Weak convergence of rescaled discrete objects in combinatorics

Jean-Francois Marckert (LaBRI - Bordeaux)
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O. What are we talking about? - Pictures
|. Random variables, distributions. Characterization, convergence.

[I. Convergence of rescaled paths

= Weak convergence in C[0, 1]. Definition / Characterization.

s Example: Convergence to the Brownian processes.

s byproducts?!

[I1. Convergence of trees... Convergence to continuum random trees
» Convergence of rescaled planar trees

s he Gromov-Hausdorff topology

s Convergences to continuum trees + Examples.

V. Other examples! Maresias, AofA 2008.
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The talk deals with these situations when simulating random combinatorial objects with
size 10%,10°, 10" in a window of fixed size, one sees essentially the same picture



O. What are we talking about? - Pictures
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Questions :

= What sense can we give to this:

— a sequence of (normalized) combinatorial structures converges?

— a sequence of random normalized combinatorial structures converges” ?
= If we are able to prove such a result...:

— What can be deduced?

— What cannot be deduced?
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— a sequence of normalized combinatorial structure converges?

answer: this is a question of topology...
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= What sense can we give to this:

— a sequence of normalized combinatorial structure converges?

answer: this is a question of topology...

— a sequence of random normalized combinatorial structure converges”?
answer: this is a question of weak convergence associated with the topology.
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= What sense can we give to this:

— a sequence of normalized combinatorial structure converges?

answer: this is a question of topology...

— a sequence of random normalized combinatorial structure converges”?
answer: this is a question of weak convergence associated with the topology.
» If we are able to prove such a result...:

What can be deduced?

answer: infinitely many things... but it depends on the topology

What cannot be deduced?

answer: infinitely many things: but it depends on the topology



First - we recall what means convergence in distribution
-in R

- in a Polish space

— Then we treat examples... and see the byproducts



e A distribution ;2 on R is a (positive) measure on (R, B(R)) with total mass 1.
e a random variable X is a function X : (Q, A) — (R, B(R)), measurable.
e distribution of X: the measure p,

u(A)=P(X € A) = P{w, X(w) € A}).
Characterization of the distributions on R
— the way they integrate some classes of functions

FroBU0) = [ f@iduto)

e.g. Continuous bounded functions, Continuous with bounded support

Other characterization: Characteristic function, distribution function x +— F(z) =
P(X <ux)



Convergence of random variables / Convergence in distribution

Convergence in probability

(proba.)

X, X if Ve >0, P(X,— X|>¢)—0.

n

Almost sure convergence

X, % X if P(lim X, = X) = P({w | lim X,(w) = X(w)}) = 1.

X, X1, Xo,... are to be defined on the same probability space €2
In these two cases, this is a convergence of RV.
Example: strong law of large number: if Y; i.i.d. mean m,

X, = Z?:l Yi (as')>

n n

m

—
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Convergence in distribution: DEFINITION:

Xo < X if B(f(X,) = E(f(X))

for any f : R — R bounded, continuous

The variables need not to be defined on the same ()

Other characterizations:

o F,(x) =P(X, <z)— F(x) =P(X < x), for all z where F' is continuous

o &,(t) = E(e"*n) — ®(t) = E(e'™), forall ¢

Example: the central limit theorem: if Y; i.i.d. mean m, variance o € (0, +00)

" (Y —
X, = 2= m) ), oN(0,1)
\/ﬁ n

(Exercice)

JW The sequence (X,) does not converge!
|




to define convergence we need a nice topological space:
— to state the convergence.
— this space must contain the (rescaled) discrete objects and all the

limits
— this space should give access to weak convergence

Nice topological spaces on which everything works like on R are
Polish spaces.




Nice topological spaces on which everything works like on R are
Polish spaces.

Polish space (S, p) :metric + separable + complete

— open balls, topology, Borelians, may be defined as on R
Examples: — R? with the usual distance,

—(C10, 1), 1 loo), d(f, 9) = [1f = glloc

Distribution ; on (S,B(S)): measure with total mass 1.
Random variable: X : (S, B(S),P) — (S’, B(S")) measurable.
Distribution of X, u(A) =P(X € A).

