Analysis of hierarchical metric-tree indexing schemes

for similarity search in high-dimensional datasets

Vladimir Pestov

vpest283@uottawa.ca

http://aix1.uottawa.ca/~vpest283

Department of Mathematics and Statistics
University of Ottawa

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

• Ω is the domain,

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

- Ω is the domain,
- $X \subset \Omega$ finite subset (*dataset*, or *instance*), and

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

- Ω is the domain,
- $X \subset \Omega$ finite subset (*dataset*, or *instance*), and
- $Q \subseteq 2^{\Omega}$ is the set of *queries*.

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

- Ω is the domain,
- $X \subset \Omega$ finite subset (*dataset*, or *instance*), and
- $Q \subseteq 2^{\Omega}$ is the set of *queries*.

Answering a query $Q \in \mathcal{Q}$

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

- ullet Ω is the domain,
- $X \subset \Omega$ finite subset (*dataset*, or *instance*), and
- $Q \subseteq 2^{\Omega}$ is the set of *queries*.

Answering a query $Q \in \mathcal{Q}$ is listing all $x \in X \cap Q$.

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

- Ω is the domain,
- $X \subset \Omega$ finite subset (*dataset*, or *instance*), and
- $Q \subseteq 2^{\Omega}$ is the set of *queries*.

Answering a query $Q \in \mathcal{Q}$ is listing all $x \in X \cap Q$.

A (dis)similarity measure $s: \Omega \times \Omega \to \mathbf{R}$,

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

- Ω is the domain,
- $X \subset \Omega$ finite subset (*dataset*, or *instance*), and
- $Q \subseteq 2^{\Omega}$ is the set of *queries*.

Answering a query $Q \in \mathcal{Q}$ is listing all $x \in X \cap Q$.

A (dis)similarity measure $s: \Omega \times \Omega \to \mathbf{R}$, e.g. a metric, or a pseudometric.

Workload: $W = (\Omega, X, \mathcal{Q})$, where:

- Ω is the domain,
- $X \subset \Omega$ finite subset (*dataset*, or *instance*), and
- $Q \subseteq 2^{\Omega}$ is the set of *queries*.

Answering a query $Q \in \mathcal{Q}$ is listing all $x \in X \cap Q$.

A (dis)similarity measure $s: \Omega \times \Omega \to \mathbf{R}$, e.g. a metric, or a pseudometric.

A range similarity query centred at $\omega \in \Omega$:

$$Q = \{ x \in \Omega \colon s(\omega, x) < \varepsilon \}$$

Similarity workloads

Similarity workloads

• k-nearest neighbours (k-NN) query centred at $x^* \in \Omega$, where $k \in \mathbb{N}$.

• $\Omega = \text{strings of length } m = 10 \text{ from the alphabet } \Sigma \text{ of 20}$ standard amino acids: $\Omega = \Sigma^{10}$.

- $\Omega = \text{strings of length } m = 10 \text{ from the alphabet } \Sigma \text{ of 20}$ standard amino acids: $\Omega = \Sigma^{10}$.
- ▶ X = all peptide fragments of length 10 in the SwissProt database (as of 19-Oct-2002). |X| = 23,817,598.

- $\Omega = \text{strings of length } m = 10 \text{ from the alphabet } \Sigma \text{ of 20}$ standard amino acids: $\Omega = \Sigma^{10}$.
- X = all peptide fragments of length 10 in the SwissProt database (as of 19-Oct-2002). |X| = 23,817,598.
- Similarity measure given by the most common scoring matrix in sequence comparison, BLOSUM62, by $s(a,b) = \sum_{i=1}^{m} s(a_i,b_i)$ (the ungapped score).

- $\Omega = \text{strings of length } m = 10 \text{ from the alphabet } \Sigma \text{ of 20}$ standard amino acids: $\Omega = \Sigma^{10}$.
- X = all peptide fragments of length 10 in the SwissProt database (as of 19-Oct-2002). |X| = 23,817,598.
- Similarity measure given by the most common scoring matrix in sequence comparison, BLOSUM62, by $s(a,b) = \sum_{i=1}^{m} s(a_i,b_i)$ (the *ungapped* score).
- Converted into quasi-metric d(a,b) = s(a,a) s(a,b), generating the same set of queries (range and k-NN).

