
An optimal algorithm for closest pair maintenanceSergei N. BespamyatnikhDepartment of Mathematics and Mechanics,Ural State University,51 Lenin St., Ekaterinburg 620083, Russia.e-mail: Sergei.Bespamyatnikh@usu.ru.AbstractGiven a set S of n points in k-dimensional space, and an Lt metric, the dynamicclosest pair problem is de�ned as follows: �nd a closest pair of S after each update of S(the insertion or the deletion of a point). For �xed dimension k and �xed metric Lt, wegive a data structure of size O(n) that maintains a closest pair of S in O(logn) time perinsertion and deletion. The running time of algorithm is optimal up to constant factorbecause 
(logn) is a lower bound, in algebraic decision-tree model of computation, onthe time complexity of any algorithm that maintains the closest pair (for k = 1). Thealgorithm is based on the fair-split tree. The constant factor in the update time isexponential in the dimension. We modify the fair-split tree to reduce it.1 IntroductionThe dynamic closest pair problem is one of the very well-studied proximity problem incomputational geometry [6, 17{20, 22, 24{26, 28{31]. We are given a set S of n points ink-dimensional space, k � 1, and a distance metric Lt, for 1 � t � 1. The point set ismodi�ed by insertions and deletions of points. Each point p is given as a k-tuple of realnumbers (p1; : : : ; pk).The closest pair of S is a pair (p; q) of distinct points p; q 2 S such that the distancebetween p and q is minimal. The dynamic closest pair problem is de�ned as follows: �nd aclosest pair (any) of S after each update of S.We assume that the dimension k and the distance metric Lt are �xed. We use d(p; q) todenote the distance between p and q.A survey can be found in Schwarz's Ph.D.Thesis [24]. For the static closest pair prob-lem and dimension k = 2, Shamos and Hoey [23] gave an algorithm with running time ofO(n logn). Shortly after that, Bentley and Shamos [5] obtained this result for general dimen-sion k � 2. In the on-line closest pair problem only insertions are allowed. For this problemSmid [28] obtained a data structure of size O(n) that supports insertions in O(logk�1 n)amortized time. Schwarz, Smid and Snoeyink [26] presented a data structure of size O(n)that maintains the closest pair in O(logn) amortized time per insertion.Several algorithms are obtained for the dynamic closest pair problem [19, 20, 22, 24,29{31]. In [20, 22, 29] the problem is solved with O(pn logn) update time using O(n) space.In [19] Kapoor and Smid gave data structures of size S(n) that maintain the closest pair inU(n) amortized time per update, where for k � 3, size S(n) = O(n) and time U(n) =O(logk�1 n log logn); for k = 2, size S(n) = O(n logn=(log logn)m) and time U(n) =O(logn log log n); for k = 2, size S(n) = O(n) and time U(n) = O(log2 n=(log logn)m)(m is an arbitrary non-negative integer constant). In [6] the author obtained an algorithm1



with O(logk+1 n log log n) update time and O(n logk�2 n) space. Callahan and Kosaraju [13]developed a tree-maintenance technique to solve a general class of dynamic problems. Thistechnique can be used to maintain the closest pair in O(log2 n) time and O(n) space.We give a linear size data structure that maintains the closest pair in O(logn) time perupdate. The algorithm is deterministic and the update time is worst-case. The algorithm�ts in the algebraic computation tree model. In the algebraic computation tree model, thereis a lower bound of 
(n logn) on the time complexity of any algorithm that solves the staticclosest pair problem for dimension k = 1 [3, 21]. So the running time of our algorithm isoptimal up to a constant factor.Our algorithm is based on the following idea. We use a hierarchical subdivision of spaceinto boxes. Several proximity algorithms build hierarchical subdivisions of space [33, 15, 14,28, 25, 24, 2, 12, 13]. These subdivisions di�er by the shape of boxes, the overlap allowance,the manner of box splitting, the number of points in a box stored at a leaf. Our algorithmmaintains almost cubical boxes. The boxes are split by almost middle cutting [7] which issimilar to fair split [12, 13, 11]. Any smallest box contains exactly one of the given points.For each point we store some neighbor points. The closest pair is one of these pairs. Tomaintain e�ciently these pairs we apply the dynamic trees of Sleator and Tarjan [27]. Toinsert a point we implement the point location. The point location also uses the dynamictrees. The idea to use dynamic trees for point location in hierarchical subdivisions is due toCohen and Tamassia [15] and Chiang, Preparata and Tamassia [14]. Schwarz [24] applied thedynamic trees for the on-line closest pair problem and obtained an algorithm with worst-caseO(logn) time per insertion and O(n) space. Our hierarchical subdivision is similar to thebox decomposition of [1] and the fair-split tree of [13]. In [13, 1] the point location uses thetopology tree of Frederickson [16]. The topology tree is based on dynamic trees of Sleatorand Tarjan [27].In Section 2 we describe the fair-split tree. In Section 3 we show how to maintain the fair-split tree (without point location). Section 4 explains how to maintain neighbor informationof points and the closest pair. In Section 5 we brie
y recall the dynamic trees. In Section 6we show how to implement the search on the dynamic trees. In Section 7 we discuss how toreduce the constant factors in the update time. Finally, in Section 8 we give some concludingremarks.2 The fair-split treeThe fair-split tree is a hierarchical subdivision of space into boxes. We de�ne a box to bethe product [a1; a10)� : : :� [ak; ak0) of k semiclosed intervals. The i-th side of this box is theinterval [ai; ai0). If all sides have the same length, we say that the box is a k-cube. The cubesare useful in some proximity algorithms (for example, the all-nearest-neighbors algorithm ofVaidya [32, 33]). Unfortunately we cannot directly use cubes in a subdivision of space for thedynamic problem, because splitting a cube by a hyperplane xi = const does not give cubes.Another way is the using of the almost cubical boxes [7] and a fair-split [12, 13, 11, 10] oran almost middle cut [7]. The almost middle cut is similar to the fair split (but there isa di�erence in the de�nitions). In this paper, for the split of boxes, we use the de�nitionof [7] but we shall call it the fair split. The fair-split tree is also applied to other dynamicproblems [10, 8, 9].The constant factors in the update and query time are exponential in the dimension. Todecrease the constant factors we generalize the fair split by introducing a separator s > 1.In fact both the fair split [12, 13, 11] and the almost middle cut [7] use the separator that2