Characterization of measures
— The way they integrate continuous bounded functions. E(f(X)) = [ f(x)du(x)

f continuous in zy means:Ve > 0,3dn > 0, p(x,xo) < n = |f(x) — f(zo)] < e.



Polish space (S, p) :metric + separable + complete

Convergence in probab.:

Ve >0, P(p(X,,X)>¢e)— 0.

Convergence in distribution

E(f(X,)) — E(f(X)), for any continuous bounded function f : S — R

Byproduct : if X, D, X then f(X,) — f(X) forany f:S — S’ continuous




“Are we free to choose the topology we want??”

Yes, but if one takes a ’bad topology’, the convergence will give few
informations



Paths are fundamental objects in combinatorics.

Walks £1, Dyck paths, paths conditioned to stay between some walls, with increments
included in [ C Z.

AN

Convergence of rescaled paths?
In general the only pertinent question is:

does they converge in distribution (after rescaling)?

Here

distribution = distribution on C|0, 1] (up to encoding + normalisation).

Here, we choose C|0, 1] as Polish space to work in... It is natural, no?



How are characterized the distributions on C|0, 1]7

p = Distribution on (C'0,1],]|.||sc) (measure on the Borelians of C|0, 1]):
Let X = (X;,t € |0, 1]) a process, with distribution .

Intuition: a distribution p on C|0, 1] gives weight to the Borelians of C0, 1].

The balls B(f,7) ={g | ||If — 9llcc <7}

Proposition 1 The distribution of X is characterized by the finite dimen-
sional distribution FDD:

i.e. the distribution of (X (t1),..., X(tg)), k>1,t1 < - <t



t, - Distribution on (C|0, 1], ||.||oc) (measure on the Borelians of C'[|0, 1]):

Let X = (X, t € |0,1]) a process, with distribution .

Proposition 2 The distribution of X is characterized by the finite dimen-
sional distribution FDD:

i.e. the distribution of (X (t1),..., X(tg)), k>1,t1 < - <t

Example:
— your prefered discrete model of random paths, (rescaled to fit in [0,1].



How are characterized the convergence in distributions on C|0, 1]7:

Main difference with R:
FDD characterizes the measure...
But: convergence of FDD does not characterized the convergence of distribution:

It (Xn(t1),..., Xu(tr))) ), (X (t1),...,X(tg)) then we are not sure that X, @, x

in C|0, 1].

if X, @, X then Xn(t) ), X(t) (the function f — f(¢)) is continuous). Then

if X, @> X then the FFD of X, converges to those of X

A tightness argument is needed
(if you are interested... ask me)



Convergence to Brownian processes
A) X1, ..., X,=i.i.d.random variables. E(X;) =0, Var(X;) = 02 € (0, +00).

Sk=X1+--+ Xy

then

Sn
(Donsker's Theorem) (—t> 9, (0 Bt)iepo,
te[0,1]

/n ,

where (B;);c(01) is the Brownian motion.

— The BM is a random variable under the limiting distribution: the Wiener measure
The Brownian motion has for FDD: for 0 < ¢; < -+ < 1y, By, — By, ..., By, — By,
are independent, By, — By, | ~ N(0,t; —t;_1).

(%) does not converge in probability!
"/ tel0,1]

AN
RAVVARE




Convergence to Brownian processes
B) Xi,...,X,= iid.random variables. E(X;) = 0, Var(X;) = 0% € (0, +00), + X;'s
lattice support.

Sp=X1+-+ Xj

then g
. n (d)

(Kaigh's Theorem) (—t) — (0€)telo1

\/ﬁ t€[0,1] <0

where (e;);c( 1) is the Brownian excursion .

12

0.8 [~
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Similar results capture numerous models of walks appearing in combinatorics I



Byproducts of X, D, X in Cl0,1] .

1) E(f(X,)) — E(f(X)) for any f bounded continuous.