(joint with A. Stojmirović)

• Inner workload if $X = \Omega$,

- Inner workload if $X = \Omega$,
- Outer workload if $|X| \ll |\Omega|$.

- Inner workload if $X = \Omega$,
- Outer workload if $|X| \ll |\Omega|$.

Fragment example: outer,

$$|X|/|\Omega| = 23,817,598/20^{10} \approx 0.0000023$$

- Inner workload if $X = \Omega$,
- Outer workload if $|X| \ll |\Omega|$.

Fragment example: outer,

$$|X|/|\Omega| = 23,817,598/20^{10} \approx 0.0000023$$

Most points $\omega \in \Omega$ have NN $x \in X$ within $\varepsilon = 25$ (high biological relevance).

A sequence of refining partitions of the domain:

A sequence of refining partitions of the domain:

A sequence of refining partitions of the domain:

Space O(n).

A sequence of refining partitions of the domain:

Space O(n).

To process a range query $\mathcal{B}_{\varepsilon}(\omega)$, we traverse the tree all the way down to the leaf level.

A sequence of refining partitions of the domain:

Space O(n).

To process a range query $\mathcal{B}_{\varepsilon}(\omega)$, we traverse the tree all the way down to the leaf level.

What happens in each node?

• If $\mathcal{B}_{\varepsilon}(\omega) \cap B = \emptyset$, the sub-tree descending from the node B can be pruned:

• If $\mathcal{B}_{\varepsilon}(\omega) \cap B = \emptyset$, the sub-tree descending from the node B can be pruned:

• If $\mathcal{B}_{\varepsilon}(\omega) \cap B = \emptyset$, the sub-tree descending from the node B can be pruned:

that is, if it can be certified that

$$\omega \notin B_{\varepsilon} = \{x \in \Omega \colon d(x,B) < \varepsilon\}.$$

• If $\mathcal{B}_{\varepsilon}(\omega) \cap B = \emptyset$, the sub-tree descending from the node B can be pruned:

that is, if it can be certified that $\omega \notin B_{\varepsilon} = \{x \in \Omega \colon d(x,B) < \varepsilon\}.$

Otherwise the search branches out.

• If $\mathcal{B}_{\varepsilon}(\omega) \cap B = \emptyset$, the sub-tree descending from the node B can be pruned:

that is, if it can be certified that $\omega \notin B_{\varepsilon} = \{x \in \Omega \colon d(x,B) < \varepsilon\}.$

Otherwise the search branches out.

How to "certify" that $\mathcal{B}_{\varepsilon}(\omega) \cap B = \emptyset$?

Decision functions

Decision functions

Let $f: \Omega \to \mathbf{R}$ be a 1-Lipschitz function,

$$|f(x) - f(y)| \le d(x, y) \ \forall x, y \in \Omega,$$

Let $f: \Omega \to \mathbf{R}$ be a 1-Lipschitz function,

$$|f(x) - f(y)| \le d(x, y) \ \forall x, y \in \Omega,$$

such that $f \upharpoonright B \leq 0$.

Let $f: \Omega \to \mathbf{R}$ be a 1-Lipschitz function,

$$|f(x) - f(y)| \le d(x, y) \ \forall x, y \in \Omega,$$

such that $f \upharpoonright B \leq 0$. Then $f \upharpoonright B_{\varepsilon} < \varepsilon$,

Let $f: \Omega \to \mathbf{R}$ be a 1-Lipschitz function,

$$|f(x) - f(y)| \le d(x, y) \ \forall x, y \in \Omega,$$

such that $f \upharpoonright B \leq 0$. Then $f \upharpoonright B_{\varepsilon} < \varepsilon$,

