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Abstract

Given a set S of n points in k-dimensional space, and an L; metric, the dynamic
closest pair problem is defined as follows: find a closest pair of S after each update of S
(the insertion or the deletion of a point). For fixed dimension & and fixed metric L;, we
give a data structure of size O(n) that maintains a closest pair of S in O(logn) time per
insertion and deletion. The running time of algorithm is optimal up to constant factor
because Q(logn) is a lower bound, in algebraic decision-tree model of computation, on
the time complexity of any algorithm that maintains the closest pair (for £ = 1). The
algorithm 1s based on the fair-split tree. The constant factor in the update time is
exponential in the dimension. We modify the fair-split tree to reduce it.

1 Introduction

The dynamic closest pair problem is one of the very well-studied proximity problem in
computational geometry [6, 17-20, 22, 24-26, 28-31]. We are given a set S of n points in
k-dimensional space, & > 1, and a distance metric L;, for 1 < t < oo. The point set is
modified by insertions and deletions of points. Each point p is given as a k-tuple of real
numbers (p1,. .., Pk)-

The closest pair of S is a pair (p,¢) of distinct points p,q € S such that the distance
between p and ¢ is minimal. The dynamic closest pair problem is defined as follows: find a
closest pair (any) of S after each update of 9.

We assume that the dimension & and the distance metric L; are fixed. We use d(p, ¢) to
denote the distance between p and g¢.

A survey can be found in Schwarz’s Ph.D.Thesis [24]. For the static closest pair prob-
lem and dimension k£ = 2, Shamos and Hoey [23] gave an algorithm with running time of
O(nlogn). Shortly after that, Bentley and Shamos [5] obtained this result for general dimen-
sion k > 2. In the on-line closest pair problem only insertions are allowed. For this problem
Smid [28] obtained a data structure of size O(n) that supports insertions in O(log"~! n)
amortized time. Schwarz, Smid and Snoeyink [26] presented a data structure of size O(n)
that maintains the closest pair in O(logn) amortized time per insertion.

Several algorithms are obtained for the dynamic closest pair problem [19, 20, 22, 24,
29-31]. In [20, 22, 29] the problem is solved with O(y/nlogn) update time using O(n) space.
In [19] Kapoor and Smid gave data structures of size S(n) that maintain the closest pair in
U(n) amortized time per update, where for k& > 3, size S(n) = O(n) and time U(n) =
O(log" L nloglogn); for k = 2, size S(n) = O(nlogn/(loglogn)™) and time U(n) =
O(lognloglogn); for k = 2, size S(n) = O(n) and time U(n) = O(log®n/(loglogn)™)

(m is an arbitrary non-negative integer constant). In [6] the author obtained an algorithm



with O(log"™ nloglog n) update time and O(nlog®~? n) space. Callahan and Kosaraju [13]
developed a tree-maintenance technique to solve a general class of dynamic problems. This
technique can be used to maintain the closest pair in O(log?n) time and O(n) space.

We give a linear size data structure that maintains the closest pair in O(logn) time per
update. The algorithm is deterministic and the update time is worst-case. The algorithm
fits in the algebraic computation tree model. In the algebraic computation tree model, there
is a lower bound of Q(nlogn) on the time complexity of any algorithm that solves the static
closest pair problem for dimension & = 1 [3, 21]. So the running time of our algorithm is
optimal up to a constant factor.

Our algorithm is based on the following idea. We use a hierarchical subdivision of space
into boxes. Several proximity algorithms build hierarchical subdivisions of space [33, 15, 14,
28, 25, 24, 2, 12, 13]. These subdivisions differ by the shape of boxes, the overlap allowance,
the manner of box splitting, the number of points in a box stored at a leaf. Qur algorithm
maintains almost cubical boxes. The boxes are split by almost middle cutting [7] which is
similar to fair split [12, 13, 11]. Any smallest box contains exactly one of the given points.
For each point we store some neighbor points. The closest pair is one of these pairs. To
maintain efficiently these pairs we apply the dynamic trees of Sleator and Tarjan [27]. To
insert a point we implement the point location. The point location also uses the dynamic
trees. The idea to use dynamic trees for point location in hierarchical subdivisions is due to
Cohen and Tamassia [15] and Chiang, Preparata and Tamassia [14]. Schwarz [24] applied the
dynamic trees for the on-line closest pair problem and obtained an algorithm with worst-case
O(logn) time per insertion and O(n) space. Our hierarchical subdivision is similar to the
box decomposition of [1] and the fair-split tree of [13]. In [13, 1] the point location uses the
topology tree of Frederickson [16]. The topology tree is based on dynamic trees of Sleator
and Tarjan [27].

In Section 2 we describe the fair-split tree. In Section 3 we show how to maintain the fair-
split tree (without point location). Section 4 explains how to maintain neighbor information
of points and the closest pair. In Section 5 we briefly recall the dynamic trees. In Section 6
we show how to implement the search on the dynamic trees. In Section 7 we discuss how to
reduce the constant factors in the update time. Finally, in Section 8 we give some concluding
remarks.

2 The fair-split tree

The fair-split tree is a hierarchical subdivision of space into boxes. We define a box to be
the product [ay,a1’) X ... X [ag, ar’) of k semiclosed intervals. The i-th side of this box is the
interval [a;, a;"). If all sides have the same length, we say that the box is a k-cube. The cubes
are useful in some proximity algorithms (for example, the all-nearest-neighbors algorithm of
Vaidya [32, 33]). Unfortunately we cannot directly use cubes in a subdivision of space for the
dynamic problem, because splitting a cube by a hyperplane z; = const does not give cubes.
Another way is the using of the almost cubical boxes [7] and a fair-split [12, 13, 11, 10] or
an almost middle cut [7]. The almost middle cut is similar to the fair split (but there is
a difference in the definitions). In this paper, for the split of boxes, we use the definition
of [7] but we shall call it the fair split. The fair-split tree is also applied to other dynamic
problems [10, 8, 9].