An infinity of byproducts (as much as bounded continuous functions)

g+ f(g)=min(1, [ g(t)dt)

g > min(max g, 1)
E ( / sin(Xn(t))dt> —E ( / sin(X(t))dt)



Byproducts of X, D, X in C'0, 1]

n

2) f(X,) — f(X) for any f:C[0,1] — S’ continuous.

An infinity of byproducts (as much as continuous functions onto some Polish space)
g — max(g),

9= Jify 9™ (0)dt,
g+ g(m/14)
2/3 2/3
<max X, [ XB(t)dt, X, (n /14)) ), <max X, [ XBwdr, X(W/M))
1/2 n 1/2

Examples of non-continuous important functions :
g — min argmax(g) (the first place where the max is reached),

g 1/g(1/3), g / 1/g(s)ds.



II. Convergence of rescaled paths

“Reduction of information” at the limit:

If X, is a rescaled random discrete object, knowing X, ), X in C0, 1] says noth-

n
ing about any phenomenon which is not a the right scale.

Example: Almost surely the Brownian motion reaches is maximum once, traverses the

origin an infinite number of times...
This is not the case in the discrete case



Question: do trees have a limit shape? How can we describe it?
(I am not talking about the profile...)
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(Luc’s trees)

Again...: To prove that rescaled trees converge we search a Polish space con-
taining discrete trees and their limits (continuous trees).




Example of model of random trees: uniform rooted planar tree with n nodes

Trees as element of a Polish space: embedding in C|0, 1].

The contour process (C'(k),k=0,...,2(n —1)).

C(2(n — 1)t)>
Vi ey

e This is not the historical path followed by Aldous.

The normalized contour process (

e There exists also some notion of convergence for trees, without normalizations



Let C7[0,1] ={f € C[0,1], f =0, f(0) = f(1) = 0}.

With any function f € C7[0, 1], we associate a tree A(f) : /

A(f) =10,1]/ ~ where

vy <= f2) = fly) = fle,y) = min - flu)
u€lzAy,xVy]

* A(f) equipped with the distance
ds(7,9) = f(z) + f(y) = 2f (2, )

is a compact metric space, loop free, connected: it is a tree!

The space A is equipped with the distance:

d(A(f), Alg)) = IIf = gllee-

It is then a Polish space



Theorem [Aldous: Convergence to the rescaled contour process].

RW: M & Mokkadem, Duquesne.
Result of Aldous valid for critical GW tree conditioned by the size, including

Binary tree with n nodes, ...

Theorem [Aldous: convergence of rescaled tree to the Continuum random tree]

4 (0(20\1/5— 1)-)) <;z> A(2%)

in the space of real trees.

This is a convergence (in distribution) of the
whole macroscopic structure




Byproducts of this convergence
= Nice explanation of all phenomenon in /n.
» Convergence of the height:

2
H,/\/n @, 2 maxe
n o o

(Found before by Flajolet & Odlyzko (1982) + CV moments)
= Convergence of the total path length PL,:

L Oy 9
po¥2 [ Z2nzbt gy @) / Ze(t)dt
AL nJg O

= Convergence of the height of a random node, » convergence of the matrix of the dis-
tances d(U;, U;)/+/n of 12000 random nodes, = joint convergences...

RW: Flajolet, Aldous, Drmota, Gittenberger, Panholzer, Prodinger, Janson, Chassaing,
M, ..

But : It does not explain (in general) the phenomenon at a different scale: the contin-
uum random tree is a tree having only binary branching points, degree(root)=1...
One does not see the details of the discrete model on the CRT



The GH topology aims to prove the convergence of trees or other combinato-
rials objects seen as metric spaces.

A tree is a metric space, isn't it ?
A connected graph is a metric space, isn't it?
A triangulation is a metric space, isn't it?

The GH distance is a distance on the set of compact metric spaces K. I

With this distance, (K, dgp) is a Polish space!!