Let $f: \Omega \to \mathbf{R}$ be a 1-Lipschitz function,

$$|f(x) - f(y)| \le d(x, y) \ \forall x, y \in \Omega,$$

such that $f \upharpoonright B \leq 0$. Then $f \upharpoonright B_{\varepsilon} < \varepsilon$,

that is,
$$f(\omega) \geq \varepsilon$$

Let $f: \Omega \to \mathbf{R}$ be a 1-Lipschitz function,

$$|f(x) - f(y)| \le d(x, y) \ \forall x, y \in \Omega,$$

such that $f \upharpoonright B \leq 0$. Then $f \upharpoonright B_{\varepsilon} < \varepsilon$,

that is, $|f(\omega) \geq \varepsilon|$ is a certificate that $|\mathcal{B}_{\varepsilon}(\omega) \cap B = \emptyset|$

$$\mathcal{B}_{\varepsilon}(\omega) \cap B = \emptyset$$

Metric trees

A *metric tree* for a metric similarity workload (Ω, ρ, X) :

- a binary rooted tree T,
- a collection of partially defined 1-Lipschitz functions $f_t \colon B_t \to \mathbf{R}$ for every inner node t (decision functions),
- a collection of bins $B_t \subseteq \Omega$ for every leaf node t, containing pointers to elements $X \cap B_t$,

such that

- $B_{root(T)} = \Omega$,
- \forall inner node t and child nodes t_-, t_+ , $B_t \subseteq B_{t_-} \cup B_{t_+}$.

When processing a range query $\mathcal{B}_{\varepsilon}(\omega)$,

• t_- [t_+] is accessed $\iff f_t(\omega) < \varepsilon$ [resp. $f_t(\omega) > -\varepsilon$].

The best indexing schemes for exact similarity search in high-dimensional *outer datasets* are often (not always!) outperformed by linear scan.

The best indexing schemes for exact similarity search in high-dimensional *outer datasets* are often (not always!) outperformed by linear scan.

* * *

The emphasis has shifted towards approximate similarity search:

The best indexing schemes for exact similarity search in high-dimensional *outer datasets* are often (not always!) outperformed by linear scan.

The emphasis has shifted towards *approximate* similarity search:

• given $\varepsilon > 0$ and $\omega \in \Omega$, return a point that is [with high probability] at a distance $< (1 + \varepsilon) d_{NN}(\omega)$ from ω .

Conjecture.

Conjecture. Let $X \subseteq \{0,1\}^d$ be a dataset with n points, where the Hamming cube is equipped with the Hamming (ℓ^1) distance:

$$d(x,y) = \sharp \{i \colon x_i \neq y_i\}.$$

Conjecture. Let $X \subseteq \{0,1\}^d$ be a dataset with n points, where the Hamming cube is equipped with the Hamming (ℓ^1) distance:

$$d(x,y) = \sharp \{i \colon x_i \neq y_i\}.$$

Suppose $d = n^{o(1)}$, but $d = \omega(\log n)$.

Conjecture. Let $X \subseteq \{0,1\}^d$ be a dataset with n points, where the Hamming cube is equipped with the Hamming (ℓ^1) distance:

$$d(x,y) = \sharp \{i \colon x_i \neq y_i\}.$$

Suppose $d = n^{o(1)}$, but $d = \omega(\log n)$. Any data structure for exact nearest neighbour search in X,

Conjecture. Let $X \subseteq \{0,1\}^d$ be a dataset with n points, where the Hamming cube is equipped with the Hamming (ℓ^1) distance:

$$d(x,y) = \sharp \{i \colon x_i \neq y_i\}.$$

Suppose $d = n^{o(1)}$, but $d = \omega(\log n)$. Any data structure for exact nearest neighbour search in X, with $d^{O(1)}$ query time,

Conjecture. Let $X \subseteq \{0,1\}^d$ be a dataset with n points, where the Hamming cube is equipped with the Hamming (ℓ^1) distance:

$$d(x,y) = \sharp \{i \colon x_i \neq y_i\}.$$

Suppose $d=n^{o(1)}$, but $d=\omega(\log n)$. Any data structure for exact nearest neighbour search in X, with $d^{O(1)}$ query time, must use $n^{\omega(1)}$ space.