is equal 2. We establish geometric criteria for the fair split with separator to be suitablefor maintenance of the fair-split tree. The separator must be at least Golden Ratio p5+12 �1:61803.
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a1 a01l c1 ra2a02Figure 1: The hyperplane x1 = c1 determines a fair split of the box [a1; a01)� [a2; a02) if andonly if c1 2 [l; r] where l = sa1+a01s+1 and r = a1+sa011+s .De�nition 2.1 Let [a; a0) be an interval in R and b be a point in this interval. The splitof the interval into the intervals [a; b) and [b; a0) is a fair split if the length of larger intervalis at most s times the length of smaller interval, i.e.b� aa0 � b 2 [1s; s]:De�nition 2.2 Let B = [a1; a10) � : : :� [ak; ak0) be a box and ci 2 (ai; ai0) be a realnumber for some i. The split of B by the hyperplane xi = ci into the boxes B \ fxjxi < cigand B \ fxjxi � cig is a fair split of B if the split of the interval [ai; ai0) by ci is fair split.The fair-split operation generates a relation on the set of boxes.De�nition 2.3 Let A and B be k-dimensional boxes. The box A is said to be an s-sub-box of B if A can be constructed from B by applying a (possibly empty) sequence of fairsplits. We shall write B ; A. For k = 1, we shall say that A is an s-sub-interval of B.In fact the relation of s-sub-box is the product of s-sub-interval relation.Proposition 2.4 Let A = [a1; a10) � : : :� [ak; ak0) and B = [b1; b10) � : : :� [bk; bk0) bek-dimensional boxes. The box A is s-sub-box of B if and only if, for i = 1; : : : ; k, the interval[ai; ai0) is s-sub-interval of [bi; bi0).We now give another de�nition of s-sub-interval, and show that it is equivalent to thatof De�nition 2.3.De�nition 2.5 Let [a; a0) and [b; b0) be intervals in R. Let [a; a0) is the sub-interval of[b; b0), i.e. b � a < a0 � b0. The interval [a; a0) is called an s-sub-interval of the interval [b; b0)if one of the following conditions holds1. [a; a0) = [b; b0), or2. a = b and ja0 � aj � ss+1 jb0 � bj, or3. a0 = b0 and ja0 � aj � ss+1 jb0 � bj, or4. ja0 � bj � ss+1 jb0� bj and ja0 � aj � ss+1 ja0 � bj, or5. jb0� aj � ss+1 jb0� bj and ja0 � aj � ss+1 jb0 � aj.3



This De�nition allows us to retrieve a sequence of fair cuts for two boxes A and B ifB ; A. The following Theorem gives the condition for the separator s when De�nitions 2.3and 2.5 are equivalent.Theorem 2.6 De�nitions 2.3 and 2.5 de�ne the same relation of s-sub-interval if andonly if the separator is at least Golden Ratio, i.e s � p5+12 > 1:61803Proof. For convenience we de�ne the intermediate notion of a one-sided s-sub-interval.The interval [a; a0) is called a one-sided s-sub-interval of the interval [b; b0) if either thesecond or third condition of De�nition 2.5 holds. Note that the conditions 4 and 5 are thecombinations of two one-sided s-sub-intervals (for di�erent sides).Suppose that De�nitions 2.3 and 2.5 de�ne the same relation of s-sub-interval. Considertwo intervals [a; a0) and [b; b0) such that [a; a0) is s-sub-interval of [b; b0) and a = b. Theinterval [a; a0) can be constructed by applying a sequence of N fair splits of [b; b0). It is clearthat ja0 � ajjb0 � bj 2 [ 1(s+ 1)N ;� ss + 1�N ]:The maximal value of a0 � a after one fair split is at least the minimal value of a0 � aafter two fair splits (by condition 2 of De�nition 2.5), i.e.� ss+ 1�2 � 1s + 1 :Using s > 1 we get s � p5+12 .Let s � p5+12 . Similarly we can show that any one-sided s-sub-interval is s-sub-interval(in term of De�nition 2.3). Hence any pair intervals satisfying De�nition 2.5 satisfy De�nition2.3. To prove inverse statement we show that the combination of three one-sided s-sub-intervals can be represented as a combination of two one-sided s-sub-intervals.Let [b; c0) be a one-sided s-sub-interval of [b; b0), [c; c0) be a one-sided s-sub-interval of[b; c0) and [c; d0) be a one-sided s-sub-interval of [c; c0).jd0 � bj � jc0 � bj � ss+ 1 jb0 � bjjd0 � cjjd0 � bj = jc0 � cj � jc0 � d0jjc0 � bj � jc0 � d0j � ss+1 jc0 � bj � ss+1 jc0 � d0j � 1s+1 jc0 � d0jjc0 � bj � jc0 � d0j= ss+ 1 � jc0 � d0j(s+ 1)jd0� bj < ss + 1Hence [c; d0) is an s-sub-interval of [b; b0).The constant factors in the update time depend on the separation as ((s + 2)(s + 1))k.Decreasing the separator reduces these factors.We do not include the condition of almost cubical boxes into the de�nition of the fair splitof boxes although we shall apply fair split only for such boxes. The almost cubical boxes canbe obtained from cubes by repeatedly applying a fair split by a hyperplane perpendicular toone of the longest side of box.De�nition 2.7 Let B be a box with sides s1; : : : ; sk. The box B is said to be an s-boxif, for any i; j 2 f1; : : : ; kg, sisj 2 [ 11 + s; 1 + s]:4



