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Elliptic curve cryptography

Elliptic Curve E : y2 = x3 + ax2 + bx + c
For P ∈ E and n ∈ Z, nP can be calculated
easily.

No efficient algorithm to calculate n from P and
nP?
Fast calculation of nP desirable!
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Double-and-Add Algorithm

Calculating 27P via a doubling and adding scheme using the
standard binary expansion of 27:

27 =(11011)2,

27P =2(2(2(2(P) + P) + 0) + P) + P.

Number of additions ∼ Hamming weight of the binary expansion
(Number of nonzero digits)
Number of multiplications ∼ length of the expansion
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Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 =(1001̄01̄)2,

27P =2(2(2(2(2(P) + 0) + 0)− P) + 0)− P.

(1̄ := −1)

=⇒ Use of signed digit expansions
Number of additions/subtractions ∼ Hamming
weight of the binary expansion
Number of multiplications ∼ length of the
expansion
There are (infinitely) many signed binary
expansions of an integer (Redundancy) =⇒ find
expansion of minimal Hamming weight.

P

Q

P + Q

−P

R

2R

E

Clemens Heuberger Hamming Weight of the Non-Adjacent-Form



Signed Digit Expansions in Cryptography
Given Input Weight

Binary and NAF Weight as Random Vector
Quasi-Power Theorem

Elliptic Curve Cryptography
Signed Digit Expansions and Scalar Multiplication
Non-Adjacent Form
Other Input Statistics

Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 =(1001̄01̄)2,

27P =2(2(2(2(2(P) + 0) + 0)− P) + 0)− P.

(1̄ := −1)
=⇒ Use of signed digit expansions

Number of additions/subtractions ∼ Hamming
weight of the binary expansion
Number of multiplications ∼ length of the
expansion
There are (infinitely) many signed binary
expansions of an integer (Redundancy) =⇒ find
expansion of minimal Hamming weight.

P

Q

P + Q

−P

R

2R

E

Clemens Heuberger Hamming Weight of the Non-Adjacent-Form



Signed Digit Expansions in Cryptography
Given Input Weight

Binary and NAF Weight as Random Vector
Quasi-Power Theorem

Elliptic Curve Cryptography
Signed Digit Expansions and Scalar Multiplication
Non-Adjacent Form
Other Input Statistics

Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 =(1001̄01̄)2,

27P =2(2(2(2(2(P) + 0) + 0)− P) + 0)− P.

(1̄ := −1)
=⇒ Use of signed digit expansions
Number of additions/subtractions ∼ Hamming
weight of the binary expansion

Number of multiplications ∼ length of the
expansion
There are (infinitely) many signed binary
expansions of an integer (Redundancy) =⇒ find
expansion of minimal Hamming weight.

P

Q

P + Q

−P

R

2R

E

Clemens Heuberger Hamming Weight of the Non-Adjacent-Form



Signed Digit Expansions in Cryptography
Given Input Weight

Binary and NAF Weight as Random Vector
Quasi-Power Theorem

Elliptic Curve Cryptography
Signed Digit Expansions and Scalar Multiplication
Non-Adjacent Form
Other Input Statistics

Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 =(1001̄01̄)2,

27P =2(2(2(2(2(P) + 0) + 0)− P) + 0)− P.

(1̄ := −1)
=⇒ Use of signed digit expansions
Number of additions/subtractions ∼ Hamming
weight of the binary expansion
Number of multiplications ∼ length of the
expansion

There are (infinitely) many signed binary
expansions of an integer (Redundancy) =⇒ find
expansion of minimal Hamming weight.

P

Q

P + Q

−P

R

2R

E

Clemens Heuberger Hamming Weight of the Non-Adjacent-Form



Signed Digit Expansions in Cryptography
Given Input Weight

Binary and NAF Weight as Random Vector
Quasi-Power Theorem

Elliptic Curve Cryptography
Signed Digit Expansions and Scalar Multiplication
Non-Adjacent Form
Other Input Statistics

Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 =(1001̄01̄)2,

27P =2(2(2(2(2(P) + 0) + 0)− P) + 0)− P.

