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General setting

fWorkload: W =(Q,X,Q), where:
#® () Is the domain,
#® X C O finite subset (dataset, or instance), and

® O C 2 s the set of queries.
Answering aquery Q € @ islistingallx € X N Q.

A (dis)similarity measure s: Q) x 2 — R,
e.g. a metric, or a pseudometric.

A range similarity query centred at w € €0:

Q={re: s(wx)<e}
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Similarity wor kloads
- -

W = (Q,d,X,{B:(z)})

® k-nearest neighbours (k-NN) query centred at =* € (),
where k£ € N.
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#® () = strings of length m = 10 from the alphabet X of 20
standard amino acids: = 219,
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#® () = strings of length m = 10 from the alphabet X of 20
standard amino acids: = 219,

o X = all peptide fragments of length 10 in the SwissProt
database (as of 19-Oct-2002). | X| = 23,817, 598.
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#® () = strings of length m = 10 from the alphabet X of 20
standard amino acids: = 219,

o X = all peptide fragments of length 10 in the SwissProt
database (as of 19-Oct-2002). | X| = 23,817, 598.

# Similarity measure given by the most common scoring
matrix in sequence comparison, BLOSUMG62, by
s(a,b) = >0, s(ai, b)) (the ungapped score).
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Example

=

(2 = strings of length m = 10 from the alphabet > of 20
standard amino acids: = 219,

X = all peptide fragments of length 10 in the SwissProt
database (as of 19-Oct-2002). | X| = 23,817, 598.

Similarity measure given by the most common scoring
matrix in sequence comparison, BLOSUMG62, by
s(a,b) = >0, s(ai, b)) (the ungapped score).

Converted into quasi-metric d(a, b) = s(a,a) — s(a, b),
generating the same set of queries (range and k-NN).

(joint with A. Stojmirovic)
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#® |nner workload if X = Q,
# Outer workload if | X| < [9].
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| Nner vs outer

-

#® |nner workload if X = Q,
# Outer workload if | X| < [9].

Fragment example: outer,

X1/ = 23,817,598/20" ~ 0.0000023
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| Nner vs outer

-

#® |nner workload if X = Q,
# Outer workload if | X| < [9].

Fragment example: outer,

X1/ = 23,817,598/20" ~ 0.0000023

Most points w € €2 have NN = € X within ¢ = 25 (high biological relevance).
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Hierarchical treeindex structures
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A seguence of refining partitions of the domain:
o
. / - ’
AN
R I W
\/\ @ T .
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S~ .
Space O(n).

To process a range query B.(w), we traverse the tree all the
way down to the leaf level.
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Hierarchical treeindex structures

fA sequence of refining partitions of the domain: T
I
SR
NN
B
S .
Space O(n).

To process a range query B.(w), we traverse the tree all the
way down to the leaf level.

LWhat happens in each node? J
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Pruning
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o If B.(w) N B =0, the sub-tree descending from the node B
can be pruned:
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o If B.(w) N B =0, the sub-tree descending from the node B
can be pruned:

that Is, If it can be certified that
wé& B:={xeQ:d(z,B) <¢e}.

e Otherwise the search branches out.
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Pruning

f. If B.(w) N B = (), the sub-tree descending from the node BT
can be pruned:

that Is, If it can be certified that
wé& B:={xeQ:d(z,B) <¢e}.

e Otherwise the search branches out.
How to “certify” that B.(w) N B = ()?

. -
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Decision functions

Let f: 2 — R be a 1-Lipschitz function,

flx) = fy)| <d(z,y) Vz,y € Q,
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Decision functions
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Let f: 2 — R be a 1-Lipschitz function,

f(z) = f(y)] <dz,y) Yo,y €,
suchthat f | B<0. Then f | B: <¢,
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Decision functions

Let f: 2 — R be a 1-Lipschitz function,

flx) = fy)| <d(z,y) Vz,y € Q,
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suchthat f | B <O0.

that is,

o

Let f: Q — R

Decision functions

pe a 1-Lipschitz function,

flx) = fy)| <d(z,y) Vz,y € Q,

| IS a certificate that
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Metric trees

-

A metric tree for a metric similarity workload (€2, p, X): T

# a binary rooted tree 7,

# a collection of partially defined 1-Lipschitz functions
f+: By — R for every inner node ¢ (decision functions),

# a collection of bins B; C Q) for every leaf node ¢,
containing pointers to elements X N B;,

such that

® Bt = {2

® Vinner node ¢t and child nodes ¢t_,¢,, By C By U B, .
When processing a range query B.(w),

o

® {_[ty]isaccessed < fi(w) < e [resp. fi(w) > —¢l. B
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What happensin practice?

