prova: Por indução em n.

Base:
$$n = 1$$

$$T(1) = 1 = 1 + 1 \cdot 0 = 1 + 1 \lg 1.$$

Passo: $n \ge 2$

$$T(n) = 2T(n/2) + n$$

= $2(n/2 + (n/2)\lg(n/2)) + n$ por indução
= $2n + n\lg(n/2)$
= $2n + n(\lg n - 1)$
= $n + n\lg n$.

Mas como descobrimos que $T(n) = n + n \lg n$?

Mas como descobrimos que $T(n) = n + n \lg n$? No chute!

Mas como descobrimos que $T(n) = n + n \lg n$? No chute! Uma maneira de se obter um "chute" de solução de recorrência é desenrolando a recorrência.

Mas como descobrimos que $T(n) = n + n \lg n$? No chute! Uma maneira de se obter um "chute" de solução de recorrência é desenrolando a recorrência.

$$T(n) = 2T(n/2) + n$$

$$= 2(2T(n/2^{2}) + n/2) + n = 2^{2}T(n/2^{2}) + 2n$$

$$= 2^{2}(2T(n/2^{3}) + n/2^{2}) + 2n = 2^{3}T(n/2^{3}) + 3n$$

$$= 2^{3}(2T(n/2^{4}) + n/2^{3}) + 3n = 2^{4}T(n/2^{4}) + 4n$$

$$= \cdots$$

$$= 2^{k}T(n/2^{k}) + kn,$$

onde $k = \lg n$. Disso concluímos que

$$T(n) = n + n \lg n.$$

Exercícios

Exercício 1.A

Prove que $n^2 + 10n + 20 = O(n^2)$

Exercício 1.B

Prove que 300 = O(1)

Exercício 1.C

Prove que $\lceil n/3 \rceil = O(n)$

É verdade que $n = O(\lfloor n/3 \rfloor)$?

Exercício 1.D

Prove que $\lg n = O(\log_{10} n)$

Exercício 1.E

Prove que $n = O(2^n)$

Exercício 1.F

Prove que $\lg n = O(n)$

Exercício 1.G

Prove que n/1000 não é O(1)

Exercício 1.H

Prove que $\frac{1}{2} n^2$ não é O(n)

Mais exercícios

Exercício 1.I

Suponha T definida para $n = 0, 1, \ldots$

Se T(n) = O(1), mostre que existe c' tal que $T(n) \le c'$ para todo $n \ge 0$.

Se T(n) = O(n), mostre que existe c' tal que $T(n) \le c'n$ para todo $n \ge 1$.

Exercício 1.J

Prove que $n^2 + 999n + 9999 = O(n^2)$.

Exercício 1.K

Prove que $\frac{1}{2}n(n+1) = O(n^2)$.

Exercício 1.L

É verdade que $\frac{1}{100}n^2 - 999n - 9999 = O(n)$? Justifique.

Exercício 1.M

Suponha que $f(n) = n^2$ quando n é par e $f(n) = n^3$ quando n é ímpar.

É verdade que $f(n) = O(n^2)$?

É verdade que $f(n) = O(n^3)$?

É verdade que $n^2 = O(f(n))$?

É verdade que $n^3 = O(f(n))$?

Mais exercícios ainda

Exercício 1.N

É verdade que $n^2 = O(2^n)$?

Exercício 1.0

É verdade que $\lg n = O(\sqrt{n})$?

Exercício 1.P

Suponha $f(n) = 64n \lg n$ e $g(n) = 8n^2$, com n inteiro positivo.

Para que valores de n temos $f(n) \le g(n)$?

Exercício 1.Q (bom!)

Suponha T e f definidas para $n=1,2,\ldots$ Mostre que se $T(n)=\mathrm{O}(f(n))$ e f(n)>0 para $n\geq 1$ então existe c' tal que $T(n)\leq c'f(n)$ para todo $n\geq 1$.

Exercício 1.R (bom!)

Faz sentido dizer " $T(n) = O(n^2)$ para $n \ge 3$ "?