The idea: up to “isometric relabeling”, try to fit as well as possible the two spaces

Hausdorff distance in (E, dg) = distance between the compact sets of £
dHaus(E)(K17K2) — inf{'r ‘ Kl C Kga KQ C K{}v
where K" = U, B(x,r).

Gromov-Hausdorff distance between two compact metric spaces (E1,d1) and (Es, ds):

dau(Er, Ey) = inf digusp)(01(E1), ¢2(£b))

where the infimum is taken on all metric spaces E and all isometric embeddings ¢; and
¢2 from (El,dl) and (Eg,dg) In (E,dE)

Exercise for everybody (but Bruno):
what if the GH-distance between these trees?

U1 (%)



Gromov Hausdorff distance between

f:tm;;f :‘?&‘W :

I i :i_’_];,\"*u{,l‘||’j_ AN T~ |

: " [] mlr:_.%,nl;__ll.nlmg.;. I ._llh_’.ijlﬂl:. ? X
% LI den T LT 1, i
! I

| 0L LR T ‘n 1:‘ |
Chh T EET :!:“.'.'::.,:‘.::i;.

’ i 17 0 pdnn L

L Hwanvgnl Nt

[ .‘ﬂ ] l“ll \ J |

e ] !
11 n
] |

f

(Luc’s trees)



The GH-topology is a quite weak topology, no? I

Since normalized planar trees converges to the continuum random tree for the topology

of C'[0,1]...

Theorem Normalized Galton-Watson trees converge to the Continuum random tree
for the Gromov-Hausdorff topology.




Convergence of rooted non-planar binary trees for the GH topology
Non planar binary trees U(z) = ) | #U,, with U,= binary tree with n leaves.

Uz +U(2)*

Ulz)=z+ 5

Let p radius of U and

¢ = /20 +202U"(p?).
Theorem (Work in progress: M & Miermont). Under the uniform distr. on U, the
metric space (7;“ ﬁd%) converge in distribution to (73, doe) the CRT (encoded
by 2e) for the GH topology.

Related work: Otter, Drmota, Gittenberger, Broutin & Flajolet

A non-planar-binary tree is a leaf or a multiset
of two non-planar-binary trees
(%] U2

Proof absolutely different from the planar case



Convergence to the CRT for objects that are not trees:
Model of uniform stacked triangulations

A

= uniform stack-triangulation with 2n faces seen as a metric space;
DMn: graph-distance in M,

Theorem (Albenque & M)

Dy, (d)
5 Te, dae),
( \/Gn/ﬂ) 2 (Toe )

for the Gromov-Hausdorff topology on compact metric spaces.

Related works: Bodini, Darasse, Soria



The topology of Gromov-Hausdorff
THE important question on maps (say uniform triangulations, quadrangulations..)

Seen as metric spaces, do they converges in distribution 7

What is known:subsequence converges in distribution to some random metric on the
sphere (Le Gall, Miermont) for GH.

Problem:to show uniqueness of the limit

RW: Chassaing-Schaeffer, M-Mokkadem, Miermont, Le Gall...



IV. Other examples!

convergence of rescaled combinatorial structures to deterministic limit
Limit shape of a uniform square Young-tableau: Pittel-Romik

20
source: Dan Romik's page

10

50

Convergence for the topology of uniform convergence (functions [0, 1]* — [0, 1]).
Same idea: limit for Ferrer diagram (Pittel)

Limit shape for plane partitions in a box (Cohn, Larsen, Propp); random generation
(Bodini, Fusy, Pivoteau)



DLA: diffusion limited aggregation
source:Vincent Beffara's page

Other model: internal DLA; the limit is the circle (CV in proba), Bramson, Griffeath,
Lawler



Unknown limits
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DLA-directed: diffusion limited aggregation




Unknown limits

Directed animal




SLE related process:limit of loop erased random walk, self avoiding random walks,
contour process of percolation cluster, uniform spanning tree,...
Works of Lawler, Schramm, Werner
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Convergence for the Hausdorff topology to conformally invariant distribution

Other models

Voter models, Ising models, First passage percolation, Richardson’s growth model,...



That’s all...
Thanks