The fair-split tree is a binary tree T . With each node v of the tree T , we store a boxB(v) and a shrunken box SB(v). The boxes satisfy the following conditions.1. For any node v, the boxes B(v) and SB(v) are s-boxes.2. For any node v, the box SB(v) is an s-sub-box of B(v).3. For any node v, SB(v) \ S = B(v) \ S.4. If v has two children u and w, then boxes B(u) and B(w) are the results of a fair splitof the box SB(v).5. If v is a leaf, then jS \ B(v)j = 1 and SB(v) = B(v).For a point p 2 S corresponding to the leaf v, let B(p) denotes the box B(v).Let parent(v), lson(v), and rson(v) denote parent, left son, and right son of the node vof T .We use dmin(X; Y ) to denote the distance between two sets X; Y � Rk , i.e. distancedmin(X; Y ) = inffdist(x; y)jx 2 X; y 2 Y g. dmax(X; Y ) denotes the maximal distance be-tween two sets X; Y � Rk, i.e. distance dmax(X; Y ) = supfdist(x; y)jx 2 X; y 2 Y g. d(X)denotes the diameter of a set X , i.e. distance d(X) = dmax(X;X).3 The maintenance of the fair-split treeIn this Section we shall show how to maintain the fair-split tree T under insertions anddeletions of points. The deletion is simpler than insertion and we consider the deletion �rst.Let p be a point to be deleted. Let us w be a leaf corresponding p, i.e. point p 2 B(w),v be the parent of w and u 6= w be the sibling of v. We consider 2 cases.1) u is a leaf (see Fig. 2 a)). Then set SB(v) = B(v) and delete the leaves u and w.2) u is an internal node (see Fig. 2 b)). Then delete the node w, set B(u) = B(v), andcollapse the edge (u; v), i.e. set parent(u) = parent(v), delete the node v, and rename thenode u as v.Now consider the insertion. Let p be a point to be inserted. The insertion algorithm hastwo steps. First we �nd the smallest box containing the point p. Then we update a �niteset of nodes and boxes of the tree T . The �rst step uses the point location algorithm that isdescribed in Section 5. After point location there are 3 cases.1. The point p does not belong to B(vroot), where vroot is the root of T .2. The point p belongs to the box B(v), where v is a leaf (see Fig. 2 a)).3. The point p belongs to the set B(v) n SB(v) for some node v (see Fig. 2 b)).The cases 1 and 2 can be handled similarly to case 3. Consider the case 3. We wantto construct an s-box D and a fair split of D into the boxes D1 and D2 that satisfy thefollowing conditions� the box D is an s-sub-box of B(v),� the box SB(v) is an s-sub-box of D1, and� the point p 2 D2.After �nding D, we remove the edges from v to children v0 and v00, create two nodes u andw below v, add edges joining u to v0 and v00, and set SB(u) = SB(v); B(u) = D1; SB(v) =D;B(w) = D2; SB(w) = D2 (see Fig. 2 b)).Denote SB(v) = [a1; b1) � : : : � [ak; bk). The algorithm uses a box D and repeatedlyshrinks the box D until a fair split of D is found. Initially D = B(v). Denote D =[d1; e1)� : : :� [dk; ek). After each iteration of the algorithm1) the box D is an s-box and an s-sub-box of B(v),2) the box SB(v) is an s-sub-box of D, and3) the box D contains the point p. 5



t tSSStt���tv v-insertion�deletiona) ������ u w���AAAt ���AAAt���SSSt ���AAAt ���AAAt���SSStSSStt���tv v-insertion�deletionb) w u��� ���v0 v00 v0 v00Figure 2: Updating the fair-split tree. a) The inserted point p belongs to B(v). The deletedpoint p belongs toB(u) where u is a son of v. b) The inserted point p belongs toB(v)nSB(v).The deleted point p belongs to B(w).The algorithm has O(1) iterations because after each iteration the number of coordinatesai; bi coinciding with endpoints of [di; ei) is increased, i.e. the sum Pki=1 jfai; big \ fdi; eigjis increased. We shall call this the number of connected endpoints. The basic procedure isthe fair-split procedure.procedure fair-split (D) (� fair split of the box D = [d1; e1)� : : :� [dk; ek) �)1) Find i such that ei � di is maximal. In Step 2 we choose const 2 [di; ei) to partitionD by the hyperplane xi = const. Compute the interval [d0i; e0i] = [di+ ei�dis+1 ; ei� ei�dis+1 ] whichcontains all possible values of const.2) If ai or bi lies in the interval [d0i; e0i], then const = ai or const = bi, respectively.Otherwise the interval [ai; bi] does not intersect the interval [d0i; e0i]. There are two possiblecases.2.1) bi < d0i (in other words, [ai; bi) � [di; d0i) ). Let d00i = bi + bi�dis (d00i is minimal realnumber such that the split of [di; d00i ] by bi is fair). Then const = max(d0i; d00i ).2.2) ai > e0i (in other words, [ai; bi) � [e0i; ei) ). Let e00i = ai � ei�ais (e00i is maximal realnumber such that the split of [e00i ; ei] by ai is fair). Then const = min(e0i; e00i ).3) Partition the boxD by the hyperplane xi = const. If this hyperplane separates the boxSB(v) and the point p, the cut ofD into the boxesD\fx; xi < constg andD\fx; xi � constgis a fair split which satis�es the above conditions (1), (2), and (3). In this case we stop theiteration. Otherwise one of these boxes contains both the box SB(v) and the point p. Choosethis box as D.4) End of procedure.Now we shall describe the iteration of the algorithm. If, for some j, the interval[min(aj ; pj);max(bj; pj)] intersects the interval [d0j ; e0j), then call the fair-split procedure untilthe number of connected endpoints increases (const = aj or const = bj in Step 2) or theiteration �nishes (in Step 3). The procedure fair-split splits i-th side of D at most O(1)6