Mais exercícios ainda ainda

Exercício 1.S

```
É verdade que 2^n = O(n)?
É verdade que n = O(\lg n)?
Justifique.
```

Exercício 1.T

```
É verdade que n+\sqrt{n} é \mathrm{O}(n)?
É verdade que n é \mathrm{O}(\sqrt{n})?
É verdade que n^{2/3} é \mathrm{O}(\sqrt{n})?
É verdade que \sqrt{n}+1000 é \mathrm{O}(n)?
```

Exercício 1.U

```
É verdade que \lg n = \mathrm{O}(n^{1/2})?

É verdade que \sqrt{n} = \mathrm{O}(\lg n)?

É verdade que \lg n = \mathrm{O}(n^{1/3})?

Justifique. (Sugestão: prove, por indução, que \lg x \leq x para todo número real x \geq 1.)
```

Exercício 1.V

É verdade que $\lceil \lg n \rceil = O(\lg n)$?

Exercícios

Exercício 2.A

Interprete e prove a afirmação $O(n^2) + O(n^2) + O(n^2) = O(3n^2)$.

Exercício 2.B

Interprete e prove a afirmação $nO(n) = O(n^2)$.

Exercício 2.C

Interprete e prove a afirmação $O(3n^2 + 4n) = O(n^2)$.

Exercício 2.D (propriedade transitiva)

Suponha T(n) = O(f(n)) e f(n) = O(g(n)).

Mostre que T(n) = O(g(n)).

Dê um exemplo interessante.

Exercício 2.E (regra da soma, caso especial)

Suponha que T(n) = O(f(n)) e mostre que T(n) + f(n) = O(f(n)).

Dê um exemplo interessante.

Exercício 2.E' (regra da soma, geral)

Suponha $T_1(n) = O(f_1(n))$ e $T_2(n) = O(f_2(n))$. Se $f_1(n) = O(f_2(n))$, mostre que $T_1(n) + T_2(n) = O(f_2(n))$.

Mais exercícios

Exercício 2.F

O que significa " $T(n) = n^2 + O(n)$ "? Mostre que se $T(n) = n^2 + O(n)$ então $T(n) = O(n^2)$.

Exercício 2.G

O que significa " $T(n) = nO(\lg n)$ "? Mostre que $T(n) = nO(\lg n)$ se e só se $T(n) = O(n \lg n)$.

Exercício 2.H

Interprete e prove a afirmação $7 \cdot O(n) = O(n)$.

Exercício 2.1

Interprete e prove a afirmação O(n) + O(n) = O(n).

Exercício 2.J

Prove que $O(n) = O(n^2)$. É verdade que $O(n^2) = O(n)$?

Exercício 2.K

Interprete e prove a afirmação $(n + 2) \cdot O(1) = O(n)$.

Mais exercícios ainda

Exercício 2.L

Interprete e prove a afirmação $O(1) + \cdots + O(1) = O(n)$.

Exercício 2.M

Prove que O(1) + O(1) + O(1) = O(1). É verdade que O(1) = O(1) + O(1) + O(1)?

Exercício 2.N

Interprete e prove a afirmação O(f) + O(g) = O(f + g).

Exercício 2.0

Prove que $n^2+10n+20=\Omega(n^2)$. Prove que $n^2-10n-20=\Theta(n^2)$.

Exercício 2.P

Prove que $n = \Omega(\lg n)$.

Exercício 2.Q

Prove que $\lg n = \Theta(\log_{10} n)$.

Exercício 2.R

É verdade que $2^n = \Omega(3^n)$?

Mais exercícios

Exercício 2.S

É verdade que $2n^3 + 5\sqrt{n} = \Theta(n^3)$?

Exercício 2.T

Suponha que os algoritmos \mathcal{A} e \mathcal{B} só dependem de um parâmetro n. Suponha ainda que \mathcal{A} consome S(n) unidades de tempo enquanto \mathcal{B} consome T(n) unidades de tempo. Quero provar que algoritmo \mathcal{A} é pelo menos tão eficiente quanto o algoritmo \mathcal{B} (no sentido assintótico). Devo mostrar que existe f(n) tal que

$$S(n) = \mathcal{O}(f(n)) \text{ e } T(n) = \mathcal{O}(f(n))?$$

$$S(n) = \mathcal{O}(f(n)) \text{ e } T(n) = \Omega(f(n))?$$

$$S(n) = \Omega(f(n)) \text{ e } T(n) = \mathcal{O}(f(n))?$$

$$S(n) = \Omega(f(n)) \text{ e } T(n)\Omega(f(n))?$$

Que devo fazer para mostrar que A é mais eficiente que B?

Exercício 2.U

Mostre que o consumo de tempo do algoritmo $NTERCALA \in \Theta(n)$, sendo n o número de elementos do vetor que o algoritmo recebe.