(1̄ := −1)
=⇒ Use of signed digit expansions
Number of additions/subtractions ∼ Hamming
weight of the binary expansion
Number of multiplications ∼ length of the
expansion
There are (infinitely) many signed binary
expansions of an integer (Redundancy)

=⇒ find
expansion of minimal Hamming weight.

P

Q

P + Q

−P

R

2R

E

Clemens Heuberger Hamming Weight of the Non-Adjacent-Form



Signed Digit Expansions in Cryptography
Given Input Weight

Binary and NAF Weight as Random Vector
Quasi-Power Theorem

Elliptic Curve Cryptography
Signed Digit Expansions and Scalar Multiplication
Non-Adjacent Form
Other Input Statistics

Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 =(1001̄01̄)2,

27P =2(2(2(2(2(P) + 0) + 0)− P) + 0)− P.

(1̄ := −1)
=⇒ Use of signed digit expansions
Number of additions/subtractions ∼ Hamming
weight of the binary expansion
Number of multiplications ∼ length of the
expansion
There are (infinitely) many signed binary
expansions of an integer (Redundancy) =⇒ find
expansion of minimal Hamming weight.

P

Q

P + Q

−P

R

2R

E

Clemens Heuberger Hamming Weight of the Non-Adjacent-Form



Signed Digit Expansions in Cryptography
Given Input Weight

Binary and NAF Weight as Random Vector
Quasi-Power Theorem

Elliptic Curve Cryptography
Signed Digit Expansions and Scalar Multiplication
Non-Adjacent Form
Other Input Statistics

Deriving a Low-Weight Representation

Take an integer n.

If n is even, we have to take 0 as least significant digit and
continue with n/2.

If n ≡ 1 (mod 4), we take 1 as least significant digit and
continue with (n− 1)/2. This is even and guarantees a zero in
the next step.

If n ≡ 3 ≡ −1 (mod 4), we take −1 as least significant digit
and continue with (n + 1)/2. This is even and guarantees a
zero in the next step.

This procedure yields a zero after every non-zero, which should
yield a low weight expansion. There are no adjacent non-zeros.
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Non-Adjacent Form

Theorem (Reitwiesner 1960)

Let n ∈ Z, then there is exactly one signed binary expansion
ε ∈ {−1, 0, 1}N0 of n such that

n =
∑
j≥0

εj2
j , (ε is a binary expansion of n),

εjεj+1 = 0 for all j ≥ 0.

It is called the Non-Adjacent Form (NAF) of n.

It minimises the Hamming weight amongst all signed binary
expansions with digits {0,±1} of n.
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Non-Adjacent Form: Applications

Efficient arithmetic operations (Reitwiesner 1960)

Coding Theory

Elliptic Curve Cryptography (Morain and Olivos 1990)
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Analysis of the NAF — Known Results

Theorem

E(H`) =
1

3
` +

2

9
+ O(2−`),

V(H`) =
2

27
` +

8

81
+ O(`2−`),

lim
`→∞

P
(

H` ≤
`

3
+ h

√
2`

27

)
=

1√
2π

∫ h

0
e−t2/2 dt,

where H` is the Hamming weight of a random NAF of length ≤ `
(all NAFs of length ≤ ` are considered to be equally likely).
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A Note on Probabilistic Models

There are other probabilistic models:

Random NAF whose corresponding standard binary expansion
has length ≤ `,

Random NAF of length ≤ ` where all residue classes modulo
2` have the same probability.

For instance, 101 and 1̄01 represent the same residue class
modulo 23.
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Subblock Occurrences without Restricting to Full Blocks

Let b = (br−1, . . . , b0) 6= 0 be an admissible block,
(. . . ε2(n)ε1(n)ε0(n)) the NAF of n.