times (more precisely, 3 times for s = 2 and 2 times for = p5+12 ). The number of calls is atmost O(k).For any j, the interval [min(aj ; pj);max(bj; pj)] does not intersect the interval [d0j; e0j ].Without loss of generality, bj < d0j for all j. Choose j such that cj = max(bj;pj)�djej�dj ismaximal. The box [d1; d1 + s+1s cj(e1 � d1)) � : : : � [dk; dk + s+1s cj(ek � dk)) is an s-boxand s-sub-box of B(v). Shrink D to this box. Then [min(aj ; pj);max(bj ; pj)] intersects themiddle interval of [dj ; ej ] and we obtain the preceding case.Hence we have proved the following result.Theorem 3.1 Let the dimension k be �xed and let point location take COST time. Afair-split tree T can be maintained in O(1) + COST time per insertion and O(1) time perdeletion.4 The maintenance of the closest pairTo maintain the closest pair we shall store the set E of some pairs of points of S.De�nition 4.1 A point p 2 S is a nearest neighbor of q if, for any r 2 S n fqg,d(p; q) � d(q; r). For points p; q 2 S, we call the pair (p; q) a neighbor pair if p is the nearestneighbor of q and vice versa.The set E contains the neighbor pairs. It is clear that the closest pair of S is a neighborpair of S and the closest pair belongs to E.Let a heap H store the distances of the pairs of E. The heap item is the pair of thepoints. The key of the item (p; q) is the Lt-distance d(p; q). The pair of points with minimalkey is a closest pair of S.With each point p 2 S, we store a list Ep = fq j (p; q) 2 Eg. With each point q in Ep,we store a pointer to the item (p; q) of the heap H .De�nition 4.2 An ordered pair 1 (a; b) of points from S is an ordered rejected pair ifthere exists a node v in the fair-split tree satisfying the following:1. a =2 B(v)2. d(B(v)) � sd(B(a))3. dmin(a; B(v)) � (1 + s)d(B(v))4. dmax(a; B(v)) < d(a; b):An unordered pair (a; b) of points from S is a rejected pair if ordered pair (a; b) or (b; a)is an ordered rejected pair.The set E satis�es the following property.Invariant. For any distinct points a; b 2 S, the unordered pair (a; b) belongs to the setE unless (a; b) is a rejected pair.Lemma 4.3 Let the invariant hold for the set E. Then the set E contains the neighborpairs of S.Proof. By the condition 4 of De�nition 4.2.It is easy to see that the set of all pairs satisfy the invariant. We maintain the additionalinvariant that, for any p 2 S, the number of incident pairs in E is at most constant, i.e.jEpj = O(1). This gives us a linear bound on jEj. We can bound jEpj by the followingstatement.Statement 4.4 For any point p 2 S, the number of non-rejected pairs (p; q) 2 S is atmost O(1).1We shall de�ne by (a; b) either an unordered pair fa; bg or an ordered pair [a; b], using the context toresolve the ambiguity. 7



Let Nk = (24k + 1)k. We shall prove that the number of non-rejected pairs incidentto a point p is at most Nk (for the separation s = 2). It is important that this bound isindependent of n.Statement 4.4 follows from Theorem 4.6. We precede Theorem 4.6 with useful Lemma.Lemma 4.5 Let p and q be points of S. If d(p; q) > (1 + s)d(B(p)) then the pair (p; q)is rejected.Proof. Consider the leaf u corresponding to the point p. Let v be the sibling of u anda = p. The point a and the node v satisfy the conditions 1, 2, and 3 of De�nition 4.2.The pair (p; q) is rejected if d(p; q) > dmax(p; B(v)). Lemma follows from dmax(p; B(v)) �dmax(B(u); B(v)) � d(B(u)) + d(B(v)) � (1 + s)d(B(u)).���������������������r rp qB(v) B(u)Figure 3: The distance between points p and q is greater than the diameter of the box B(u)times s+ 1. The pair (p; q) is rejected.Theorem 4.6 is useful in the insertion algorithm. To �nd a set Ep, for an inserted pointp, we use a search on the dynamic tree. We need to limit the number of nodes that are usedin search at the same time. Let V = fv1; : : : ; vNg be a set of these nodes. We associate theset Si = B(vi) nSB(vj)�B(vi)B(vj) with every node vi 2 V .Theorem 4.6 Let p be a point of S, V = fv1; : : : ; vNg be a set of nodes of a fair-splittree T . If N > Nk, there exists i such that, for any q 2 Si \ S, the pair (p; q) is rejected.(Choosing of i does not depend on layout of the points of S in the associated sets).Proof. We can assume that, for any i, the intersection Si \ S 6= ; and there exists apoint q 2 Si \ S such that the pair (p; q) is non-rejected. (In fact we can recognize whetheran empty set Si \ S exists in O(N) time. For an index j, the set Si \ S is empty if and onlyif any leaf below the node vj has an ancestor which is a descendant of vj .)Choose a box B(vi) of minimum diameter. Let � = d(B(vi)). First we shall prove that,for any point q at distance greater than (2 + s)� from p, the pair (p; q) is rejected. Weconsider three cases.Case 1. The point p belongs to the box B(vi).Then B(p) � B(vi) and � � d(B(p)). For any point q with d(p; q) > (1 + s)� the pair (p; q)is rejected by Lemma 4.5. Hence we can assumep =2 B(vi): (1)Case 2. The diameter of B(p) is less than �=s.Recall that the separator s is greater than 1. Let q be any point at distance greater than(2 + s)� from p. Then, since s > 1, d(p; q)> (1 + s)�=s > (1 + s)d(B(p)) and the pair (p; q)8