The constant factors in the update and query time are exponential in the dimension. To
decrease the constant factors we generalize the fair split by introducing a separator s > 1.
In fact both the fair split [12, 13, 11] and the almost middle cut [7] use the separator that



is equal 2. We establish geometric criteria for the fair split with separator to be suitable

for maintenance of the fair-split tree. The separator must be at least Golden Ratio 52"'1 R~
1.61803.
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Figure 1: The hyperplane 21 = ¢; determines a fair split of the box [a1,a)) X [ag, a}) if and
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Definition 2.1 Let [a,a’) be an interval in R and b be a point in this interval. The split
of the interval into the intervals [a,b) and [b,a’) is a fair split if the length of larger interval
is at most s times the length of smaller interval, i.e.

L
a—b -l

Definition 2.2 Let B = [ay,ay’) X ... X [ag,ar’) be a box and ¢; € (a;,a;") be a real
number for some ¢. The split of B by the hyperplane z; = ¢; into the boxes B N {z|z; < ¢;}
and B N{z|z; > ¢;} is a fair split of B if the split of the interval [a;, ;") by ¢; is fair split.

The fair-split operation generates a relation on the set of boxes.

Definition 2.3 Let A and B be k-dimensional boxes. The box A is said to be an s-sub-
box of B if A can be constructed from B by applying a (possibly empty) sequence of fair
splits. We shall write B ~ A. For k = 1, we shall say that A is an s-sub-interval of B.

In fact the relation of s-sub-box is the product of s-sub-interval relation.

Proposition 2.4 Let A = [a1,a1") X ... X [ag,a;’) and B = [by,b1") X ... x [bg, ") be
k-dimensional boxes. The box A is s-sub-box of B if and only if, forv=1,...,k, the interval
[a;,a;) is s-sub-interval of [b;, b;").

We now give another definition of s-sub-interval, and show that it is equivalent to that
of Definition 2.3.

Definition 2.5 Let [a,a’) and [b,’) be intervals in R. Let [a,a’) is the sub-interval of
[b,0'),i.e. b <a<a <V. Theinterval [a,a’) is called an s-sub-interval of the interval [b, b')
if one of the following conditions holds

1. [a,a") = [b, V'), or

2. a=band |a —a| < 2|6 - b, or

3. a' =b" and |a’ - a < F5[0" —b], or

4. Ja" = b < 256" — bl and |a' — a] < F5la’ — b, or
516" —al < 251" = 0] and [a' — a| < 5|6 — al.



This Definition allows us to retrieve a sequence of fair cuts for two boxes A and B if
B ~+ A. The following Theorem gives the condition for the separator s when Definitions 2.3
and 2.5 are equivalent.

Theorem 2.6 Definitions 2.3 and 2.5 define the same relation of s-sub-interval if and
only if the separator is at least Golden Ratio, i.e s > @ > 1.61803

Proof. For convenience we define the intermediate notion of a one-sided s-sub-interval.
The interval [a,a’) is called a one-sided s-sub-interval of the interval [b,d’) if either the
second or third condition of Definition 2.5 holds. Note that the conditions 4 and 5 are the
combinations of two one-sided s-sub-intervals (for different sides).

Suppose that Definitions 2.3 and 2.5 define the same relation of s-sub-interval. Consider
two intervals [a,a’) and [b,b") such that [a,a’) is s-sub-interval of [b,0) and @ = b. The
interval [a, a’) can be constructed by applying a sequence of N fair splits of [b,d'). It is clear

that
|a’—a|€[ 1 ( s )N]
|b" — b (s—l—l)N7 s+ 1 '
The maximal value of @’ — a after one fair split is at least the minimal value of ¢’ — a
after two fair splits (by condition 2 of Definition 2.5), i.e.
VEtL
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Let s > 5@ Similarly we can show that any one-sided s-sub-interval is s-sub-interval

Using s > 1 we get s >

(in term of Definition 2.3). Hence any pair intervals satisfying Definition 2.5 satisfy Definition
2.3. To prove inverse statement we show that the combination of three one-sided s-sub-
intervals can be represented as a combination of two one-sided s-sub-intervals.

Let [b,¢') be a one-sided s-sub-interval of [b,'), [¢,¢) be a one-sided s-sub-interval of
[b,c') and [e,d’) be a one-sided s-sub-interval of [¢, ¢).

S

|d' = b < | = b < 0" — b|
s+1
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Hence [¢,d’) is an s-sub-interval of [b,b'). U

The constant factors in the update time depend on the separation as ((s + 2)(s + 1))*.
Decreasing the separator reduces these factors.

We do not include the condition of almost cubical boxes into the definition of the fair split
of boxes although we shall apply fair split only for such boxes. The almost cubical boxes can
be obtained from cubes by repeatedly applying a fair split by a hyperplane perpendicular to
one of the longest side of box.

Definition 2.7 Let B be a box with sides s1,...,s;. The box B is said to be an s-box
if, for any i,7 € {1,...,k}, 1

Sq

—e|—1 .
5j€[1+5’ + 5]



The fair-split tree is a binary tree T. With each node v of the tree T, we store a box
B(v) and a shrunken box SB(v). The boxes satisfy the following conditions.