-

The best indexing schemes for exact similarity search in
high-dimensional outer datasets are often (not always!)
outperformed by linear scan.

=

X %k >k

o -
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The best indexing schemes for exact similarity search in
high-dimensional outer datasets are often (not always!)
outperformed by linear scan.

=

X %k >k

The emphasis has shifted towards approximate similarity
search:

o -
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What happensin practice?

-

The best indexing schemes for exact similarity search in
high-dimensional outer datasets are often (not always!)
outperformed by linear scan.

=

X %k >k

The emphasis has shifted towards approximate similarity
search:

#® given e > 0 and w € (), return a point that is [with high
probability] at a distance < (1 + ¢)dyn(w) from w.
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Conjecture.
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The curse of dimensionality conjecture

Conjecture. Let X C {0,1}¢ be a dataset with »n points,
where the Hamming cube is equipped with the Hamming

(¢1) distance:

d(z,y) = t{i: x; # yi}.
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Conjecture. Let X C {0,1}¢ be a dataset with »n points,
where the Hamming cube is equipped with the Hamming

(¢1) distance:

d(z,y) = t{i: zi # yi-
Suppose d = n°V, but d = w(logn).
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(¢1) distance:

d(z,y) = t{i: x; # yi}.

Suppose d = n°V, but d = w(logn). Any data structure for
exact nearest neighbour search in X, with d°1) query
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The curse of dimensionality conjecture

Conjecture. Let X C {0,1}¢ be a dataset with »n points,
where the Hamming cube is equipped with the Hamming

(¢1) distance:

d(z,y) = t{i: x; # yi}.

Suppose d = n°V, but d = w(logn). Any data structure for
exact nearest neighbour search in X, with d°1) query
time, must use n*“(}) space.

X %k >k

The cell probe model: €2(d/logn) lower bound
(Barkol-Rabani, 2000).

o -
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Concentration of measure

. .

The phenomenon of concentration of measure on high-

dimensional structures (“Geometric LLN”):
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Concentration of measure

-

The phenomenon of concentration of measure on
high-dimensional structures (“Geometric LLN"):

for a typical “high-dimensional” structure Q, if Ais a
subset containing at least half of all points, then the
measure of the s-neighbourhood A, of A is
overwhelmingly close to 1 already for small ¢ > 0.

=

o -

Metric tree indexing schemes for similarity search Vladimir Pestov, University of Ottawa AofA 2008, Maresias, SP, Brazil — p.12/2!



Concentration of measure

fThe phenomenon of concentration of measure on T
high-dimensional structures (“Geometric LLN"):

for a typical “high-dimensional” structure Q, if Ais a
subset containing at least half of all points, then the
measure of the s-neighbourhood A, of A is
overwhelmingly close to 1 already for small ¢ > 0.

A contains
at least half of

al points

a(Q,€)
boundsp(Q\ A ¢)
from above
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Concentration function

-

Let QO = (2,d, u) be a metric space with measure.

=
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Concentration function

=

fLet )= (Q,d, 1) be a metric space with measure.
The concentration function of Q:

3 if e =0
ale) =4 2’ e="5
1 —min {us (A:) : ACQ, w(4) >3}, ife>0.
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Concentration function

=

fLet )= (Q,d, 1) be a metric space with measure.
The concentration function of Q:

3 if e =0
ale) =4 2’ e="5
1 —min {us (A:) : ACQ, w(4) >3}, ife>0.

For 2 = X", the Hamming cube (normalized distance +
unif. measure):

ayn(e) < g2
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Concentration function

=

fLet )= (Q,d, 1) be a metric space with measure.
The concentration function of Q:

3 if e =0
ale) =4 2’ e="5
1 —min {us (A:) : ACQ, w(4) >3}, ife>0.

For 2 = X", the Hamming cube (normalized distance +
unif. measure):

ayn(e) < g2

Gaussian estimates are typical

L(Euclidean spheres S”, cubes I, ...) J
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Example: the Hamming cube

- .

Concentration function versus Chernoff's bound, n = 101

1 —
I I Concentration function  ©
Chernoff bound ------
08
06
I
(T
04 F
([T
(T
02 | (T
0 0.05 0.1 0.15 0.2

Concentration function o(X!%!, ¢) versus Chernoff bound
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Effects of concentration on branching
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Effects of concentration on branching
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Effects of concentration on branching

- .

For all query points w € C' except a set of measure

< 2a(C¢),

Lthe search algorithm branches out at the node C. J
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Search radius

- .

® cyy(w)Is a l-Lipschitz function, so concentrates near
the median value, ,;;

® ¢y — Egud(z,y) = O(1).