We consider

Sb(N) :=
∑
n<N

∞∑
k=0

[(εk+r−1(n), . . . , εk(n)) = b],

i.e. the number of occurrences of the block b in the NAFs of the
positive integers less than N.
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Subblock Occurrences

Theorem (Grabner-H.-Prodinger 2003)

If br−1 = 0, then Sb(N) =

Q(b0)

3 · 2r
N log2 N + Nh0(b) + NHb(log2 N) + o(N),

where

Q(η) =2 + 2 [η = 0]

Hb(x) =
∑

k∈Z\{0}

hk(b)e2kπix

for explicitly known constants hk(b), k ∈ Z.
Hb(x) is a 1-periodic continuous function.
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NAF: Counting Subblocks — Explicit constants

hk(b) =
ζ
(

2kπi
log 2 , αmin(b)

)
− ζ

(
2kπi
log 2 , αmax(b)

)
2kπi(1 + 2kπi

log 2 )
for k 6= 0,

h0(b) = log2 Γ(αmin(b))− log2 Γ(αmax(b))

− Q(b0)

3 · 2r

(
r +

1

6
+

1

log 2

)
+

1

3 · 2r−1
,

αmin(b) = [value(b) < 0] + 2−rvalue(b)− 1 + [b0 even]

3 · 2r

αmax(b) = [value(b) < 0] + 2−rvalue(b) +
1 + [b0 even]

3 · 2r

ζ(s, x) denotes the Hurwitz ζ-function.

The case r = 1 is contained in Thuswaldner (1999).
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NAF: Counting Subblocks — Explicit constants

hk(b) =
ζ
(

2kπi
log 2 , αmin(b)

)
− ζ

(
2kπi
log 2 , αmax(b)

)
2kπi(1 + 2kπi

log 2 )
for k 6= 0,

h0(b) = log2 Γ(αmin(b))− log2 Γ(αmax(b))

− Q(b0)

3 · 2r

(
r +

1

6
+

1

log 2

)
+

1

3 · 2r−1
,

αmin(b) = [value(b) < 0] + 2−rvalue(b)− 1 + [b0 even]

3 · 2r

αmax(b) = [value(b) < 0] + 2−rvalue(b) +
1 + [b0 even]

3 · 2r

ζ(s, x) denotes the Hurwitz ζ-function.
The case r = 1 is contained in Thuswaldner (1999).
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When does the NAF really have an advantage?

Suggestions by various authors:

If the standard binary expansion of n has low Hamming
weight, there is not much room for improvement of the
Hamming weight.

So it might be desirable to keep the
standard binary expansion.

If, on the other hand, the Hamming weight of the standard
binary expansion has very high Hamming weight, the ones’
complement of n has low Hamming weight and could be used:

n =
`−1∑
j=0

εj2
j = 2` −

`−1∑
j=0

(1− εj)2
j − 1

The weight of this new expansion is ` + 2− h, where h is the
weight of the standard binary expansion.
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Relation Between Weights

So, for given input weight (i.e., Hamming weight of the
standard binary expansion), what is the expected Hamming
weight of the NAF?

How are the weight of the standard expansion and the weight
of the NAF related?
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Outline of the Remaining Talk

1 Signed Digit Expansions in Cryptography

2 Given Input Weight

3 Binary and NAF Weight as Random Vector

4 Quasi-Power Theorem
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Fixed Input Weight/Length Ratio

Theorem

Let 0 < c < d < 1 be real
numbers. Then the expected
Hamming weight of the NAF of
a nonnegative integer less than
2n with unsigned binary digit
expansion of Hamming weight
k is asymptotically

∼
1− 4

(
k
n −

1
2

)2
3 + 4

(
k
n −

1
2

)2 n,

uniformly for c ≤ k/n ≤ d.

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

f (x) =
1− 4

(
x − 1

2

)2
3 + 4

(
x − 1

2

)2
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Comments

Maximum at k/n = 1/2:
Density 1/3.

This is also the average density
without any restriction on the
input weight.
Reason: There are especially
many standard binary
expansions of length ≤ n of
weight ≈ n/2, namely

( n
bn/2c

)
.