1. For any node v, the boxes B(v) and SB(v) are s-boxes.

2. For any node v, the box SB(v) is an s-sub-box of B(v).

3. For any node v, SB(v)N S = B(v)N 9.

4. If v has two children w and w, then boxes B(u) and B(w) are the results of a fair split
of the box SB(v).

5. If v is a leaf, then |S N B(v)| =1 and SB(v) = B(v).

For a point p € 9 corresponding to the leaf v, let B(p) denotes the box B(v).

Let parent(v), lson(v), and rson(v) denote parent, left son, and right son of the node v
of T

We use dpin(X,Y) to denote the distance between two sets X,Y C R”, i.e. distance
dmin(X,Y) = inf{dist(z,y)|z € X,y € Y}. dnax(X,Y) denotes the maximal distance be-
tween two sets X,Y C RF, i.e. distance dpay(X,Y) = sup{dist(z,y)lz € X,y € Y}. d(X)
denotes the diameter of a set X, i.e. distance d(X )= dpax(X, X ).

3 The maintenance of the fair-split tree

In this Section we shall show how to maintain the fair-split tree T" under insertions and
deletions of points. The deletion is simpler than insertion and we consider the deletion first.

Let p be a point to be deleted. Let us w be a leaf corresponding p, i.e. point p € B(w),
v be the parent of w and u # w be the sibling of v. We consider 2 cases.

1) u is a leaf (see Fig. 2 a)). Then set SB(v) = B(v) and delete the leaves u and w.

2) w is an internal node (see Fig. 2 b)). Then delete the node w, set B(u) = B(v), and
collapse the edge (u,v), i.e. set parent(u) = parent(v), delete the node v, and rename the
node u as v.

Now consider the insertion. Let p be a point to be inserted. The insertion algorithm has
two steps. First we find the smallest box containing the point p. Then we update a finite
set of nodes and boxes of the tree T. The first step uses the point location algorithm that is
described in Section 5. After point location there are 3 cases.

1. The point p does not belong to B(vroot ), Where vrgot is the root of T'.

2. The point p belongs to the box B(v), where v is a leaf (see Fig. 2 a)).

3. The point p belongs to the set B(v)\ SB(v) for some node v (see Fig. 2 b)).

The cases 1 and 2 can be handled similarly to case 3. Consider the case 3. We want
to construct an s-box D and a fair split of D into the boxes Dy and D, that satisfy the
following conditions

e the box D is an s-sub-box of B(v),

e the box SB(v) is an s-sub-box of Dy, and

e the point p € Ds.

After finding D, we remove the edges from v to children v" and v”, create two nodes u and
w below v, add edges joining u to v" and v”, and set SB(u) = SB(v), B(u) = Dy, 5B(v) =
D, B(w) = Dy, SB(w) = Dj (see Fig. 2 b)).

Denote SB(v) = [a1,b1) X ... X [a,bg). The algorithm uses a box D and repeatedly
shrinks the box D until a fair split of D is found. Initially D = B(v). Denote D =
[d1,e1) X ... X [dg,er). After each iteration of the algorithm

1) the box D is an s-box and an s-sub-box of B(v),

2) the box SB(v) is an s-sub-box of D, and

3) the box D contains the point p.
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Figure 2: Updating the fair-split tree. a) The inserted point p belongs to B(v). The deleted
point p belongs to B(u) where wis a son of v. b) The inserted point p belongs to B(v)\ SB(v).
The deleted point p belongs to B(w).

The algorithm has O(1) iterations because after each iteration the number of coordinates
a;,b; coinciding with endpoints of [d;, e;) is increased, i.e. the sum Zle I{a;, b;} N {d;,e;}]
is increased. We shall call this the number of connected endpoints. The basic procedure is
the fair-split procedure.

procedure fair-split (D) (* fair split of the box D = [dy,e1) X ... X [dg, ex) *)
1) Find ¢ such that e; — d; is maximal. In Step 2 we choose const € [d“ €i) to partition
D by the hyperplane z; = const. Compute the interval [d}, e!] = [d; + s-|-1‘ — &= 4] which

contains all possible values of const.

2) If a; or b; lies in the interval [d}, €!], then const = a; or const = b;, respectively.
Otherwise the interval [a;,b;] does not intersect the interval [d}, e!]. There are two possible
cases.

2.1) b; < d’ (in other words, [a;,b;) C [d;,d) ). Let d = b; + %=% (d” is minimal real
number such that the split of [d;,d”] by b; is fair). Then const = max(d;, d’y.

2.2) a; > €} (in other words, [a“b) Clel,e) ). Let ef = a; — =% (€f is maximal real

number such that the split of [/, e;] by a; is fair). Then const = min(el, /).

3) Partition the box D by the hyperplane z; = const. If this hyperplane separates the box
S B(v) and the point p, the cut of D into the boxes DN{z, z; < const} and DN{z,z; > const}
is a fair split which satisfies the above conditions (1), (2), and (3). In this case we stop the
iteration. Otherwise one of these boxes contains both the box S B(v) and the point p. Choose
this box as D.

4) End of procedure.

Now we shall describe the iteration of the algorithm. If, for some 7, the interval
[min(a;,p;), max(b;, p;)] intersects the interval [d}, €/), then call the fair-split procedure until
the number of connected endpoints increases (const = a; or const = b; in Step 2) or the
iteration finishes (in Step 3). The procedure fair-split splits i-th side of D at most O(1)
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times (more precisely, 3 times for s = 2 and 2 times for = ). The number of calls is at

most O(k).
For any j, the interval [min(a;, p;), max(b;,p;)] does not intersect the interval [d’, e’].

max(b;,pj)—d; -

Without loss of generality, b; < d;« for all j. Choose j such that ¢; = is

e;—d;
maximal. The box [dy,d; + %Cj(@l —dy)) X ... X [di,di + %c]'(ek — dy)) is an s-box
and s-sub-box of B(v). Shrink D to this box. Then [min(a;, p;), max(b;,p;)] intersects the
middle interval of [d;, e;] and we obtain the preceding case.

