Análise de Algoritmos

Slides de Paulo Feofiloff

[com erros do coelho e agora também da cris]

i-ésimo menor elemento

CLRS 9

i-ésimo menor

Problema: Encontrar o i-ésimo menor elemento de $A[1 \dots n]$ Suponha $A[1 \dots n]$ sem elementos repetidos.

Exemplo: 33 é o 40. menor elemento de:

1									10	
22	99	32	88	34	33	11	97	55	66	A

1			4 10							
11	22	32	33	34	55	66	88	97	99	ordenado

Mediana

Mediana é o $\lfloor \frac{n+1}{2} \rfloor$ -ésimo menor ou o $\lceil \frac{n+1}{2} \rceil$ -ésimo menor elemento

Exemplo: a mediana é 34 ou 55:

1									10	_
22	99	32	88	34	33	11	97	55	66	A

	10				6	5				1	
ordenado	99	97	88	66	55	34	33	32	22	11	

Menor

Recebe um vetor A[1..n] e devolve o valor do menor elemento.

```
MENOR (A, n)

1 menor \leftarrow A[1]

2 para k \leftarrow 2 até n faça

3 se A[k] < menor

4 então menor \leftarrow A[k]

5 devolva menor
```

O consumo de tempo do algoritmo MENOR é $\Theta(n)$.

Segundo menor

Recebe um vetor A[1..n] e devolve o valor do segundo menor elemento, supondo $n \ge 2$.

```
SEG-MENOR (A, n)

1  menor \leftarrow \min\{A[1], A[2]\} segmenor \leftarrow \max\{A[1], A[2]\}

2  para k \leftarrow 3 até n faça

3  se A[k] < \text{menor}

4  então segmenor \leftarrow \text{menor}

5  menor \leftarrow A[k]

6  senão se A[k] < \text{segmenor}

7  então segmenor \leftarrow A[k]

8 devolva segmenor
```

O consumo de tempo do algoritmo SEG-MENOR é $\Theta(n)$.

i-ésimo menor

Recebe A[1..n] e i tal que $1 \le i \le n$ e devolve valor do i-ésimo menor elemento de A[1..n]

```
SELECT-ORD (A, n, i)
1 ORDENE (A, n)
2 devolva A[i]
```

O consumo de tempo do algoritmo SELECT-ORD é $\Theta(n \lg n)$.

Particione

Rearranja $A[p \dots d]$ de modo que $p \le q \le d$ e $A[p \dots q-1] \le A[q] < A[q+1 \dots d]$ PARTICIONE (A,p,d)1 $x \leftarrow A[d] > x$ é o "pivô"

2 $i \leftarrow p-1$ 3 para $j \leftarrow p$ até d-1 faça

4 se $A[j] \le x$ 5 então $i \leftarrow i+1$ 6 $A[i] \leftrightarrow A[j]$

 $A[i+1] \leftrightarrow A[d]$

devolva i+1

Particione

Rearranja A[p ...d] de modo que $p \le q \le d$ e $A[p ...q-1] \le A[q] < A[q+1 ...d]$

```
PARTICIONE (A, p, d)

1 x \leftarrow A[d] > x é o "pivô"

2 i \leftarrow p-1

3 \operatorname{para} j \leftarrow p até d-1 faça

4 \operatorname{se} A[j] \leq x

5 \operatorname{então} i \leftarrow i+1

6 A[i] \leftrightarrow A[j]

7 A[i+1] \leftrightarrow A[d]

8 \operatorname{devolva} i + 1
```

	p				q					d
A	33	11	22	33	44	55	88	66	77	99

Particione

Rearranja $A[p \dots d]$ de modo que $p \le q \le d$ e $A[p \dots q-1] \le A[q] < A[q+1 \dots d]$

```
PARTICIONE (A, p, d)

1 x \leftarrow A[d] > x \text{ \'e o "piv\^o"}

2 i \leftarrow p-1

3 para j \leftarrow p \text{ at\'e } d-1 \text{ faça}

4 se A[j] \leq x

5 ent\~ao i \leftarrow i+1

6 A[i] \leftrightarrow A[j]

7 A[i+1] \leftrightarrow A[d]

8 devolva i + 1
```

O algoritmo PARTICIONE consome tempo $\Theta(n)$.