is rejected by Lemma 4.5. Hence we can assume� � sd(B(p)): (2)Case 3. The distance from the point p to the box B(vi) is greater than (1 + s)�.Choose any point q from S\B(vi). It is clear that B(q) � B(vi) and d(p; q) > (1+s)d(B(q)).The pair (p; q) is rejected by Lemma 4.5 and the node vi can be removed from V . Thiscontradicts our assumptions. Hence we can assumedmin(p; B(vi)) � (1 + s)�: (3)Let a = p and v = vi. Choose any point b 2 S such that d(a; b) > (2 + s)�. Theconditions 1, 2, and 3 of De�nition 4.2 are the assumptions (1),(2), and (3). Note thatd(a; b) > � + dmin(p; B(vi)) � dmax(a; B(v)). Hence the pair (a; b) can be removed from E.Thus, we can remove a node vj from V if dmin(p; Sj) > (2 + s)�. The number of nodesvj such that dmin(p; Sj) � (2 + s)� is at most Nk = (24k + 1)k by Lemma 4.7. The resultfollows. �������	���������:9r����>=r r1) 2) 3)pB(vi) p �B(vi)B(p) p dmin(p; B(vi))B(vi) �Figure 4: Three cases of Theorem 4.6. (1) p 2 B(vi). (2) d(B(p)) < �=s. (3) dmin(p; B(vi)) >(1 + s)�.Lemma 4.7 Let p be a point of S, V = fv1; : : : ; vNg be a set of nodes of a fair-splittree T such that, for any j, the set Sj = B(vj) nSB(vi)�B(vj)B(vi) is nonempty. Let � be aminimum diameter d(B(vi)), vi 2 V . If, for any j, the distance dmin(p; Sj) � (2 + s)�, thenthe number N � Nk = (24k+ 1)k.Proof. Fix any j 2 f1; : : : ; Ng. Choose the point q 2 Sj such that d(p; q) � (2 + s)�.Note that the box B(vroot) corresponding to the root of T contains the point q and any boxB(v); v 2 V . We shall show that q is included in Sj together with some s-box C, any sideof C is at least �=((1 + s)k). If Sj = B(vj) then C = B(vj). Otherwise choose the minimalbox B(u), u 2 T that contains the point q and at least one box B(v) for some v 2 V .We distinguish two cases. In the �rst case, the point q belongs to the box SB(u). Notethat B(v) � SB(u). Then the fair split of the box SB(u) separates the point q and the boxB(v), i.e. the point q 2 B(u1), the box B(v) � B(u2) where u1; u2 are the sons of u. Notethat� d(B(u2)) � �,� the length of the longest side of B(u2) is at least �=k, and� the length of the shortest side of B(u2) is at least �=((1 + s)k).The sides of box B(u1) are equal to the sides of box B(u2) except for those that are apart of the partitioned side of box B(u). Now consider the second part of this side. If it is a9



longest side of B(u2) then the corresponding side of B(u1) has length at least �=((1 + s)k).Otherwise one of the sides of B(u1) has length at least �=k. Hence any side of B(u1) haslength at least �=((1 + s)k). In the �rst case the point q is included in Sj together with thebox B(u1) and any side of B(u1) is at least �=((1 + s)k).In the second case, the point q does not belong to the box SB(u), i.e. the point q 2B(u) n SB(u). Note that B(v) � SB(u). This situation is similar to the case 3 of theinsertion algorithm (Section 3). We proved that there exists an s-box D and a fair split ofD into boxes D1 and D2 such that� the box D is an s-sub-box of B(u),� the box SB(u) is an s-sub-box of D1, and� the point q 2 D2.The diameter of the box D1 is at least �. The situation is similar to the �rst case andwe can show that any side of D2 is at least �=((1+ s)k).Thus, in both cases, there exists an s-box C � Sj that contains the point q, and any sideof C is at least �=((1+ s)k). The box C contains at least one point of the latticeL = fx j xi � pi� 2 Z, where � = �(1 + s)k , and i = 1; : : : ; kg:Let r be a point of C \ L closest to p. Then, for any ijri � pij � l(2 + s)�� m� = d(2 + s)(1 + s)ke�:Therefore the set Sj contains at least one point among the points in the setL0 = fx j xi � pi� 2 f�lk; : : : ; 0; : : : ; lkg, where lk = d(2 + s)(1 + s)ke for i = 1; : : : ; kg:For the separation s = 2 the cardinality of this set is Nk = (24k+ 1)k. This implies thatN = jV j � Nk.The insertion algorithm uses Theorem 4.6 if the set V contains more than Nk nodes. Wedescribe the algorithm to re�ne the set V (in Section 7 we give e�ective algorithms to re�nenode sets in searching Ep and A(v)).Algorithm REFINE(V) (� this algorithm is used in searching for Ep �)1. Remove the nodes vj 2 V such thatdmin(p; B(vj)) > (1 + s)d(B(vj)) or dmin(p; Sj) > (1 + s)d(B(p))2. Compute � = minvj2V fd(B(vj))g.3. Remove the nodes vj 2 V such thatdmin(p; Sj) > (2 + s)�The insertion of the point p causes insertion of some pairs into E and deletion of somepairs from E. Let us look at the updates of boxes. Note that the boxes, corresponding tothe nodes, are only inserted and, in the case B(vroot), are enlarged. Hence to prove thatthe invariant holds for E we need not insert pairs that are not incident to an inserted point.Using the dynamic tree we �nd at most Nk pairs that are adjacent to p. Add these pairs intoE. Now in fact the invariant holds for E. However, for some points, the number of incidentpairs may exceed Nk. These points are adjacent to p and can be determined when addingpairs into E. For these points, we remove some pairs from E using Theorem 4.6.10