Hence we have proved the following result.

Theorem 3.1 Let the dimension k be fized and let point location take COST time. A
fair-split tree T can be maintained in O(1) + COST time per insertion and O(1) time per

deletion.

4 The maintenance of the closest pair

To maintain the closest pair we shall store the set E of some pairs of points of 5.

Definition 4.1 A point p € S5 is a nearest neighbor of ¢ if, for any r € 5\ {q},
d(p,q) < d(q,r). For points p,q € 5, we call the pair (p, q) a neighbor pair if p is the nearest
neighbor of ¢ and vice versa.

The set I/ contains the neighbor pairs. It is clear that the closest pair of 5" is a neighbor
pair of § and the closest pair belongs to F.

Let a heap H store the distances of the pairs of E. The heap item is the pair of the
points. The key of the item (p, ¢) is the L-distance d(p, ¢). The pair of points with minimal
key is a closest pair of 5.

With each point p € 5, we store a list I, = {¢ | (p,¢q) € £}. With each point ¢ in F,,
we store a pointer to the item (p, ¢) of the heap H.

Definition 4.2 An ordered pair ! (a,b) of points from S is an ordered rejected pair if
there exists a node v in the fair-split tree satisfying the following;:

1. a ¢ B(v)

2. d(B(v)) < sd(B(a))

3. dmin(a, B(v)) < (1 + s)d(B(v))

4. dmax(a, B(v)) < d(a,b).

An unordered pair (a,b) of points from S is a rejected pair if ordered pair (a,b) or (b,a)
is an ordered rejected pair.

The set F satisfies the following property.

Invariant. For any distinct points a,b € S, the unordered pair (a,b) belongs to the set
FE unless (a,b) is a rejected pair.

Lemma 4.3 Let the invariant hold for the set E. Then the set £ contains the neighbor
pairs of 5.

Proof. By the condition 4 of Definition 4.2.[1

It is easy to see that the set of all pairs satisfy the invariant. We maintain the additional
invariant that, for any p € 5, the number of incident pairs in F is at most constant, i.e.
|E,] = O(1). This gives us a linear bound on |E|. We can bound |F,| by the following
statement.

Statement 4.4 For any point p € S, the number of non-rejected pairs (p,q) € S is at
most O(1).

!We shall define by (a,b) either an unordered pair {a,b} or an ordered pair [a,b], using the context to
resolve the ambiguity.



Let Ny = (24k + 1)’“. We shall prove that the number of non-rejected pairs incident
to a point p is at most Ny (for the separation s = 2). It is important that this bound is
independent of n.

Statement 4.4 follows from Theorem 4.6. We precede Theorem 4.6 with useful Lemma.

Lemma 4.5 Let p and q be points of S. If d(p,q) > (1 + s)d(B(p)) then the pair (p,q)
is rejected.

Proof. Consider the leaf u corresponding to the point p. Let v be the sibling of w and
a = p. The point a and the node v satisfy the conditions 1, 2, and 3 of Definition 4.2.
The pair (p, q) is rejected if d(p,q) > dmax(p, B(v)). Lemma follows from dpax(p, B(v)) <
dmax(B(0), B(0)) < d(B(w)) + d{ B(v)) < (1 + 5)d( B(u)).

Figure 3: The distance between points p and ¢ is greater than the diameter of the box B(u)
times s + 1. The pair (p, q) is rejected.

Theorem 4.6 is useful in the insertion algorithm. To find a set F,, for an inserted point
p, we use a search on the dynamic tree. We need to limit the number of nodes that are used
in search at the same time. Let V = {vy,...,vn} be a set of these nodes. We associate the
set S; = B(vi) \ UB(v,)cB(v;) B(v;) with every node v; € V.

Theorem 4.6 Let p be a point of S, V = {vy,...,on} be a set of nodes of a fair-split
tree T. If N > Ny, there exists i such that, for any q € S; NS, the pair (p,q) is rejected.
(Choosing of i does not depend on layout of the points of S in the associated sets).

Proof. We can assume that, for any i, the intersection S; NS # () and there exists a
point ¢ € S; N S such that the pair (p, ¢) is non-rejected. (In fact we can recognize whether
an empty set 5; N .S exists in O(N ) time. For an index j, the set S;N S is empty if and only
if any leaf below the node v; has an ancestor which is a descendant of v;.)

Choose a box B(v;) of minimum diameter. Let § = d(B(v;)). First we shall prove that,
for any point ¢ at distance greater than (2 + s)é from p, the pair (p,q) is rejected. We
consider three cases.

Case 1. The point p belongs to the box B(v;).

Then B(p) C B(v;) and é§ > d(B(p)). For any point ¢ with d(p,q) > (14 s)é the pair (p, q)
is rejected by Lemma 4.5. Hence we can assume

p & Blwv). (1)
Case 2. The diameter of B(p) is less than §/s.

