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Definition of combinatorial scheme

Let {Xh}n>n, be a sequence of random variables. For a wide
class of combinatorial problems the probability generating
function

satisfies asymptotically
Pn(2) = @ V2" (g(2) +en(2)) (N — o),

where his a fixed non-negative integer,
— A= \(n) — oo with n;
— gisindependent of n and is analytic for |z| < n,
where n > 1; g(1) =1 and g(0) # 0O;
— ep(2) satisfies

uniformly for |z| < 7.



Cauchy formula
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Charlier polynomials

The Charlier polynomials Ci(\, m) are defined by formula
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or, equivalently



Orthogonality relations

Jordan in 1926 proved that Charlier polynomials are orthogonal

with respect to Poisson measure e~ Afn, , that is
> AT k!
—\ _
E Ck()‘7 m) C/()\7 m)e m! 5/( /)\k’

m=0

Which means that if a sequence of complex numbers Py, Py, . ..

satisfies condition )
| Pj]

Ze )\)\/

then we can expand
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Suppose we have a generating function

P(z) = i Pnz"

n=0
then
P L
Pmn=e i ZajCj()\, m).
s

is equivalent to

> Pz =N gz -1y
n=0 j=0



P(z) = )& Vf(z).

e’z is a generating function of Poisson distribution.
Therefore if
P(z) ~ eN*=Df(1)

we can expect that
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Parseval identity for Charlier polynomials

> Pnz™ =X Vf(z) = NN " ay(z — 1)"

m=0 n=0

Theorem
Suppose f(z) is analytic in the whole complex plain and

f(2)] < eM12=1 as |z| — oo, then for any A > 2H we have
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Application of the Parseval identity

P(z) = e Vg(2)

Theorem
Suppose g(z) is analytic in the whole complex plane and

9(2)| < A1, (3)

for all z € C with some positive constants A and H. Then
uniformly for all N;n > 0 and A > (2 + ¢)H with e > 0 we have

(2+e)H)NHD/2

<A A(N+2)/2




Theorem
Under the conditions of the previous theorem

o A7 N ((2+6)H)(N+1)/2
ZO 7 Z; G2, ) NS
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foralln,N > 0.



Parseval identity for Charlier polynomials. Integral
form.

Theorem
Suppose f(z) is analytic in the whole complex plain and
f(2)] < eH12=1 as |z| — oo, then for any A > 2H we have
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where

I(r) = 217T / (1 + re)2 at.
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Consequences of the Parseval identity

Suppose
P(z) =Y Pnz".
n=0

(PN = 5 / IP(1 + refye " 2 of.
Theorem

> 1Pl < </ I(P, X \/r/\)e™" dr) (4)

n=0 0
and

1 00 L, 1/2
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for all n > 0 and
m— )2
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Further inequalities

Theorem
If we additionally assume that P(1) = 0, then

00 00 1/2
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(6)
and
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foralln > 0.



Generalized binomial distribution

Suppose
Sp=h+h+ -+, (8)

where the Xj's are independent Bernoulli random variables with

P(j=1)=1-P(} = 0) = p;



Generalized binomial distribution

Suppose
Sp=h+h+ -+, (8)

where the Xj's are independent Bernoulli random variables with

B(h=1)=1-PB(}=0) = p,

Then
S P(Sa=mz"= ] (1+p(z—1)) =e*Vg(2).
0<m<n 1<j<n

We will use notation

A=pi+P2t-ce+ P



Example of application to Poisson approximation

g PitPs+ 4

, and A=pi+po+---+
D1+ Pot -+ pn p1 + P2 Pn

Theorem

Suppose 6 < 1 then the following inequalities hold
o0 _ m 2
> o 1| o < S tap
m=0 e m ( B )




Example of application to Poisson approximation

_PiAPE A pp
Pt +pP2+---+Pn

5 and A:p1—|—p2_|_+pn

Theorem
Suppose 6 < 1 then the following inequalities hold

> |p sn - 2 e
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Example of application to Poisson approximation

g PitPs+ 4
Pt + P2+ +Pn

5 and /\:p1+p2_|_+pn

Theorem
Suppose 6 < 1 then the following inequalities hold
o0 _ m 2
> [P 1| < e
= e m! (1-9)
1 — B AT Ve o 6
22:0 P(Sp=m) — m gﬁiﬁ—ﬁ)sﬂ
m=

Since \/€/2%/2 = 0.582. .. the bound of the above theorem
could be sharper than that of Barbour-Hall inequality if 6 < 0.3
and \ is large enough.