Algoritmo Select

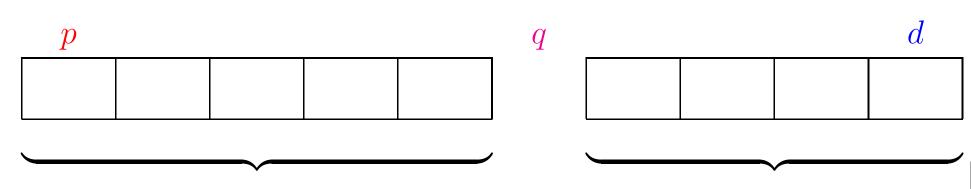
Recebe A[p ...d] e i tal que $1 \le i \le d-p+1$ e devolve valor do i-ésimo menor elemento de A[p ...d]

```
SELECT(A, p, d, i)
    se p = d
         então devolva A[p]
3 q \leftarrow \mathsf{PARTICIONE}(p, d)
   k \leftarrow q - p + 1
5
   se k=i
6
          então devolva A[q]
    se k > i
8
          então devolva SELECT (A, p, q - 1, i)
          senão devolva SELECT (A, q + 1, d, i - k)
9
```

Algoritmo Select

```
SELECT(A, p, d, i)
     se p = d
          então devolva A[p]
3
    q \leftarrow \mathsf{PARTICIONE}\left(A, p, d\right)
    k \leftarrow q - p + 1
5
    se k=i
6
          então devolva A[q]
     se k > i
8
          então devolva SELECT (A, p, q - 1, i)
9
          senão devolva SELECT (A, q + 1, d, i - k)
```

k-1



n-k

Consumo de tempo

T(n) =consumo de tempo máximo quando n = d - p + 1

linha consumo de todas as execuções da linha

1-2
$$= 2\Theta(1)$$

3 $= \Theta(n)$
4-7 $= 4\Theta(1)$
8 $= T(k-1)$
9 $= T(n-k)$

$$T(n) = \Theta(n+6) + \max\{T(k-1), T(n-k)\}$$
$$= \Theta(n) + \max\{T(k-1), T(n-k)\}$$

Consumo de tempo

T(n) pertence a mesma classe Θ que:

$$T'(1) = 1$$

$$T'(n) = T'(n-1) + n \text{ para } n = 2, 3, \dots$$

Solução assintótica: T'(n) é $\Theta(n^2)$

Solução exata:

$$T'(n) = \frac{n^2}{2} + \frac{n}{2}.$$

Algumas conclusões

No melhor caso o consumo de tempo do algoritmo SELECT é $\Theta(n)$.

No pior caso o consumo de tempo do algoritmo SELECT é $\Theta(n^2)$.

Consumo médio?

$$E[T(n)] = ???$$

Exemplos

Número médio de comparações sobre todas as permutações de A[p ... d] (supondo que nas linhas 8 e 9 o algoritmo sempre escolhe o lado maior):

$A[p \dots d]$	comps	$A[p \dots d]$	comps
1,2	1+0	1,2,3	2+1
2,1	1+0	2,1,3	2+1
média	2/2	1,3,2	2+0
modia	_,_	3,1,2	2+0
		2,3,1	2+1
		3,2,1	2+1
		média	16/6