Recall that the separator s is greater than 1. Let ¢ be any point at distance greater than
(24 5)6 from p. Then, since s > 1, d(p,q) > (1 +5)6/s > (1 + s)d(B(p)) and the pair (p, q)



is rejected by Lemma 4.5. Hence we can assume
6 < sd(B(p)). (2)

Case 3. The distance from the point p to the box B(v;) is greater than (1 + s)é.
Choose any point ¢ from SNB(v;). It is clear that B(q) C B(v;) and d(p, q) > (14s)d(B(q)).
The pair (p,q) is rejected by Lemma 4.5 and the node v; can be removed from V. This
contradicts our assumptions. Hence we can assume

dmin(p, B(vi)) < (1 4 5)é. (3)

Let @ = p and v = v;. Choose any point b € S such that d(a,b) > (2 4 s)6. The
conditions 1, 2, and 3 of Definition 4.2 are the assumptions (1),(2), and (3). Note that
d(a,b) > 6 + dmin(p, B(v;)) > dmax(a, B(v)). Hence the pair (a,b) can be removed from F.

Thus, we can remove a node v; from V' if dpin(p, S;) > (2 4+ s)6. The number of nodes
v; such that dyin(p,5;) < (2 + 8)6 is at most Ny = (24k + 1)¥ by Lemma 4.7. The result
follows. []

f B(vi)
v * B(v;) ’
B(ur) o " dinlp B0
1) 2) 3)

Figure 4: Three cases of Theorem 4.6. (1) p € B(v;). (2) d(B(p)) < 6/s. (3) dmin(p, B(v;)) >
(1+ s)é.

Lemma 4.7 Let p be a point of S, V = {vy,...,on} be a set of nodes of a fair-split
tree T' such that, for any j, the set S; = B(v;)\ UB(w)cB(v)) B(v;) is nonempty. Let 6 be a
minimum diameter d(B(v;)), v; € V. If, for any j, the distance dmin(p, 5;) < (24 s)b, then
the number N < Ny = (24k 4 1),

Proof. Fix any j € {1,..., N}. Choose the point ¢ € 5; such that d(p,q) < (2 + s)é.
Note that the box B(vreot) corresponding to the root of T contains the point ¢ and any box
B(v),v € V. We shall show that ¢ is included in 5; together with some s-box C, any side
of C'is at least 6/((1+ s)k). If 5; = B(v;) then C' = B(v;). Otherwise choose the minimal
box B(u), u € T that contains the point ¢ and at least one box B(v) for some v € V.

We distinguish two cases. In the first case, the point ¢ belongs to the box SB(u). Note
that B(v) C SB(u). Then the fair split of the box S B(u) separates the point ¢ and the box
B(v), i.e. the point ¢ € B(uy), the box B(v) C B(ug) where uy, ugy are the sons of u. Note
that

o d(B(uz)) > ¢,

o the length of the longest side of B(uz) is at least 6/k, and

o the length of the shortest side of B(uz) is at least 6/((1 + s)k).

The sides of box B(uy) are equal to the sides of box B(uy) except for those that are a
part of the partitioned side of box B(u). Now consider the second part of this side. If it is a



longest side of B(uy) then the corresponding side of B(uy) has length at least 6/((1 4 s)k).
Otherwise one of the sides of B(uy) has length at least 6/k. Hence any side of B(uy) has
length at least 6/((1 4 s)k). In the first case the point ¢ is included in 5; together with the
box B(uy) and any side of B(uq) is at least §/((1 4 s)k).

In the second case, the point ¢ does not belong to the box SB(u), i.e. the point ¢ €
B(u) \ SB(u). Note that B(v) C SB(u). This situation is similar to the case 3 of the
insertion algorithm (Section 3). We proved that there exists an s-box D and a fair split of
D into boxes Dy and D3 such that

e the box D is an s-sub-box of B(u),

e the box SB(u) is an s-sub-box of Dy, and

e the point ¢ € D5.

The diameter of the box Dy is at least §. The situation is similar to the first case and
we can show that any side of D is at least §/((1 4 s)k).

Thus, in both cases, there exists an s-box ' C 5; that contains the point ¢, and any side
of C'is at least 6/((1+ s)k). The box C' contains at least one point of the lattice
Li — Pi

)
€ 7, wherec = —— and i =1,...,k}.

L={a| T

Let r be a point of C' N L closest to p. Then, for any

(2+5)6

ri—pil < | |o =T +s)0+ 9o

Therefore the set 5; contains at least one point among the points in the set

Ly — Pi

L' ={z|

E{—liy...,0,..., 1}, where [, = [(2+ s)(1 + s)k] for i =1,...,k}.

For the separation s = 2 the cardinality of this set is Ny = (24k + 1)*. This implies that
N =|V|< Ne. U

The insertion algorithm uses Theorem 4.6 if the set V contains more than Ny nodes. We
describe the algorithm to refine the set V' (in Section 7 we give effective algorithms to refine
node sets in searching £, and A(v)).

Algorithm REFINE(V) (x this algorithm is used in searching for £, *)

1. Remove the nodes v; € V such that

dmin(p; B(v;)) > (14 5)d(B(v;)) or dmin(p, Sj) > (1 + s)d(B(p))

2. Compute 6 = min, ey {d(B(v;))}.
3. Remove the nodes v; € V such that

dmin(p, S;) > (24 5)6

The insertion of the point p causes insertion of some pairs into £ and deletion of some
pairs from F. Let us look at the updates of boxes. Note that the boxes, corresponding to
the nodes, are only inserted and, in the case B(vroot), are enlarged. Hence to prove that
the invariant holds for £ we need not insert pairs that are not incident to an inserted point.
Using the dynamic tree we find at most Ny pairs that are adjacent to p. Add these pairs into
FE. Now in fact the invariant holds for £. However, for some points, the number of incident
pairs may exceed Njp. These points are adjacent to p and can be determined when adding
pairs into F. For these points, we remove some pairs from F using Theorem 4.6.