* * *

Conjecture. Let $X \subseteq \{0,1\}^d$ be a dataset with n points, where the Hamming cube is equipped with the Hamming (ℓ^1) distance:

$$d(x,y) = \sharp \{i \colon x_i \neq y_i\}.$$

Suppose $d=n^{o(1)}$, but $d=\omega(\log n)$. Any data structure for exact nearest neighbour search in X, with $d^{O(1)}$ query time, must use $n^{\omega(1)}$ space.

The *cell probe model*: $\Omega(d/\log n)$ lower bound (Barkol–Rabani, 2000).

The phenomenon of concentration of measure on highdimensional structures ("Geometric LLN"):

The phenomenon of concentration of measure on high-dimensional structures ("Geometric LLN"):

for a typical "high-dimensional" structure Ω , if A is a subset containing at least half of all points, then the measure of the ε -neighbourhood A_{ε} of A is overwhelmingly close to 1 already for small $\varepsilon > 0$.

The phenomenon of concentration of measure on high-dimensional structures ("Geometric LLN"):

for a typical "high-dimensional" structure Ω , if A is a subset containing at least half of all points, then the measure of the ε -neighbourhood A_{ε} of A is overwhelmingly close to 1 already for small $\varepsilon > 0$.

Let $\Omega = (\Omega, d, \mu)$ be a metric space with measure.

Let $\Omega = (\Omega, d, \mu)$ be a metric space with measure. The concentration function of Ω :

$$\alpha(\varepsilon) = \begin{cases} \frac{1}{2}, & \text{if } \varepsilon = 0, \\ 1 - \min\left\{\mu_{\sharp}\left(A_{\varepsilon}\right) : A \subseteq \Omega, \ \mu_{\sharp}(A) \ge \frac{1}{2}\right\}, & \text{if } \varepsilon > 0. \end{cases}$$

Let $\Omega = (\Omega, d, \mu)$ be a metric space with measure. The concentration function of Ω :

$$\alpha(\varepsilon) = \begin{cases} \frac{1}{2}, & \text{if } \varepsilon = 0, \\ 1 - \min\left\{\mu_{\sharp}\left(A_{\varepsilon}\right) : A \subseteq \Omega, \ \mu_{\sharp}(A) \ge \frac{1}{2}\right\}, & \text{if } \varepsilon > 0. \end{cases}$$

For $\Omega = \Sigma^n$, the Hamming cube (normalized distance + unif. measure):

$$\alpha_{\Sigma^n}(\varepsilon) \le e^{-2\varepsilon^2 n}$$

Let $\Omega = (\Omega, d, \mu)$ be a metric space with measure.

The concentration function of Ω :

$$\alpha(\varepsilon) = \begin{cases} \frac{1}{2}, & \text{if } \varepsilon = 0, \\ 1 - \min\left\{\mu_{\sharp}(A_{\varepsilon}) : A \subseteq \Omega, \ \mu_{\sharp}(A) \ge \frac{1}{2}\right\}, & \text{if } \varepsilon > 0. \end{cases}$$

For $\Omega = \Sigma^n$, the Hamming cube (normalized distance + unif. measure):

$$\alpha_{\Sigma^n}(\varepsilon) \le e^{-2\varepsilon^2 n}$$

Gaussian estimates are typical

(Euclidean spheres \mathbb{S}^n , cubes \mathbb{I}^n , ...)

Example: the Hamming cube

Concentration function $\alpha(\Sigma^{101},\varepsilon)$ versus Chernoff bound

Effects of concentration on branching

Effects of concentration on branching

For all query points $\omega \in C$ except a set of measure

$$\leq 2\alpha(C,\varepsilon),$$

the search algorithm branches out at the node C.

Search radius

• $\varepsilon_{NN}(\omega)$ is a 1-Lipschitz function, so concentrates near the median value, ε_M ;

•
$$\varepsilon_M \to \mathbb{E}_{\mu \otimes \mu} d(x,y) = O(1)$$
.

