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NOTATION & TERMINOLOGY.

A is a finite alphabet

A∗ is the set of all words of finite length

A language is a set L ⊂ A∗

X = (Xn)n≥1 is a sequence of A-valued random variables

X may be non-Markovian

X1 · · ·Xl models a random word of length l
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PARADIGM.

For various probabilistic models for X and languages L the frequency

statistics of L are asymptotically normal.

SLn :=

0@ number of prefixes in X1 · · ·Xn

that belong to the language L
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The paradigm applies for:

• generalized patterns ⊕ i.i.d. models [BenKoch93]

• simple patterns ⊕ stationary Markovian models [RegSzp98]

• primitive patterns ⊕ k-order Markovian models [NicSalFla02, Nic03]

• primitive patterns ⊕ nice dynamical sources [BouVal02, BouVal06]

• hidden patterns ⊕ i.i.d. models [FlaSpaVal06]
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THE MARKOV CHAIN EMBEDDING TECHNIQUE.

IF X is a homogeneous Markov chain

IF L is a regular language

IF G = (V,A, f, q, T ) is a DFA that recognizes L

IF the embedding of X into G i.e. the stochastic process
XG
n := f(q,X1 · · ·Xn) is a first-order homogenous Markov chain

THEN

SLn =

 number of visits the embedded process

XG makes to T in the first n-steps


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EXAMPLE.

Consider a 1-st order Markov chain X such that

P [X1 = a] = µ; P [X1 = b] = (1− µ);

P [Xn+1 = a | Xn = a] = p; P [Xn+1 = b | Xn = a] = (1− p);

P [Xn+1 = a | Xn = b] = q; P [Xn+1 = b | Xn = b] = (1− q).

Then the embedding of X into the Aho-Corasick automaton
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that recognizes matches with the regular expression {a, b}∗{ba, abba} i.e.

all words of the form x = ...ba or x = ...abba is a 1-st order Markov

chain.

5



ǫ

a

b

ab

ba

abb abba

1

2

3

4

5 6

a

b

a

b

b

a

a
b

a
b

a

b

a

b

µ

(1 − µ)

p

(1 − p)

(1 − q)

q

q

(1 − q)

p
(1 − p)

q

(1 − q)

p

(1 − p)

6



What about a completely general sequence X?
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EXAMPLE. A seemingly unbiassed coin.

Let 0 < p < 1/2

Consider the random binary sequence X = (Xn)n≥1 such that

Xn+1
d=


Bernoulli(p) , 1

n

n∑
i=1

Xi >
1
2

Bernoulli(1/2) , 1
n

n∑
i=1

Xi = 1
2

Bernoulli(1− p) , 1
n

n∑
i=1

Xi <
1
2

Question. Is there a Markovian structure where X can be
embedded into for analyzing the asymptotic distribution of the
frequency statistics of a given language?
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GENERAL SETTING.

Given

• a possibly non-Markovian sequence X

• a possibly non-regular language L

• a transformation R : A∗ → S

define XR to be the stochastic process

XR
n := R(X1 · · ·Xn)

Question 1. What conditions are necessary and sufficient in order for

XR to be Markovian?

Question 2. Given a pattern L, is there a transformation R such that

XR is Markovian but also informative of the distribution of the frequency

statistics of L?
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REMARK.

The Markovianity or non-Markovianity of

XR
n := R(X1 · · ·Xn), n ≥ 1

does not really depend on the range of R

The above motivates to think of R : A∗ → S as an equivalence
relation over A∗:

uR v ⇐⇒ R(u) = R(v)

• R(u) is the unique equivalence class of R that contains u

• c ∈ R means that c is an equivalence class of R

10



DEFINITION. X is embedable w.r.t. R provided that for all
u, v ∈ A∗ and c ∈ R, if uR v then∑
α∈A:R(uα)=c

P [X = uα... | X = u...] =
∑

α∈A:R(vα)=c

P [X = vα... | X = v...]
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DEFINITION. X is embedable w.r.t. R provided that for all
u, v ∈ A∗ and c ∈ R, if uR v then∑
α∈A:R(uα)=c

P [X = uα... | X = u...] =
∑
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Figure. Schematic partition of {0, 1, 2}∗ into equivalence classes
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DEFINITION. X is embedable w.r.t. R provided that for all
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THEOREM A. X is embedable w.r.t. R if and only if, for x ∈ A∗, if

we condition on having X = x... then the stochastic process

XR
n := R(X1 · · ·Xn), n ≥ |x|,

is a first-order homogeneous Markov chain with transition probabilities

that do not depend on x

THEOREM B. For each equivalence relation R in A∗, there exists a

unique coarsest refinement R′ of R w.r.t. which X is embedable
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APPLICATION/QUESTION. What is the smallest state-space for

studying the frequency statistics of a language L in X?