Mais exemplos

$A[p \dots d]$	comps	$A[p \dots d]$	comps
1,2,3,4	3+3	1,3,4,2	3+1
2,1,3,4	3+3	3,1,4,2	3+1
1,3,2,4	3+2	1,4,3,2	3+1
3,1,2,4	3+2	4,1,3,2	3+1
2,3,1,4	3+3	3,4,1,2	3+1
3,2,1,4	3+3	4,3,1,2	3+1
1,2,4,3	3+1	2,3,4,1	3+3
2,1,4,3	3+1	3,2,4,1	3+3
1,4,2,3	3+1	2,4,3,1	3+2
4,1,2,3	3+1	4,2,3,1	3+2
2,4,1,3	3+1	3,4,2,1	3+3
4,2,1,3	3+1	4,3,2,1	3+3
		média	116/24

0/24

Ainda exemplos

No caso d - p + 1 = 5, a média é 864/120.

n	$\mathrm{E}[T(n)]$	SIIM
1	0	0
2	2/2	1
3	16/6	2.7
4	116/24	4.8
5	864/120	7.2

Número de comparações

O consumo de tempo assintótico é proporcional a

 $C(n)=% {\displaystyle\int\limits_{-\infty}^{\infty}} {\displaystyle\int\limits_{-\infty}^{\infty$

linha consumo de todas as execuções da linha

1-2 = 0
3 =
$$n-1$$

4-7 = 0
8 = $C(k-1)$
9 = $C(n-k)$

total
$$\leq \max\{C(k-1), C(n-k)\} + n - 1$$

Número de comparações

No pior caso C(n) pertence a mesma classe Θ que:

$$C'(1) = 0$$

$$C'(n) = C'(n-1) + n - 1 \text{ para } n = 3, 4, \dots$$

Solução assintótica: C'(n) é $\Theta(n^2)$

Solução exata:

$$C'(n) = \frac{n^2}{2} - \frac{n}{2}.$$

Particione aleatorizado

Rearranja A[p ... d] de modo que $p \le q \le d$ e

$$A[\underline{p} \dots \underline{q} - 1] \le A[\underline{q}] < A[\underline{q} + 1 \dots \underline{d}]$$

PARTICIONE-ALEA(A, p, d)

- 1 $i \leftarrow \mathsf{RANDOM}(p, d)$
- 2 $A[i] \leftrightarrow A[d]$
- 3 devolva PARTICIONE (A, p, d)

O algoritmo PARTICIONE-ALEA consome tempo $\Theta(n)$.

Select-Aleatorizado (= randomized select)

Recebe A[p ...d] e i tal que $1 \le i \le d-p+1$ e devolve valor do i-ésimo menor elemento de A[p ...d]

```
SELECT-ALEA(A, p, d, i)
     se p = d
          então devolva A[p]
3
    q \leftarrow \mathsf{PARTICIONE}\text{-}\mathsf{ALEA}\left(A, p, d\right)
    k \leftarrow q - p + 1
5
    se k=i
6
          então devolva A[q]
     se k > i
8
          então devolva SELECT-ALEA (A, p, q - 1, i)
          senão devolva SELECT-ALEA (A, q + 1, d, i - k)
9
```

Consumo de tempo

O consumo de tempo é proporcional a

 $T(n)=% {\displaystyle\int\limits_{0}^{\infty}} {\displaystyle\int\limits_{0$

linha consumo de todas as execuções da linha

1-2 = 0
3 =
$$n-1$$

4-7 = 0
8 = $T(k-1)$
9 = $T(n-k)$

total
$$\leq \max\{T(k-1), T(n-k)\} + n - 1$$

T(n) é uma variável aleatória.

Consumo de tempo

$$T(1) = 0$$

$$T(n) \le \sum_{h=1}^{n-1} X_h T(h) + n - 1 \text{ para } n = 2, 3, \dots$$

onde

$$X_h = \begin{cases} 1 & \text{se } \max\{k-1, n-k\} = h \\ 0 & \text{caso contrário} \end{cases}$$

$$\Pr\{X_h = 1\} = \mathrm{E}[X_h]$$

$$X_h = \begin{cases} 1 & \text{se } \max\{k-1, n-k\} = h \\ 0 & \text{caso contrário} \end{cases}$$

Qual a probabilidade de X_h valer 1?

$$\Pr\{X_h = 1\} = \mathrm{E}[X_h]$$

$$X_h = \begin{cases} 1 & \text{se } \max\{k-1, n-k\} = h \\ 0 & \text{caso contrário} \end{cases}$$

Qual a probabilidade de X_h valer 1?