Kolmogorov distance

_ PPt P
pi+p2+--+pn

and A:=p1+p2+---+pPn

Theorem
Whenever 6§ < 1 we have
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where

j<n />n
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Compound poisson distribution

Mg =P+ P8+t Py

Theorem
Suppose 6 < 1/3 then
m [ee--enr] < o[22

‘P(Sn =m)—[2"] |e [ Az—1)— 2 (z— 1)2]

< %9, fBe_yZ(m)
S22V 3 (1-36)5/2




Generalized binomial distribution in combinatorics

Can be used if the discrete random variable X, is Bernoulli
decomposable
Xo=h+ b+l
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discrete random variable X, is a polynomial whose root are real
and negative



Generalized binomial distribution in combinatorics

Can be used if the discrete random variable X, is Bernoulli
decomposable
Xo=h+b+ -+l

This happens if a probability generating function F,(z) of a
discrete random variable X, is a polynomial whose root are real
and negative

Example

» Hypergeometric distribution.
» Number of cycles in a random permutation
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Advantages
» Quick proofs.
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Advantages and disadvantages of this approach

Advantages

» Quick proofs.

» Very accurate explicit constants.

» Non-uniform estimates for distribution functions.
Disadvantage

» The generating function P(z) should be defined on all
complex pane and satisfy condition

P(1 +2) < e7F

for some ).
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Prokhorov’s theorem

Suppose B(n, p)— Bernoulli distribution. If npg — oo then

B(n,p) — N (v/pan, pn)

If np is not very large then

B(n,p) — P(pn)

Prokhorov in 1953 proved

5| ()t )
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Further refinements of Prokhorov’s result

Later Le Cam in 1960 proved that if probabilities p; satisfy
condition maxy¢j<p pj < 1/4 we have
_>\ )\/ )\2

<8—.
| S8

drv(Sn, P(N)) = 5 Z

j>0

Kerstan in 1964 later sharpened the constant in Le Cam’s
inequalities proving that whenever max;¢j<,p; < 1/4 we have

Ory(Sn, P(V)) < 1.05°2



Barbour-Hall inequality

Finally Barbour and Hall 1984 applying Stein-Chen’s method
established their famous inequality

N
e -2
j>0
where as before
A2



Let us denote

A (L(Sn). Po) = 3 3

Theorem
Suppose 6 := 32 = o(1) and Ay — oo then

1—a

(@) s N 1 1
dry (£(Sn), Po(A)) = 2T (2n )0 (J( )(6) + O (W wil

where J(®)(0) is the is an explicitly defined function.



Depoissonization

—zzgm m

If G(z) is analytic in circle |z — n| < n+ e where ¢ > 0 then

How close is G(n) to g,?



Inequality estimating closeness of de-Poissonization

E\Q

Theorem

. ‘ ' 1/2
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Inequality estimating closeness of de-Poissonization

B\Q

Theorem

-3 2

j=0

1/2
e () 2¢f ,
;) <c(n)(z G (n)j.!(/+1)n’)
/

i=k+1

Example

Suppose gn is the mean value of number of steps in exhaustive
search algorithm that is needed to find a maximum
independent set in a random graph

G(z)=G(pz) + e % with p<1



Integral form of depoissonization inequality

3\“’

Theorem

90— G(n)]| < c(n) ( /0 e [ 16(n+ e vim) - Gl ot dr>1/2



Integral form of depoissonization inequality

3\“’

Theorem

00 T 1/2
lgn—G(n)| < ¢(n) ( /0 e’ | |G(n + €'\/rn) — G(n)[? dtdr)

here
as n— oo



Comparison with the results of Jacket and
Spankowsky

This form of the depoissonization inequality is consistent with a
general theorem of Jacket and Spankowsky of 1998.

Theorem (basic depoissonization lemma)
Iffor|argz| <6 >0
G(2)| < |z

and for |arg z| > 6
|G(2)e”| < exp(alz|)

then
gn = G(n) + O(n"~1/2)



Generalization of the de-Poissonization inequality

2y Inm
m!
m=0
Theorem
K
Z i(n, n)
j=0
2
%) T k G(/)
< ¢(n) / re"/ G(n+e"Vrn) =) ”f) dt dr
0 _
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Generalizations

Suppose
Z Kz* = (p+29)"9(2)

where p+qg =1 and0<p< 1.
Similar approach can be used applying Parseval identity for
Kravchuk polynomials.
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Generalizations

Suppose

fo = (p+29)"9(2)

wherep+q:1and0<p<1.

Similar approach can be used applying Parseval identity for
Kravchuk polynomials.

This can be useful for

» analyzing the distribution of the digit sum function

» approximation of generalized binomial distribution by
simple binomial distribution
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