Example: 1000 pts $\sim [0,1]^{10}$, the ℓ^2 - ε_{NN} :

$$\varepsilon_{M} = 0.69419$$

$$\mathbb{E}d(x,y) = 1.2765$$
.

Suppose datapoints are distributed according to $\mu \in P(\Omega)$...

Suppose datapoints are distributed according to $\mu \in P(\Omega)$... as well as query points.

Suppose datapoints are distributed according to $\mu \in P(\Omega)$... as well as query points.

A balanced metric tree of depth $O(\log n)$, with O(n) bins of roughly equal size (μ -measure).

Suppose datapoints are distributed according to $\mu \in P(\Omega)$... as well as query points.

A balanced metric tree of depth $O(\log n)$, with O(n) bins of roughly equal size (μ -measure).

in 1/2 the cases, $\varepsilon_{NN} \geq \varepsilon_M = O(1)$, the median NN dist.

Suppose datapoints are distributed according to $\mu \in P(\Omega)$... as well as query points.

A balanced metric tree of depth $O(\log n)$, with O(n) bins of roughly equal size (μ -measure).

in 1/2 the cases, $\varepsilon_{NN} \ge \varepsilon_M = O(1)$, the median NN dist. For every element A of level t partition,

$$\alpha(A, \varepsilon_M) \le 2\mu(A)^{-1}\alpha(\Omega, \varepsilon_M/2) = O(2^t)e^{-O(1)\varepsilon_M^2 d}.$$

Suppose datapoints are distributed according to $\mu \in P(\Omega)$... as well as query points.

A balanced metric tree of depth $O(\log n)$, with O(n) bins of roughly equal size (μ -measure).

in 1/2 the cases, $\varepsilon_{NN} \ge \varepsilon_M = O(1)$, the median NN dist. For every element A of level t partition,

$$\alpha(A, \varepsilon_M) \le 2\mu(A)^{-1}\alpha(\Omega, \varepsilon_M/2) = O(2^t)e^{-O(1)\varepsilon_M^2}d$$

 \rightsquigarrow branching at every node occurs for all ω except

Suppose datapoints are distributed according to $\mu \in P(\Omega)$... as well as query points.

A balanced metric tree of depth $O(\log n)$, with O(n) bins of roughly equal size (μ -measure).

in 1/2 the cases, $\varepsilon_{NN} \ge \varepsilon_M = O(1)$, the median NN dist. For every element A of level t partition,

$$\alpha(A, \varepsilon_M) \le 2\mu(A)^{-1}\alpha(\Omega, \varepsilon_M/2) = O(2^t)e^{-O(1)\varepsilon_M^2 d}$$
.

 \leadsto branching at every node occurs for all ω except

$$\sharp(\mathsf{nodes}) \times 2\sup_{A} \alpha(A,\varepsilon) = O(n^2)e^{-O(1)d} = o(1),$$

because $d = \omega(\log n)$, $\leadsto e^{-O(1)d}$ is superpoly(n).

A dataset X is modeled by a sequence of i.i.d. r.v. $X_i \sim \mu$.

A dataset X is modeled by a sequence of i.i.d. r.v. $X_i \sim \mu$. Implicit assumption: empirical measure $\mu_n(A) = \frac{|A|}{n} \approx \mu(A)$.

A dataset X is modeled by a sequence of i.i.d. r.v. $X_i \sim \mu$. Implicit assumption: empirical measure $\mu_n(A) = \frac{|A|}{n} \approx \mu(A)$. But the scheme is chosen *after* seeing an instance X!

A dataset X is modeled by a sequence of i.i.d. r.v. $X_i \sim \mu$. Implicit assumption: empirical measure $\mu_n(A) = \frac{|A|}{n} \approx \mu(A)$. But the scheme is chosen *after* seeing an instance X!

How much can be said of concentration in (Ω, μ_n) ?

Let \mathscr{A} be a family of subsets of Ω (a *concept class*). $B\subseteq \Omega$ is *shattered* by \mathscr{A} if for each $C\subseteq B$ there is $A\in \mathscr{A}$ such that

$$A \cap B = C$$
.