Now we consider the deletion of the point p. The deletion causes insertion of some pairsinto E and deletion of some pairs from E. Delete the pairs adjacent to p, i.e. the setf(p; q) j q 2 S; (p; q) 2 Eg. Note that always two boxes are deleted. These boxes are theresults of a fair split of the box SB(parent(w)) where the node w corresponds to p.We consider the deletion of the box B(v). Suppose that the pair (a; b) was rejected (andwas not included in E) by conditions of De�nition 4.2 for node v. Then d(B(a)) � d(B(v))=sand dmin(a; B(v)) � (1+s)d(B(v)). We shall show that the number of such points is at mostO(1). The argument is similar to the proof of Theorem 4.6. Let A(v) denote this set, i.e.A(v) = fa 2 S j d(B(a)) � d(B(v))=s and dmin(a; B(v)) � (1 + s)d(B(v))g:For each a 2 A(v), we renew the set Ea. This gives the set E, for which the invariant isful�lled (if we renew the sets for both deleted boxes). For the points q 2 S, jEqj > Nk,remove some points from Eq using Theorem 4.6. Now the second invariant (jEqj � Nk, forany q 2 S) holds.In the rest of this Section we prove the analog of Theorem 4.6 for A(v). Denote Mk =(36k + 19)k. To �nd a set A(v) we use a search on the dynamic tree. As in �nding of Ep webound the number of nodes that are used in search at the same time. We shall prove thatthis number is at mostMk (for the separation s = 2). Let V = fv1; : : : ; vNg be a set of thesenodes. We associate the set Si = B(vi) nSB(vj)�B(vi)B(vj) with every node vi 2 V .Theorem 4.8 Let v be a node of a fair-split tree T , V = fv1; : : : ; vNg be a set of nodesof T . If N > Mk, there exists i such that A(v) \ Si = ; (choosing of i does not depend onlayout of the points of S in the associated sets).Proof. We can assume that, for any i, Si \ S 6= ;. Let � be a minimum diameterd(B(vi)), for vi 2 V . Note that � � d(B(v))=s. By de�nition of A(v) we can assume that,for any j, dmin(Sj ; B(v)) � (1 + s)d(B(v)):Fix any j 2 f1; : : : ; Ng. Choose the point q 2 Sj such that dmin(q; B(v)) � (1 + s)d(B(v)).As in the proof of Theorem 4.6 we can show that there exists s-box C satisfying the following:� q 2 C,� any side of C has length at least �=((1 + s)k).The box C contains at least one point of the latticeL = fx j xi � pi� 2 Z, where � = �(1 + s)k , and i = 1; : : : ; kg:Let p be the center of the box B(v). The shortest side of B(v) has length at least d(B(v))=k.The longest side of B(v) has length at least (1 + s)d(B(v))=k. Hencejqj � pj j � (1 + s)d(B(v))2k + (1 + s)d(B(v)) � s(1 + s)(1 + 12k)�:Let r be a point of C \ L closest to p. Then, for any ijri � pij=� � ds(1 + s)(1 + 12k)�=�e = ds(1 + s)2(k + 12)e:Therefore the set Sj contains at least one point among the points in the setL0 = fx j xi � pi� 2 f�lk; : : : ; 0; : : : ; lkg, where lk = ds(1 + s)2(k + 12)e for i = 1; : : : ; kg:For the separation s = 2 the cardinality of this set is Mk = (36k + 19)k. This implies thatN = jV j �Mk. 11



5 Dynamic treeIn this Section we shall brie
y describe the dynamic tree. We use the dynamic tree toimplement the point location and other searches on the fair-split tree.A dynamic tree �(T ) , based on the binary tree T , has the same nodes and the sameedges as T . The dynamic tree is a partition of edges into two kinds, solid and dashed, withproperty that each node has at most one child linked to it by a solid edge. Thus the solidedges de�ne a collection of solid paths that partition the vertices. (A vertex with no incidentsolid edges is a one-vertex solid path). The head of the path is its bottommost node; thetail is its topmost node.For a node v of T , let size(v) be the number of nodes in the subtree of T rooted at v.Let (v; w) be an edge of T from v to its parent w. The edge is heavy if size(v) > size(w)=2and light otherwise. A node v of �(T ) ful�lls the size invariant if, for each edge e to one ofits children, e is solid if it is heavy and light if it is dashed. We say that the size invariantholds for the dynamic tree �(T ) if it holds for each node of T .A solid path is represented by a path tree. We use globally biased binary trees [4] toimplement path trees. A biased binary tree stores an ordered sequence of weighted items inits leaves. The weight of a node v of T (and of the corresponding leaf of the biased binarytree) is de�ned asweight(v) = �size(v), if no solid edge enters vsize(v)� size(w), if the solid edge (w; v) enters vThe weight of an internal node of a biased binary tree is inductively de�ned as the sum ofthe weight of its children.Each node v of biased binary tree has an integer rank denoted rank(v) that satis�es thefollowing properties:(i) If v is a leaf, rank(v) = blogweight(v)c. If v is an internal node, rank(v) � 1 +blogweight(v)c.(ii) If node w has parent v, rank(w) � rank(v), with the inequality strict if w is external.If w has grandparent u, rank(w) < rank(u).Each internal node v of biased binary tree contains four pointers [27]: bleft(v) andbright(v), which point to the left and right child of v, and bhead(v) and btail(v), whichpoint to the head and tail of the subpath corresponding to v (the leftmost and rightmostexternal descendants of v). For a topmost node v of a solid path P , there is the pointerpt root(v) to the root of the path tree for P .Lemma 5.1 ([27]) If v is a leaf of a biased binary tree with root u, the depth of v is atmost 2(rank(u)� rank(v)) � 2 log(weight(u)=weight(v))+ 4.The updates of T can be performed using the following operations [4] on rooted trees.link(v; w): If v is the root of one tree and w is a node in another tree, combine the treescontaining v and w by adding an edge joining v and w.cut(v; w): If there is an edge joining v and w, delete it, thereby breaking the tree con-taining v and w into two trees, one containing v and one containing w.The time bound of these operations is O(logn). This gives the following result.Lemma 5.2 The dynamic tree can be maintained under insertions and deletions ofpoints in O(logn) time per update. 12