−→ X = a b b a b . . . (original sequence)

−→ XR = 1 0 0 1 0 . . . (non-Markovian encoding)

XR′ = 0 4 6 3 4 . . . (optimal Markovian encoding)

XQ = 6 3 18 15 10 . . . (any other Markovian encoding)

L A*/L

a

abba

ab

abbab

abb

Figure. Partition R = {L,A∗ \ L} s.t. XR is non-Markovian
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Figure. Coarsest refinement R′ of R w.r.t. which X is embedable
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Figure. Arbitrary refinement Q of R w.r.t. which X is embedable
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REMARK. The optimal refinement R′ of R such that XR′ is
embedable is obtained through a limiting process: this makes it
almost impossible to characterize de equivalence classes of R′

Motivated by this we will introduce an embedding which—while
not as optimal—it is analytically tractable (!)
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DEFINITION. The Markov relation induced by X into A∗ is the

equivalence relation defined as

uRXv ⇔ (∀w ∈ A∗) : P [X = uw... |X = u...]=P [X = vw... |X = v...]
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DEFINITION. The Markov relation induced by X into A∗ is the

equivalence relation defined as

uRXv ⇔ (∀w ∈ A∗) : P [X = uw... |X = u...]=P [X = vw... |X = v...]
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Figure. Weighted tree visualization of definition with A = {0, 1}
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An equivalence relation R is said to be right-invariant if for all
u, v ∈ A∗ and α ∈ A:

R(u) = R(v) =⇒ R(uα) = R(vα)

THEOREM C. X is embedable w.r.t. any right-invariant
equivalence relation that is a refinement of RX ; in particular, X is
embedable w.r.t. RX
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EXAMPLE. Back to the seemingly unbiassed coin.

For 0 < p < 1/2, define

Xn+1
d
=

8>>>>><>>>>>:
Bernoulli(p) , 1

n

nP
i=1

Xi >
1
2

Bernoulli(1/2) , 1
n

nP
i=1

Xi = 1
2

Bernoulli(1− p) , 1
n

nP
i=1

Xi <
1
2

We aim to understand the frequency statistics of

L1 = {0, 1}∗{1},

L2 = {0}∗{1}{0}∗({1}{0}∗{1}{0}∗)∗

within X
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PROPOSITION. R : {0, 1}∗ → Z defined as

R(x) = 2

8<:
|x|X
i=1

xi −
|x|
2

9=; =

|x|X
i=1

xi −
|x|X
i=1

(1− xi)

is a right-invariant refinement of RX . In particular, XR
n := R(X1 · · ·Xn)

is a first-order homogeneous Markov chain

n>0n<0 0

1/21/2 p(1-p)p (1-p)

XR is recurrent, with period 2. Because 0 < p < 1/2, XR is positive

recurrent; in particular, there exists a stationary distribution π.

Observe that

SL1
n =

nX
i=1

Xi
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SL1
n =

nP
i=1

Xi

COROLLARY A. If U and V are Z-valued random variables such that

P [U = n] = 2 · π(n), n = 0( mod 2);

P [V = n] = 2 · π(n), n = 1( mod 2);

then for L1 := {0, 1}∗{1} it applies that

lim
n→∞

n=0(mod 2)

2n ·

SL1

n

n
− 1

2

ff
d
= U ;

lim
n→∞

n=1(mod 2)

2n ·

SL1

n

n
− 1

2

ff
d
= V.
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L2 is recognized by the automaton:
A B

1

0 0

1

According to the Mihill-Nerode theorem, Q : {0, 1}∗ → {A,B}
defined as

Q(x) :=

 state in the automaton where the path

associated with x ends when starting at A


is right-invariant

Hence R×Q is also right-invariant and a refinement of RX . In
particular, XR×Q

n := (XR
n , X

Q
n ) is a first-order homogeneous

Markov chain
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XR×Q is positive recurrent, with period 4. Returning times to
a state have finite second moment. This allows to use the central
limit theorem for additive functionals of Markov chains to obtain
the following result.

COROLLARY B. There exists σ > 0 such that

lim
n→∞

√
n ·
{
SL2
n

n
− 1

2

}
d= σ ·W,

where W is a standard Normal random variable

28



CONCLUSION. For the same non-Markovian sequence X,
non-Gaussian (discrete w/phases) and Gaussian limits are obtained
for the frequency statistics of different regular languages
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(More details in the 2008 ANALCO proceedings.)

... Thank you (!)
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