Let \mathscr{A} be a family of subsets of Ω (a *concept class*). $B\subseteq \Omega$ is *shattered* by \mathscr{A} if for each $C\subseteq B$ there is $A\in \mathscr{A}$ such that

$$A \cap B = C$$
.

Let \mathscr{A} be a family of subsets of Ω (a *concept class*). $B\subseteq \Omega$ is *shattered* by \mathscr{A} if for each $C\subseteq B$ there is $A\in \mathscr{A}$ such that

$$A \cap B = C$$
.

The Vapnik–Chervonenkis dimension VC-dim (\mathscr{A}) of \mathscr{A} is the largest cardinality of a set $B \subseteq \Omega$ shattered by \mathscr{A} .

Let $\mathscr{A} \subseteq 2^{\Omega}$ be a concept class of finite VC dimension, d.

Let $\mathscr{A} \subseteq 2^{\Omega}$ be a concept class of finite VC dimension, d. Then for all $\epsilon, \delta > 0$ and every probability measure μ on Ω ,

Let $\mathscr{A}\subseteq 2^\Omega$ be a concept class of finite VC dimension, d. Then for all $\epsilon,\delta>0$ and every probability measure μ on Ω , if n datapoints in X are drawn randomly and independently according to μ , then with confidence $1-\delta$

$$\forall A \in \mathscr{A}, \quad \left| \mu(A) - \frac{X \cap A}{n} \right| < \epsilon,$$

Let $\mathscr{A}\subseteq 2^\Omega$ be a concept class of finite VC dimension, d. Then for all $\epsilon,\delta>0$ and every probability measure μ on Ω , if n datapoints in X are drawn randomly and independently according to μ , then with confidence $1-\delta$

$$\forall A \in \mathscr{A}, \quad \left| \mu(A) - \frac{X \cap A}{n} \right| < \epsilon,$$

provided n is large enough:

$$n \ge \frac{128}{\varepsilon^2} \left(d \log \left(\frac{2e^2}{\varepsilon} \log \frac{2e}{\varepsilon} \right) + \log \frac{8}{\delta} \right).$$

Let $\delta > 0$, and let γ be a collection of subsets $A \subseteq \Omega$ of measure $\mu(A) \le \alpha(\delta) \le \frac{1}{4}$ each, satisfying $\mu(\cup \gamma) \ge 1/2$.

Let $\delta>0$, and let γ be a collection of subsets $A\subseteq\Omega$ of measure $\mu(A)\leq\alpha(\delta)\leq\frac{1}{4}$ each, satisfying $\mu(\cup\gamma)\geq1/2$. Then the 2δ -neighbourhood of every point $\omega\in\Omega$, apart from a set of measure at most $\frac{1}{2}\alpha(\delta)^{\frac{1}{2}}$, meets at least $\lceil\frac{1}{2}\alpha(\delta)^{-\frac{1}{2}}\rceil$ elements of γ .

* * *

Let $\delta>0$, and let γ be a collection of subsets $A\subseteq\Omega$ of measure $\mu(A)\leq\alpha(\delta)\leq\frac{1}{4}$ each, satisfying $\mu(\cup\gamma)\geq1/2$. Then the 2δ -neighbourhood of every point $\omega\in\Omega$, apart from a set of measure at most $\frac{1}{2}\alpha(\delta)^{\frac{1}{2}}$, meets at least $\lceil\frac{1}{2}\alpha(\delta)^{-\frac{1}{2}}\rceil$ elements of γ .

If we can now guarantee that the bins are not too large, we get a lower bound on the number of bin accesses.

Let \mathscr{F} be a class of 1-Lipschitz functions used for constructing a metric tree of a particular type.

Let \mathscr{F} be a class of 1-Lipschitz functions used for constructing a metric tree of a particular type.

Let \mathscr{A} be the concept class of all solution sets to inequalities

$$f \gtrsim a, \ f \in \mathcal{F}, \ a \in \mathbf{R}.$$

Let \mathscr{F} be a class of 1-Lipschitz functions used for constructing a metric tree of a particular type.

