MAC 5711 – Análise de Algoritmos

Primeiro Semestre de 2004 Segunda Prova – 18 de maio

Nome:			
Assinatura:			
-			

1. (Valor: 3,0 pontos)

- (a) Considere uma função baseada em comparações que faz o seguinte: dado um vetor v[1..n] de inteiros, devolve um elemento de v que está na metade superior do vetor v, ou seja, devolve um inteiro armazenado em v que é maior ou igual a pelo menos $\lfloor n/2 \rfloor + 1$ elementos de v. Mostre que tal função faz pelo menos $\lfloor n/2 \rfloor$ comparações. **Dica:** Inspire-se na análise vista em aula para o problema de calcular o máximo de um vetor.
- (b) Escreva uma função que recebe um vetor v[1..n] de inteiros e devolve um elemento de v que está na metade superior do vetor v. Sua função deve fazer no máximo $\lfloor n/2 \rfloor$ comparações envolvento elementos do vetor. Justifique sua resposta, ou seja, argumente que sua função dá uma resposta correta e que faz no máximo $\lfloor n/2 \rfloor$ comparações.

2. (Valor: **3,0** pontos)

Escreva uma função que recebe como parâmetros dois inteiros m e n e duas seqüências, $X = x_1, x_2, \ldots, x_m$ e $Z = z_1, z_2, \ldots, z_n$, e devolve o número de ocorrências de Z como **subseqüência** de X. Sua função deve consumir tempo O(mn).

Exemplos:

- (a) Se X = babgbag e Z = bag, sua função deve devolver 5.
- (b) Se X = rabbit e Z = rabbit, sua função deve devolver 3.

Argumente porque sua função produz a resposta correta e mostre que o consumo de tempo é de fato O(mn). Se sua função der a resposta errada para um dos dois exemplo acima, sua nota na questão será zero.

- 3. Considere o problema de dar troco de n centavos usando o menor número possível de moedas. Suponha que as moedas têm valores inteiros.
 - (a) (Valor: 2,0 pontos) Dê um algoritmo guloso para dar troco quando dispomos de moedas de 25, 10, 5 e 1 centavo. Mais precisamente, escreva uma função gulosa que recebe um inteiro não-negativo n e devolve quatro números, c_{25} , c_{10} , c_5 e c_1 , tais que $25c_{25} + 10c_{10} + 5c_5 + c_1 = n$ e $c_{25} + c_{10} + c_5 + c_1$ é mínimo. Sua função deve consumir tempo O(1). Prove que sua função funciona, ou seja, que ela devolve a resposta correta para qualquer n, e argumente que ela de fato consome tempo O(1).
 - (b) (Valor: 1,0 pontos) Suponha que os valores das moedas disponíveis são potências de um inteiro fixo c > 1, ou seja, são c^0 , c^1 , c^2 , ..., c^k para algum $k \ge 1$. Mostre que o algoritmo guloso, generalizado para este caso, sempre produz uma solução ótima para este caso. Dica: Quantas moedas de valor c^i , para $0 \le i < k$, há numa solução ótima?
 - (c) (Valor: 1,0 pontos) Mostre um conjunto de moedas em que o algoritmo guloso não produz a resposta correta necessariamente. Seu conjunto de moedas deve conter a moeda de 1 centavo, de forma que o problema tenha solução para todo valor de n. Exiba, além do conjunto de moedas, um valor de n em que o algoritmo guloso devolve a resposta errada. Diga qual é a resposta correta e qual é a resposta produzida pelo algoritmo guloso para este n.