6 SearchingIn this Section we discuss the search algorithms. We have to implement point location andthe search for the sets Ep and A(v).6.1 Point locationLet p be a point in k-dimensional space. The nodes of T whose boxes contain p form thepath (if p 2 B(vroot)). We have to compute the bottommost node of this path. Our pointlocation algorithm is similar to the algorithm of Schwarz [24]. The algorithm processes asequence of solid paths of the dynamic tree. For any solid path P of this sequence, the boxof the topmost node of P contains p.We start the algorithm with the solid path containing the root. If the box B(vroot) doesnot contain p then the algorithm returns null.Now assume that the algorithm has reached the topmost node of the solid path P , and pis contained in the box of that node. We �nd the lowest node v on P whose box still containsthe query point p. At this point we continue the search with a dashed edge (v; u) such thatp 2 B(u). It is clear that the node u is the topmost node of the next solid path.Now we describe the search on the solid path P . The algorithm start with the root u ofthe path tree. We execute the following step until u is a leaf of the path tree. Follow thepointer from u to the rightmost leaf in the u's left subtree. This node is btail(bleft(u)). Ifthe box B(btail(bleft(u))) contains the query point, then we proceed with u's left child inthe path tree, otherwise with the right child.function point location(p)v := root(T )if p =2 B(v) then return nullwhile v is an internal node of T do(� Note that p 2 B(v) and v is the topmost node of some path P �)u := pt root(v) (� u is the root of the path tree for P �)while u is an internal node of the path tree doif p 2 B(btail(bleft(u))) thenu := bleft(u)else u := bright(u)�od(� u is the bottommost node of the path P such that p 2 B(u) �)v := uif the edge (v; rson(v)) is dashed and p 2 B(rson(v)) thenv := rson(v)else if the edge (v; lson(v)) is dashed and p 2 B(lson(v)) thenv := lson(v)else return v��odreturn vend (� of the function �)It is clear that the point location algorithm is correct. Let us analyze the running time ofthe algorithm. Let P1; : : : ; Pl be the solid paths that are searched during the algorithm. Let13



u1; : : : ; ul be the roots of path trees and v1; : : : ; vl be the bottommost nodes on path treesthat are searched. Note that vi is the parent of ui+1 in T for i = 1; : : : ; l� 1. The number lof paths is at most logn by the size invariant. The depth of vi in the path tree for Pi is atmost 2(rank(ui)� rank(vi)) by Lemma 5.1. For i = 1; : : : ; l� 1, rank(vi) � rank(ui+1) byde�nition of rank. The total running time of the point location algorithm isO(logn +Pli=1 2(rank(ui)� rank(vi))) = O(logn+ rank(u1)� rank(vl)) = O(logn):6.2 Searching for Ep and A(v)Now we shall describe the search for the sets Ep and A(v). Recall that Ep = fq j (p; q) 2 EgandA(v) = fa 2 S j d(B(a)) � d(B(v))=s and dmin(a; B(v)) � (1 + s)d(B(v))g:We consider the search for Ep and A(v) as a point location problem for at most O(1) points(Nk points for Ep and Mk points for A(v)). In fact we can build a search tree such that� the external nodes correspond the points S, and� the path from the root of the search tree to an external node v corresponds to thenodes of the path trees searched during the location of the point corresponding to v.The search for the sets Ep and A(v) applies breadth-�rst search on the search tree.node set denotes a set of nodes that is stored in the breadth-�rst search. We use the pointerdepth(v) that is a depth of the node v in search tree. For simplicity, we extend the pointersbtail to the external nodes of any path trees. (It is not necessary to store these pointers).Using Theorem 4.6 (4.8), the procedure re�ne() �nds at most Nk (resp.Mk) nodes amongthe nodes fbtail(v) j v 2 node setg and removes another nodes from node set.function search() (� the search for Ep or A(v) �)w := pt root(root(T ))node set := fwgdepth(w) := 0while there is a node w in node set such that btail(w) is an internal node of T dow is a node in node set with minimal depth such that btail(w) is an internal node of Tif w is an internal node of some path tree thennode set := node set [ fbleft(w); bright(w)gdepth(bleft(w)) := depth(w) + 1depth(bright(w)) := depth(w) + 1else (� w is an external node of some path tree �)u := btail(w) (� u is the corresponding node of w in T �)if the edge (u; rson(u)) is dashed thenw := pt root(rson(u))node set := node set [ fwgdepth(w) := depth(w) + 1�if the edge (u; lson(u)) is dashed thenw := pt root(lson(u))node set := node set [ fwgdepth(w) := depth(w) + 1��node set := node set n fwg 14