Let \mathscr{A} be the concept class of all solution sets to inequalities

$$f \gtrsim a, \ f \in \mathcal{F}, \ a \in \mathbf{R}.$$

Suppose

$$p = \mathsf{VC}\text{-dim}\left(\mathscr{A}\right) < \infty$$

(pseudodimension of \mathscr{F} in the sense of Vapnik).

Let \mathscr{F} be a class of 1-Lipschitz functions used for constructing a metric tree of a particular type.

Let \mathscr{A} be the concept class of all solution sets to inequalities

$$f \gtrsim a, \ f \in \mathcal{F}, \ a \in \mathbf{R}.$$

Suppose

$$p = VC\text{-dim}(\mathscr{A}) < \infty$$

(pseudodimension of \mathscr{F} in the sense of Vapnik).

Denote \mathscr{B} the class of all bins of all possible metric trees of depth $\leq h$ built using \mathscr{F} . Then

$$VC$$
-dim $(\mathscr{B}) \le 2hp \log(hp) = O(hp)$.

thm. Let \mathscr{F} be a class of 1-Lipschitz functions on $\{0,1\}^d$ with VC dimension of the class of sets given by inequalities $f \geq a$ being $\operatorname{poly}(d)$.

thm. Let \mathscr{F} be a class of 1-Lipschitz functions on $\{0,1\}^d$ with VC dimension of the class of sets given by inequalities $f \geq a$ being $\operatorname{poly}(d)$.

With probability approaching 1, every metric tree indexing scheme for a random sample X of $\{0,1\}^d$ containing n points, where $d=n^{o(1)}$ and $d=\omega(\log n)$,

thm. Let \mathscr{F} be a class of 1-Lipschitz functions on $\{0,1\}^d$ with VC dimension of the class of sets given by inequalities $f \geq a$ being $\operatorname{poly}(d)$.

With probability approaching 1, every metric tree indexing scheme for a random sample X of $\{0,1\}^d$ containing n points, where $d=n^{o(1)}$ and $d=\omega(\log n)$, will have the worst-case performance $d^{\omega(1)}$.

thm. Let \mathscr{F} be a class of 1-Lipschitz functions on $\{0,1\}^d$ with VC dimension of the class of sets given by inequalities $f \geq a$ being $\operatorname{poly}(d)$.

With probability approaching 1, every metric tree indexing scheme for a random sample X of $\{0,1\}^d$ containing n points, where $d=n^{o(1)}$ and $d=\omega(\log n)$, will have the worst-case performance $d^{\omega(1)}$.

 \lhd Can suppose every bin contains $\operatorname{poly}(d)$ datapoints, and the tree depth is $\operatorname{poly}(d)$. The VC-dim of all possible bins is $\operatorname{poly}(d) = o(n)$. If $\epsilon = n^{1/2-\gamma}$, by learning estimates the measure of each bin of the scheme is $O(n^{-1/2+\gamma})$, so there

will be $\Omega(n^{1/4-\gamma})=d^{\omega(1)}$ bin accesses. \triangleright

Example: vp-tree

The *vp-tree* (Yianilos) uses decision functions of the form

$$f_t(\omega) = (1/2)(\rho(x_{t_+}, \omega) - \rho(x_{t_-}, \omega)),$$

where

- t_{\pm} are two children of t and
- x_{t+} are the *vantage points* for the node t.

If $\Omega = \mathbf{R}^d$, VC dimension is d+1.

Example: M-tree

The *M-tree* (Ciaccia, Patella, Zezula) employs decision functions

$$f_t(\omega) = \rho(x_t, \omega) - \sup_{\tau \in B_t} \rho(x_t, \tau),$$

where

- $m{P}$ B_t is a block corresponding to the node t,
- \bullet x_t is a datapoint chosen for each node t, and
- suprema on the r.h.s. are precomputed and stored.

If $\Omega = \mathbb{R}^d$, VC-dim is d+1; for $\Omega = \{0,1\}^d$, it is O(d).