10



Now we consider the deletion of the point p. The deletion causes insertion of some pairs
into £ and deletion of some pairs from F. Delete the pairs adjacent to p, i.e. the set
{(p,q) | ¢ € 9,(p,q) € F}. Note that always two boxes are deleted. These boxes are the
results of a fair split of the box S B(parent(w)) where the node w corresponds to p.

We consider the deletion of the box B(v). Suppose that the pair (a,b) was rejected (and
was not included in £') by conditions of Definition 4.2 for node v. Then d(B(a)) > d(B(v))/s
and dpyin(a, B(v)) < (14s)d(B(v)). We shall show that the number of such points is at most
O(1). The argument is similar to the proof of Theorem 4.6. Let A(v) denote this set, i.e.

Aw)={a € S| d(B(a)) > d(B(v))/s and dmin(a, B(v)) < (1 4+ s)d(B(v))}.

For each a € A(v), we renew the set F,. This gives the set £, for which the invariant is
fulfilled (if we renew the sets for both deleted boxes). For the points ¢ € S, |E,| > N,
remove some points from £, using Theorem 4.6. Now the second invariant (|£,] < Ny, for
any ¢ € 9) holds.

In the rest of this Section we prove the analog of Theorem 4.6 for A(v). Denote My =
(36k + 19)*. To find a set A(v) we use a search on the dynamic tree. As in finding of E, we
bound the number of nodes that are used in search at the same time. We shall prove that
this number is at most My, (for the separation s = 2). Let V' = {v1,...,vn} be a set of these
nodes. We associate the set 5; = B(v;) \ Up(v,)cB(v;) B(v;) With every node v; € V.

Theorem 4.8 Let v be a node of a fair-split tree T, V = {vy,...,on} be a set of nodes
of T. If N > My, there exists i such that A(v)NS; = 0 (choosing of i does not depend on
layout of the points of S in the associated sets).

Proof. We can assume that, for any i, 5; NS # . Let é be a minimum diameter
d(B(v;)), for v; € V. Note that § > d(B(v))/s. By definition of A(v) we can assume that,
for any 7,

dmin( S, B(v)) < (1 + s)d(B(o)).
Fix any j € {1,..., N}. Choose the point ¢ € 5; such that dyin(gq, B(v)) < (14 s)d(B(v)).
As in the proof of Theorem 4.6 we can show that there exists s-box € satisfying the following;:
eqge (),
e any side of €' has length at least 6/((1+ s)k).

The box C' contains at least one point of the lattice

L=A{x] xi;pi EZ,WhereU:ﬁ, and i =1,...,k}.

Let p be the center of the box B(v). The shortest side of B(v) has length at least d(B(v))/k.
The longest side of B(v) has length at least (14 s)d(B(v))/k. Hence

(L+ s)d(B(v))
2k
Let r be a point of C' N L closest to p. Then, for any

+ (14 )d(B() < s(1+ s)(1+ —)6.

lg; — p;| < 5%

Iri = pil /o < [s(1 4 s)(1 + %)é/ﬂ = [s(1 4 s)*(k + %)1.

Therefore the set 5; contains at least one point among the points in the set

Tl i 1 .
[={z| 222 € =l s 0, i, where = [s(1+ s)2(k+ )] for i = 1., k).

g

For the separation s = 2 the cardinality of this set is My = (36k + 19)’“. This implies that
N =|V|< M. O
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5 Dynamic tree

In this Section we shall briefly describe the dynamic tree. We use the dynamic tree to
implement the point location and other searches on the fair-split tree.

A dynamic tree A(T') , based on the binary tree 7', has the same nodes and the same
edges as T. The dynamic tree is a partition of edges into two kinds, solid and dashed, with
property that each node has at most one child linked to it by a solid edge. Thus the solid
edges define a collection of solid paths that partition the vertices. (A vertex with no incident
solid edges is a one-vertex solid path). The head of the path is its bottommost node; the
tail is its topmost node.

For a node v of T', let size(v) be the number of nodes in the subtree of 7' rooted at v.
Let (v, w) be an edge of T from v to its parent w. The edge is heavy if size(v) > size(w)/2
and light otherwise. A node v of A(T') fulfills the size invariant if, for each edge e to one of
its children, e is solid if it is heavy and light if it is dashed. We say that the size invariant
holds for the dynamic tree A(T') if it holds for each node of T'.

A solid path is represented by a path tree. We use globally biased binary trees [4] to
implement path trees. A biased binary tree stores an ordered sequence of weighted items in
its leaves. The weight of a node v of T' (and of the corresponding leaf of the biased binary
tree) is defined as

size(v), if no solid edge enters v
size(v) — size(w), if the solid edge (w,v) enters v

weight(v) = {

The weight of an internal node of a biased binary tree is inductively defined as the sum of
the weight of its children.

Fach node v of biased binary tree has an integer rank denoted rank(v) that satisfies the
following properties:

(i) If v is a leaf, rank(v) = [logweight(v)]. If v is an internal node, rank(v) < 1 +
|log weight(v)].

(ii) If node w has parent v, rank(w) < rank(v), with the inequality strict if w is external.
If w has grandparent u, rank(w) < rank(u).

Fach internal node v of biased binary tree contains four pointers [27]: bleft(v) and
bright(v), which point to the left and right child of v, and bhead(v) and btail(v), which
point to the head and tail of the subpath corresponding to v (the leftmost and rightmost
external descendants of v). For a topmost node v of a solid path P, there is the pointer
pt_root(v) to the root of the path tree for P.