Example: 1000 pts ~ [0, 1], the ¢?-cyp:
,/// |
o
I /”/
L&?M = 0.69419 Ed(x,y) = 1.2765. J
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A naive average O(n) lower bound
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A naive average O(n) lower bound

-

Suppose datapoints are distributed according to i € P(12)...
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...as well as query points.
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A naive average O(n) lower bound

-

Suppose datapoints are distributed according to i € P(12)...
...as well as query points.

A balanced metric tree of depth O(logn), with O(n) bins of
roughly equal size (u-measure).

=

o -
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A naive average O(n) lower bound

-

Suppose datapoints are distributed according to i € P(12)...
...as well as query points.

A balanced metric tree of depth O(logn), with O(n) bins of
roughly equal size (u-measure).

In 1/2 the cases, exyy > ey = O(1), the median NN dist.

=
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A naive average O(n) lower bound

-

Suppose datapoints are distributed according to i € P(Q)...T
...as well as query points.

A balanced metric tree of depth O(logn), with O(n) bins of
roughly equal size (u-measure).

In 1/2 the cases, eyy > ) = O(1), the median NN dist.
For every element A of level ¢ partition,

2

(A enr) < 2u(A) Qe /2) = O(2")e e,

o -
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A naive average O(n) lower bound

-

Suppose datapoints are distributed according to i € P(Q)...T
...as well as query points.

A balanced metric tree of depth O(logn), with O(n) bins of
roughly equal size (u-measure).

In 1/2 the cases, eyy > ) = O(1), the median NN dist.
For every element A of level ¢ partition,

a(A,enr) < 2u(A)Fa(Q, epr/2) = O(2)e OW=u,

~ branching at every node occurs for all w except

o -
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A naive average O(n) lower bound
-

Suppose datapoints are distributed according to i € P(Q)...T
...as well as query points.

A balanced metric tree of depth O(logn), with O(n) bins of
roughly equal size (u-measure).

In 1/2 the cases, eyy > ) = O(1), the median NN dist.
For every element A of level ¢ partition,

a(A,enr) < 2u(A)Fa(Q, epr/2) = O(2)e OW=u,
~» branching at every node occurs for all w except

t(nodes) x 2sup a(A, e) = O(n?)e %M = o(1),
A

- because d = w(logn), ~ e~O(d is superpoly(n). B
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What’swrong?
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What'swrong?
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A dataset X is modeled by a sequence of i.i.d. r.v. X; ~ pu.
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What'swrong?

-

A dataset X is modeled by a sequence of i.i.d. r.v. X; ~ pu.

=

Implicit assumption: empirical measure pu,(A) = % ~ u(A).

o -
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What'swrong?

-

A dataset X is modeled by a sequence of i.i.d. r.v. X; ~ pu.

=

. . .. A
Implicit assumption: empirical measure pu,(A) = % ~ u(A).
But the scheme is chosen after seeing an instance X!

o -
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What'swrong?

A dataset X is modeled by a sequence of i.i.d. r.v. X; ~ pu.
. . .. A

Implicit assumption: empirical measure pu,(A) = % ~ u(A).

But the scheme is chosen after seeing an instance X!
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How much can be said of concentration in (€2, ,,)?
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VC dimension
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VC dimension

-

Let .«7 be a family of subsets of ) (a concept class).
B C Q) i1s shattered by 7 if for each C C B thereis A € &
such that

=

ANnB=C.

o -
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such that
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VC dimension

-

Let .«7 be a family of subsets of ) (a concept class).
B C Q) i1s shattered by 7 if for each C C B thereis A € &
such that

=

ANnB=C.

The Vapnik—Chervonenkis dimension VC-dim (/) of < IS
Lthe largest cardinality of a set B C (2 shattered by 7. J
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Statistical learning bounds
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Statistical learning bounds

-

Let o7 C 2% be a concept class of finite VC dimension, d.

=



Statistical learning bounds

-

Let o7 C 2% be a concept class of finite VC dimension, d.
Then for all ¢, > 0 and every probability measure 1 on €,

=
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Statistical learning bounds

-

Let o7 C 2% be a concept class of finite VC dimension, d.
Then for all ¢, > 0 and every probability measure 1 on €,
If n datapoints in X are drawn randomly and independently
acoording to p, then with confidence 1 — ¢

=

XNA
n

VA€ o, | 1(A) <

o -
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Statistical learning bounds

-

Let o7 C 2% be a concept class of finite VC dimension, d.
Then for all ¢, > 0 and every probability measure 1 on €,
If n datapoints in X are drawn randomly and independently
acoording to p, then with confidence 1 — ¢

=

XNA
n

VA€ o, | 1(A) <

provided n is large enough:

128 2% ¢ 8
n=>-— (dlog| —log— | +log—|.
£ € £ )

o -
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Bin access lemma
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Bin access lemma

-

Let o > 0, and let v be a collection of subsets A C () of
measure u(A) < a(d) < 1 each, satisfying u(Uy) > 1/2.