Para
$$h = 1, ..., \lfloor n/2 \rfloor - 1$$
, $\Pr\{X_h = 1\} = 0 = E[X_h]$.

Para $h = \lceil n/2 \rceil, \ldots, n$,

$$\Pr\{X_h = 1\} = \frac{1}{n} + \frac{1}{n} = \frac{2}{n} = E[X_h]$$

Se n é impar e $h = \lfloor n/2 \rfloor$, então

$$\Pr\{X_h = 1\} = \frac{1}{n} = \mathrm{E}[X_h]$$

Consumo de tempo esperado

$$\begin{split} & \mathrm{E}[T(1)] = 0 \\ & \mathrm{E}[T(n)] \leq \sum_{h=1}^{n-1} \mathrm{E}[X_h T(h)] + n - 1 \\ & \leq \sum_{h=1}^{n-1} \mathrm{E}[X_h] \ \mathrm{E}[T(h)] + n - 1 \ \ (\text{CLRS 9.2-2}) \\ & \leq \frac{2}{n} \sum_{h=a}^{n-1} \mathrm{E}[T(h)] + n - 1 \ \ \text{para } n = 2, 3, \dots \end{split}$$

onde
$$a = \lfloor n/2 \rfloor$$
.

Solução: E[T(n)] = O(n).

Consumo de tempo esperado

E[T(n)] pertence a mesma classe O que:

$$S(1) = 0$$

$$S(n) \le \frac{2}{n} \sum_{h=1}^{n-1} S(h) + n - 1 \text{ para } n = 2, 3, \dots$$

onde $a = \lfloor n/2 \rfloor$.

n	1	2	3	4	5	6	7	8	9	10
S(n)	0.0	1.0	2.7	4.8	7.4	10.0	13.1	15.8	19.4	22.1
$\overline{4n}$	4	8	12	16	20	24	28	32	36	40

Vamos verificar que S(n) < 4n para n = 1, 2, 3, 4, ...

Recorrência

Prova: Se n = 1, então $S(n) = 0 < 4 = 4 \cdot 1 = 4n$. Se $n \ge 2$,

$$S(n) \le \frac{2}{n} \sum_{h=a}^{n-1} S(h) + n - 1$$

$$\stackrel{\text{hi}}{\le} \frac{2}{n} \sum_{h=a}^{n-1} 4h + n - 1$$

$$= \frac{8}{n} (\sum_{h=1}^{n-1} h - \sum_{h=1}^{a-1} h) + n - 1$$

$$\le \frac{4}{n} (n^2 - n - \frac{(n-1)(n-3)}{4}) + n - 1$$

$$= \frac{4}{n} (\frac{3n^2}{4} - \frac{3}{4}) + n - 1$$

$$= 3n - \frac{3}{n} + n - 1 = 4n - \frac{3}{n} - 1 < 4n.$$

Algoritmos – p.

Conclusão

O consumo de tempo esperado do algoritmo SELECT-ALEA é O(n).

Exercícios

Exercício 1 [CLRS 9.1-1] [muito bom!]

Mostre que o segundo menor elemento de um vetor $A[1 \dots n]$ pode ser encontrado com não mais que $n + \lceil \lg n \rceil - 2$ comparações.

Exercício 2

Prove que o algoritmo Select Aleatorizado (= Randomized Select) funciona corretamente.

Exercício 3 [CLRS 9.2-3]

Escreva uma versão iterativa do algoritmo Select Aleatorizado (= Randomized Select).

Exercício 4

Suponha que concluímos que E[T(n)] = O(n) de alguma maneira. Deduza, como fizemos no início da aula de hoje, um valor de c > 0 para o qual vale que $E[T(n)] \le cn$ para $n \ge 1$.