Lemma 5.1 ([27]) If v is a leaf of a biased binary tree with root u, the depth of v is at
most 2(rank(u) — rank(v)) < 2log(weight(u)/weight(v))+ 4.

The updates of T' can be performed using the following operations [4] on rooted trees.

link(v,w): If v is the root of one tree and w is a node in another tree, combine the trees
containing v and w by adding an edge joining » and w.

cut(v,w): If there is an edge joining v and w, delete it, thereby breaking the tree con-
taining » and w into two trees, one containing v and one containing w.

The time bound of these operations is O(logn). This gives the following result.

Lemma 5.2 The dynamic tree can be maintained under insertions and deletions of
points in O(logn) time per update.
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6 Searching

In this Section we discuss the search algorithms. We have to implement point location and
the search for the sets I, and A(v).

6.1 Point location

Let p be a point in k-dimensional space. The nodes of T" whose boxes contain p form the
path (if p € B(vroot)). We have to compute the bottommost node of this path. Our point
location algorithm is similar to the algorithm of Schwarz [24]. The algorithm processes a
sequence of solid paths of the dynamic tree. For any solid path P of this sequence, the box
of the topmost node of P contains p.

We start the algorithm with the solid path containing the root. If the box B(vreot) does
not contain p then the algorithm returns null.

Now assume that the algorithm has reached the topmost node of the solid path P, and p
is contained in the box of that node. We find the lowest node v on P whose box still contains
the query point p. At this point we continue the search with a dashed edge (v, u) such that
p € B(u). It is clear that the node u is the topmost node of the next solid path.

Now we describe the search on the solid path P. The algorithm start with the root u of
the path tree. We execute the following step until u is a leaf of the path tree. Follow the
pointer from u to the rightmost leaf in the u’s left subtree. This node is btail(ble ft(u)). If
the box B(btail(ble ft(w))) contains the query point, then we proceed with u’s left child in
the path tree, otherwise with the right child.
function point_location(p)

v = root(T)
if p ¢ B(v) then return null
while » is an internal node of T' do
(* Note that p € B(v) and v is the topmost node of some path P )
w := pt_root(v) (% u is the root of the path tree for P )
while u is an internal node of the path tree do
if p € B(btail(bleft(n))) then
w = bleft(u)
else u := bright(u)
fi
od
(* u is the bottommost node of the path P such that p € B(u) *)
vi=u
if the edge (v, rson(v)) is dashed and p € B(rson(v)) then
v = rson(v)
else if the edge (v,lson(v)) is dashed and p € B(lson(v)) then
v = lson(v)
else return v

fi
fi
od
return v

end (* of the function )
It is clear that the point location algorithm is correct. Let us analyze the running time of
the algorithm. Let Py, ..., P, be the solid paths that are searched during the algorithm. Let
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U1, ..., u be the roots of path trees and vq,...,v; be the bottommost nodes on path trees
that are searched. Note that v; is the parent of u;4q in T for ¢ =1,...,{— 1. The number {
of paths is at most logn by the size invariant. The depth of »; in the path tree for P; is at
most 2(rank(u;) — rank(v;)) by Lemma 5.1. For ¢ = 1,...,1— 1, rank(v;) > rank(u;11) by
definition of rank. The total running time of the point location algorithm is

O(logn 4+ YL_, 2(rank(u;) — rank(v;))) = O(log n + rank(uy) — rank(v;)) = O(logn).

6.2 Searching for £, and A(v)

Now we shall describe the search for the sets £, and A(v). Recall that E, = {¢ | (p,q) € E}
and

Aw)={a € S| d(B(a)) > d(B(v))/s and dmin(a, B(v)) < (1 4+ s)d(B(v))}.

We consider the search for £, and A(v) as a point location problem for at most O(1) points
(N, points for £, and M}, points for A(v)). In fact we can build a search tree such that

e the external nodes correspond the points .5, and

e the path from the root of the search tree to an external node » corresponds to the
nodes of the path trees searched during the location of the point corresponding to ».

The search for the sets £, and A(v) applies breadth-first search on the search tree.
node_set denotes a set of nodes that is stored in the breadth-first search. We use the pointer
depth(v) that is a depth of the node v in search tree. For simplicity, we extend the pointers
btail to the external nodes of any path trees. (It is not necessary to store these pointers).
Using Theorem 4.6 (4.8), the procedure refine() finds at most Ny (resp.M}) nodes among
the nodes {btail(v) | v € node_set} and removes another nodes from node_set.
function search() (* the search for I, or A(v) *)

w = pt_root(root(T))
node_set := {w}
depth(w) := 0
while there is a node w in node_set such that btail(w) is an internal node of 7' do
w is a node in node_set with minimal depth such that btail(w) is an internal node of T’
if w is an internal node of some path tree then
node_set := node_set U {ble ft(w), bright(w)}
depth(bleft(w)) := depth(w) + 1
depth(bright(w)) := depth(w) + 1
else (x w is an external node of some path tree )
w := btatl(w) (* u is the corresponding node of w in T' *)
if the edge (u,rson(u)) is dashed then
w := pt_root(rson(u))
node_set := node_set U {w}
depth(w) := depth(w) + 1
fi
if the edge (u,lson(u)) is dashed then
w := pt_root(lson(u))
node_set := node_set U {w}
depth(w) := depth(w) + 1
fi
fi

node_set := node_set \ {w}
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if |node_set| > Ny then (x |node_set| > My for A(v) *)
refine({btail(w) | w € node_set})
(* by Theorem 4.6 for £, and Theorem 4.8 for A(v) *)
fi
od
return the points corresponding the nodes btail(w) for w € node_set
end (* of the function )
Lemma 6.1 The function search() takes O(logn) time.
Proof. The function search() visits at most Ny (resp.M}) nodes of the same depth. The
depth of the search tree is O(logn). This completes the proof. [
Finally, we formulate the main result.
Theorem 6.2 There is a data structure of size O(n) that maintains the closest pair of
S in O(logn) time per update.