=

o -
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Bin accesslemma
fLet o > 0, and let v be a collection of subsets A C ) of T
measure u(A) < a(d) < 1 each, satisfying u(Uy) > 1/2.
Then the 26-neighbourhood of every point w € €2, apart from
a set of measure at most 1a(6)z, meets at least [La(5) 2]

elements of ~.
X %k X

o -
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Bin access lemma

L .

et o > 0, and let v be a collection of subsets A C ) of
measure u(A) < a(d) < 1 each, satisfying u(Uy) > 1/2.
Then the 26-neighbourhood of every point w € €2, apart from

a set of measure at most 1a(6)z, meets at least [La(5) 2]

elements of ~.
X %k X

If we can now guarantee that the bins are not too large, we

get a lower bound on the number of bin accesses.

o -
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Bin complexity estimates
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Bin complexity estimates

-

Let .# be a class of 1-Lipschitz functions used for
constructing a metric tree of a particular type.

=

o -
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Bin complexity estimates

-

Let .# be a class of 1-Lipschitz functions used for
constructing a metric tree of a particular type.

Let <7 be the concept class of all solution sets to
iInequalities
fZa, feF, acR.

o -
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Bin complexity estimates

-

Let .# be a class of 1-Lipschitz functions used for
constructing a metric tree of a particular type.

Let <7 be the concept class of all solution sets to
iInequalities
=
fZa fE€F, ac€R

Suppose
p=VC-dim (&) < o0

(pseudodimension of .# In the sense of Vapnik).

o
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Bin complexity estimates

-

Let .# be a class of 1-Lipschitz functions used for
constructing a metric tree of a particular type.

Let <7 be the concept class of all solution sets to
iInequalities

=

fZa, feF, acR.

Suppose
p=VC-dim (&) < o0
(pseudodimension of .# In the sense of Vapnik).

Denote &£ the class of all bins of all possible metric trees of
depth < h built using .. Then

VC-dim (£) < 2hplog(hp) = O(hp).

o -
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Rigorous lower bounds
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Rigorous lower bounds

o .

thm. Let .# be a class of 1-Lipschitz functions on {0, 1}¢
with VC dimension of the class of sets given by inequalities

f = a being poly(d).

o -
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Rigorous lower bounds

o .

thm. Let .# be a class of 1-Lipschitz functions on {0, 1}¢
with VC dimension of the class of sets given by inequalities
f = a being poly(d).

With probability approaching 1, every metric tree indexing
scheme for a random sample X of {0,1}¢ containing n

points, where d = n°V) and d = w(logn),

o -
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Rigorous lower bounds

o .

thm. Let .# be a class of 1-Lipschitz functions on {0, 1}¢
with VC dimension of the class of sets given by inequalities
f = a being poly(d).

With probability approaching 1, every metric tree indexing
scheme for a random sample X of {0,1}¢ containing n
points, where d = n°V) and d = w(logn), will have the
worst-case performance ¢v).

o -
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Rigorous lower bounds

o .

thm. Let .# be a class of 1-Lipschitz functions on {0, 1}¢
with VC dimension of the class of sets given by inequalities

f = a being poly(d).
With probability approaching 1, every metric tree indexing
scheme for a random sample X of {0,1}¢ containing n

points, where d = n°V) and d = w(logn), will have the
worst-case performance (V).

<4 Can suppose every bin contains poly(d) datapoints, and

the tree depth is poly(d). The VC-dim of all possible bins

is poly(d) = o(n). If e = n'/277, by learning estimates the

measure of each bin of the scheme is O(n~1/2%7), so there
Lwill be Q(n!/4=7) = (M) bin accesses. > o

Metric tree indexing schemes for similarity search Vladimir Pestov, University of Ottawa AofA 2008, Maresias, SP, Brazil — p.23/2!



Example: vp-tree

-

The vp-tree (Yianilos) uses decision functions of the form

ft(w) — (1/2>(/0($t+7w) — ,0(.%5_,&))),

=

where
# (. are two children of ¢t and
® 1, are the vantage points for the node ¢.

If O = R, VC dimension is d + 1.

o -
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Example: M-tree

-

The M-tree (Ciaccia, Patella, Zezula) employs decision
functions

=

fi(w) = p(z¢,w) — sup p(x¢, 7),
TEB;

where

#® B, Is a block corresponding to the node ¢,

# 1, IS a datapoint chosen for each node ¢, and

#® suprema on the r.h.s. are precomputed and stored.

If @ = RY, VC-dimis d + 1; for Q = {0,1}¢, itis O(d).

o -
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