if jnode setj > Nk then (� jnode setj > Mk for A(v) �)re�ne(fbtail(w) j w 2 node setg)(� by Theorem 4.6 for Ep and Theorem 4.8 for A(v) �)�odreturn the points corresponding the nodes btail(w) for w 2 node setend (� of the function �)Lemma 6.1 The function search() takes O(logn) time.Proof. The function search() visits at most Nk (resp.Mk) nodes of the same depth. Thedepth of the search tree is O(logn). This completes the proof.Finally, we formulate the main result.Theorem 6.2 There is a data structure of size O(n) that maintains the closest pair ofS in O(logn) time per update.7 The reduction of the constant factorsIn this Section we discuss the dependence of the update time and the space on dimension.The complexity of the algorithm is exponential in the dimension. The straightforward im-plementation of the searching gives O(kN2k log n) time to insert and O(kMk(Mk+N2k ) logn)time to delete a point. This is because the procedure re�ne() takes O(kNk) time in thesearching for Ep and O(kMk) time in the searching for A(v).Now we shall reduce the time complexity of re�ne() to O(k+ logNk) and O(k+ logMk)respectively. Instead of computing the minimum diameter box B(vi) (in O(Nk) time), weshall maintain it. Note that the node vi is never deleted. In the loop of search() we have tochoose a node v such that btail(v) is an internal node of T . To do this we store node set intwo lists: fv j btail(v) is an internal node of Tg and fv j btail(v) is an external node of Tg.Using the queue for the �rst list allows us to �nd a node with minimal depth in O(1) time.Consider the search for Ep. We can formulate the conditions to remove the node vjdmin(p; B(vj)) > (1 + s)d(B(vj)) (4)dmin(p; Sj) > (1 + s)d(B(p)) (5)dmin(p; Sj) > dmax(p; B(vi)) (6)In fact we check these conditions when we add a node to node set.Consider the search for A(v). The following conditions allows us to discard inserted nodevj d(B(vj)) > d(B(v))=s (7)dmin(Sj ; B(v)) > (1 + s)d(B(v)) (8)The conditions 4, 5 and 7 can be computed in O(k) time. We can achieve the same timebound for the conditions 6 and 8. The main problem is how to compute Sj . Recall thatSj = B(vj) nSB(vi)�B(vj)B(vi) for a node vj 2 node set. Instead of computing this set, wecompute its subset such that Theorems 4.6 and 4.8 still hold.Let w be a node of some path tree and w is added to node set (vj = btail(w)). Letq 2 Rk be a point such that the point location of p visits w. It is clear that q 2 Sj . In factwe can take the set of such points to be Sj . In other words, we can de�neSj = �B(btail(w)) nB(btail(lson(u)), if w is right son of uB(btail(w)), otherwise15



The set Sj is either a box or the set theoretical di�erence between two boxes. This de�nitionof set Sj is similar to the de�nition of cells [1] (box cells and doughnut cells). The conditions6 and 8 can be computed in O(k) time.In practice, we don't need to store the at most jNkj (jMkj for A(v)) nodes in node set. Wecan prune node set at the moment we add a node to node set. To do this we store dmin(p; Sj)(dmin(Sj; B(v)) for A(v)) in a heap corresponding to node set. Then the cost of insertiona node to node set is O(k + logNk) = O(k log k) (O(k + logMk) = O(k log k) for A(v)).The deletion of a node from node set take O(k + logNk) = O(k log k) (O(k + logMk) =O(k log k) for A(v)) time. Hence the search for Ep (for A(v)) takes O(kNk log k logn) (resp.O(kMk log k logn)) time.Now consider the insertion of the point p. Recall that after �nding Ep we have toprune the sets Eq; q 2 Ep containing greater than Nk points. We can prune a set Eq inO(k+ logNk) time. We shall store two heaps to node q. The keys are the distances d(B(r))and dmin(q; B(r)), r 2 Eq (for these points Sj = B(r)). The total time of insertion the pointp is O(kNk log k log n+Nk(k + logNk)) = O(kNk log k logn).We now consider the deletion of the node v. Recall that after �nding A(v), for eacha 2 A(v), we� delete the set Ea,� �nd the set Ea, using the search for Ep,� prune Eb; b 2 Ea, if jEbj > Nk,The corresponding costs areO(MkNk logNk),O(kMkNk logNk log n) andO(MkNk logNk).The total running time of the deletion algorithm is O(kMkNk log k logn).Theorem 7.1 There is a data structure of size O(kn) that maintains the closest pair ofS in O(kNk log k logn) time per insertion and O(kMkNk log k log n) time per deletion.Finally, we compare constantsN2 andM2 for separation s = 2 and s = p5+12 . Recall thatNk = (2d(s+2)(s+1)ke+1)k andMk = (ds(s+1)2(k+ 12)e+1)k: For separation s = 2 we getN2 = 2401 and M2 = 8281. For separation s = p5+12 we get Nk = (2d9:4721ke+ 1)k; N2 =1521 and Mk = (2d11:0901k+ 5:5450e+ 1)k; M2 = 3249. In practice, we do not expect theconstant factors to be so big.8 ConclusionWe have presented an algorithm for maintaining the closest pair in O(logn) time per update,using O(n) space. The running time of the algorithm is optimal up to a constant factor in thealgebraic decision-tree model of computation. The algorithm can be adapted (by changingsome constants, including Nk) for another metric such that d(p; q) = O(d1(p; q)). In factthe algorithm can give the list of the closest pairs (if any) in the time proportional to itsnumber.The algorithm maintains a set E of point pairs that contains the neighbor pairs.Unfortunately the fair-split tree does not allow e�ciently maintaining the (exact) setof the neighbor pairs. It would be interesting to solve the problem of the neighbor pairsmaintenance with O(logn) update time and O(n) space.Acknowledgment. The author thanks anonymous referees for many useful comments.16
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