7 The reduction of the constant factors

In this Section we discuss the dependence of the update time and the space on dimension.
The complexity of the algorithm is exponential in the dimension. The straightforward im-
plementation of the searching gives O(kN?Zlogn) time to insert and O(kMy(My+ N?)logn)
time to delete a point. This is because the procedure refine() takes O(kNy) time in the
searching for £, and O(kM}) time in the searching for A(v).

Now we shall reduce the time complexity of refine() to O(k 4 log Ni) and O(k + log My,)
respectively. Instead of computing the minimum diameter box B(v;) (in O(Ny) time), we
shall maintain it. Note that the node v; is never deleted. In the loop of search() we have to
choose a node v such that btail(v) is an internal node of 7. To do this we store node_set in
two lists: {v | btail(v) is an internal node of T'} and {v | btail(v) is an external node of T'}.
Using the queue for the first list allows us to find a node with minimal depth in O(1) time.

Consider the search for £,. We can formulate the conditions to remove the node v;

dmin(p, B(v;)) > (14 s)d(B(v;)) (4)
dmin(p, 57) > (14 5)d(B(p)) (5)
Amin(P, S5) > dmax(p, B(v;)) (6)

In fact we check these conditions when we add a node to node_set.
Consider the search for A(v). The following conditions allows us to discard inserted node
vy
d(B(vj)) > d(B(v))/s (7)
dinin(55, B(v)) > (1 + s)d(B(v)) (8)

The conditions 4, 5 and 7 can be computed in O(k) time. We can achieve the same time
bound for the conditions 6 and 8. The main problem is how to compute 5;. Recall that
S; = B(v;) \UB(v;)cB(v;) B(vi) for a node v; € node_set. Instead of computing this set, we
compute its subset such that Theorems 4.6 and 4.8 still hold.

Let w be a node of some path tree and w is added to node_set (v; = btail(w)). Let
g € RF be a point such that the point location of p visits w. It is clear that ¢ € S;. In fact
we can take the set of such points to be §;. In other words, we can define

G _ B(btail(w))\ B(btail(lson(w)), if w is right son of u
I L B(btail(w)), otherwise
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The set 5 is either a box or the set theoretical difference between two boxes. This definition
of set 5 is similar to the definition of cells [1] (box cells and doughnut cells). The conditions
6 and 8 can be computed in O(k) time.

In practice, we don’t need to store the at most | Ny| (| M| for A(v)) nodes in node_set. We
can prune node_set at the moment we add a node to node_set. To do this we store din(p, 9;)
(dmin(S;, B(v)) for A(v)) in a heap corresponding to node_set. Then the cost of insertion
a node to node_set is O(k + log Ni,) = O(klogk) (O(k 4 log My) = O(klogk) for A(v)).
The deletion of a node from node_set take O(k 4 log N) = O(klogk) (O(k + log M},) =
O(klogk) for A(v)) time. Hence the search for I, (for A(v)) takes O(kNylogklogn) (resp.
O(kMylog klogn)) time.

Now consider the insertion of the point p. Recall that after finding £, we have to
prune the sets F,, ¢ € F, containing greater than Nj points. We can prune a set £, in
O(k + log Ny ) time. We shall store two heaps to node ¢. The keys are the distances d(B(r))
and dmin(q, B(r)), r € E, (for these points 5; = B(r)). The total time of insertion the point
pis O(kNglog klogn 4+ Ni(k + log Ni)) = O(kNylog klogn).

We now consider the deletion of the node v. Recall that after finding A(v), for each
a € A(v), we

o delete the set £,

o find the set F,, using the search for £,

e prune Fy, b€ Fy, if |Fy| > Ny,

The corresponding costs are O( My Ny log Ni), O(kMp Ny log Nilogn) and O( Mg Ny log Ni).
The total running time of the deletion algorithm is O(kMy Ny logklogn).

Theorem 7.1 There is a data structure of size O(kn) that maintains the closest pair of
S in O(kNglogklogn) time per insertion and O(kMyNylog klogn) time per deletion.

Finally, we compare constants Ny and M for separation s = 2 and s = 5@ Recall that
Ni = (2[(s+2)(s+1)k]+1)" and My = ([s(s+1)?(k+1)]+1)". For separation s = 2 we get
Ny = 2401 and M, = 8281. For separation s = 5@ we get Np = (2[9.4721k] + 1)k, Ny =
1521 and My, = (2[11.0901k 4 5.5450] + 1)*, M, = 3249. In practice, we do not expect the
constant factors to be so big.

8 Conclusion

We have presented an algorithm for maintaining the closest pair in O(logn) time per update,
using O(n) space. The running time of the algorithm is optimal up to a constant factor in the
algebraic decision-tree model of computation. The algorithm can be adapted (by changing
some constants, including Ny) for another metric such that d(p,¢) = O(dw(p,¢)). In fact
the algorithm can give the list of the closest pairs (if any) in the time proportional to its
number.

The algorithm maintains a set F/ of point pairs that contains the neighbor pairs.

Unfortunately the fair-split tree does not allow efficiently maintaining the (exact) set
of the neighbor pairs. It would be interesting to solve the problem of the neighbor pairs
maintenance with O(logn) update time and O(n) space.
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