MAC 5711 - Análise de Algoritmos

Departamento de Ciência da Computação Segundo semestre de 2005

Lista 8

- 1. Problema 15-2 do CLRS (Como imprimir nitidamente) Considere o problema de imprimir nitidamente um parágrafo em uma impressora. O texto de entrada é uma seqüência de n palavras de comprimentos l_1, l_2, \ldots, l_n , medidos pelo número de caracteres. Queremos imprimir esse parágrafo com nitidez em uma série de linhas que contêm no máximo M caracteres cada uma. Nosso critério de "nitidez" é dado a seguir. Se uma determinada linha contém palavras de i até j, onde $i \leq j$, e deixamos exatamente um espaço entre as palavras, o número de espaços extras no final da linha é $M-j+i-\sum_{k=i}^{j} l_k$, que deve ser não-negativo para que as palavras caibam na linha. Desejamos minimizar a soma, sobre todas as linhas exceto a última, do cubo do número de espaços extras no final das linhas. Escreva um algoritmo de programação dinâmica para imprimir um parágrafo de n palavras nitidamente em uma impressora. Analise o tempo de execução e os requisitos de espaço do seu algoritmo.
- 2. Problema 15-4 do CLRS (Planejando uma festa da empresa) O professor Stewart presta consultoria ao presidente de uma corporação que está planejando uma festa da empresa. A empresa tem uma estrutura hierárquica; isto é, a relação de supervisores forma uma árvore com raiz no presidente. O pessoal do escritório classificou cada funcionário com uma avaliação de sociabilidade, que é um número real. Para tornar a festa divertida para todos os participantes, o presidente não deseja que um funcionário e seu supervisor imediato participem.
 - O professor Stewart recebe a árvore que descreve a estrutura da corporação, usando a representação de filho da esquerda, irmão da direita, usada para o armazenamento de árvores enraizadas (olhe na seção 10.4 se precisar). Cada nó da árvore contém, além dos ponteiros, o nome de um funcionário e a ordem de sociabilidade desse funcionário. Escreva um algoritmo para compor uma lista de convidados que maximize a soma das avaliações de sociabilidade dos convidados. Analise o tempo de execução do seu algoritmo.
- 3. Problema 15-7 do CLRS (Programando para maximizar o lucro) Suponha que você tem uma máquina e um conjunto de n trabalhos, identificados pelos números $1, 2, \ldots, n$, para processar nessa máquina. Cada trabalho j tem um tempo de processamento t_j , um lucro p_j e um prazo final d_j . A máquina só pode processar um trabalho de cada vez, e o trabalho j deve ser executado ininterruptamente por t_j unidades de tempo consecutivas. Se o trabalho j for concluído em seu prazo d_j , você recebe um lucro p_j , mas, se ele for completado depois do seu prazo final, você não recebe nenhum lucro. Escreva um algoritmo para encontrar a ordem de execução dos trabalho que maximiza a soma dos lucros, supondo que todos os tempos de processamento são inteiros entre 1 e n. Qual é o tempo de execução do seu algoritmo.

4. **PC 111105** (Cortes de tora) Você deve cortar uma tora de madeira em vários pedaços. A empresa mais em conta para fazer isso é a *Analog Cutting Machinery* (ACM), que cobra de acordo com o comprimento da tora a ser cortada. A máquina de corte deles permite que apenas um corte seja feito por vez.

Se queremos fazer vários cortes, é fácil ver que ordens diferentes destes cortes levam a preços diferentes. Por exemplo, considere uma tora com 10 metros de comprimento, que tem que ser cortada a 2, 4 e 7 metros de uma de suas extremidades. Há várias possibilidades. Podemos primeiramente fazer o corte dos 2 metros, depois dos 4 e depois dos 7. Tal ordem custa 10 + 8 + 6 = 24, porque a primeira tora tinha comprimento 10, o que restou tinha 8 metros de comprimento e o último pedaço tinha comprimento 6. Se cortássemos na ordem 4, depois 2, depois 7, pagaríamos 10 + 4 + 6 = 20, que é mais barato.

Seu chefe encomendou um programa que, dado o comprimento l da tora e k pontos p_1, \ldots, p_k de corte da tora, encontre o custo mínimo para executar esses cortes na ACM.

5. PC 111106 (Carregamento de balsa) Balsas são usadas para transportar carros para a outra margem de um rio ou outro trecho de água. Considere balsas que sejam largar o suficiente para acomodar duas faixas de carros em todo o seu comprimento. Os carros entram nas faixas por um lado da balsa e saem, na outra margem, do outro lado da balsa.

A fila de carros para entrar na balsa é uma fila única e o operador direciona cada carro para uma das duas faixas da balsa — a faixa esquerda ou a faixa direita — de modo a balancear as duas faixas da balsa. Cada carro na fila tem um comprimento diferente, que é estimado pelo operador enquanto os carros estão na fila. Baseandose nessas estimativas, o operador decide em qual das duas faixas cada carro deve embarcar, e embarca tantos carros da fila quanto possível. Escreva um programa que informe o operador para qual faixa ele deve direcionar cada carro de modo a maximizar o número de carros embarcados na balsa.

- 6. **PC 111107** (Palitos chineses) Na China, as pessoas usam pares de palitos (chopsticks) para comer, mas o Sr. L é um pouco diferente... Ele usa três palitos: um par e mais um extra, longo, para pegar itens maiores, espetando-os. O comprimento dos dois palitos menores, normais, devem ser tão próximos quanto possível, mas o comprimento do palito extra não importa, desde que ele seja o mais comprido dos três. Para um conjunto de palitos com comprimento $a, b \in c$ ($a \le b \le c$), a função $(a b)^2$ mede quão ruim é o conjunto.
 - O Sr. L convidou k pessoas para sua festa de aniversário e ele está ansioso para apresentar o seu jeito de usar os palitos. Ele deve preparar k+8 conjuntos de palitos (para ele, sua esposa, seu filhinho, sua filha, seus pais, seus sogros, e k outros convidados). Mas os palitos do Sr. L são de comprimentos variados! Escreva uma função que, dado k e os comprimentos de cada um dos n palitos do Sr. L, encontre um jeito de compor os k+8 conjuntos de palitos de maneira a minimizar a soma de quão ruim são os k+8 conjuntos.