For small or large k/n, the
density of the NAF decreases.
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f (x) =
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Idea of the Proof (1)

Let ak`n be the number of nonnegative integers whose unsigned
binary expansion has length ≤ n and Hamming weight k and whose
NAF has Hamming weight `.

We consider the generating function

G (x , y , z) =
∑

k,`,n≥0

ak,`,nx
ky `zn.

Consider the transducer automaton

0 .1 1

0|0

1|ε

0|01

1|01̄

0|ε

1|0

converting the standard binary expansion to the NAF. This yields

G (x , y , z) =
x2y2z2 − x2yz2 − xyz2 − xz + xyz + 1

x2yz3 + xyz3 + xz2 − 2xyz2 − xz − z + 1
.
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Idea of the Proof (2)

G (x , y , z) =
∑

k,`,n≥0

ak,`,nx
ky `zn

=
x2y2z2 − x2yz2 − xyz2 − xz + xyz + 1

x2yz3 + xyz3 + xz2 − 2xyz2 − xz − z + 1
.

Taking the derivative w.r.t. y and setting y = 1 yields

∂

∂y
G (x , y , z)

∣∣∣∣
y=1

=
∑

k,`,n≥0

`ak,`,nx
kzn =

xz
(
x2z2 + xz2 − 1

)
(xz + z − 1)2 (xz2 − 1)

.

Dividing the coefficient of xkzn by the number
(n
k

)
of standard

binary expansions of length ≤ n and weight k gives the expected
Hamming weight.
Using methods of multivariate asymptotics gives the result: Bender
and Richmond’s method is used.
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Fixed Input Weight

Other point of view: fixed input Hamming weight, length n →∞.

Theorem

Let k be a fixed integer. Then the expected Hamming weight of
the NAF of an integer with standard binary digit expansion of
Hamming weight k and length ≤ n is asymptotically

k − k(k2 − 3k + 2)

n2
+ O

(
1

n3
+

1

nk−1

)
,

whereas the expected Hamming weight of the NAF of an integer
with standard binary digit expansion of Hamming weight (n − k)
and length ≤ n is asymptotically

(k + 2)− 2k

n
− (k − 1)k(k + 2)

n2
+ O

(
1

n3
+

1

nk−1

)
.
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Comments

Fixed input weight k:

k − k(k2 − 3k + 2)

n2
+ O

(
1

n3
+

1

nk−1

)
,

i.e., the main term corresponds to just keeping the input expansion
untouched.

Fixed input weight n − k:

(k + 2)− 2k

n
− (k − 1)k(k + 2)

n2
+ O

(
1

n3
+

1

nk−1

)
,

i.e., the main term corresponds passing to the one’s complement
and two additional repairing operations.
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Large Input Weight

Theorem

The expected Hamming weight of the NAF of an integer with
unsigned binary expansion of length ≤ n and weight ≥ n/2 equals

n

3
+

4

9
+

2
√

2 (7 + (−1)n)

9π
· 1√

n
− 16 (1 + (−1)n)

9π
· 1
n

+ O

(
1

n3/2

)
.

The expected Hamming weight of the NAF of an integer with
unsigned binary expansion of length ≤ n and weight ≤ n/2 equals

n

3
− (1 + (−1)n)

√
2

3
√

π

√
n +

4

9
+

2 + 2(−1)n

3π

− 8 + 8(−1)n + 23π + 7(−1)nπ

6
√

2
√

nπ3/2
+ O

(
1

n

)
.
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4
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+
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√
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+ O
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Idea of the Proof

Apply MacMahon’s Ω-operator.

Consider

∂

∂y
G (λ2, 1, z/λ)

∣∣∣∣
y=1

=
∑

k,n≥0

bknλ
2k−nzn

=
λ3z(λ2z2 + z2 − 1)

(z − 1)(z + 1)(zλ2 − λ + z)2
.

We are interested in the cases with 2k − n ≥ 0. Thus all negative
powers of λ have to be eliminated by looking at the partial fraction
decomposition. Afterwards, we set λ = 1 and extract the
coefficient of zn.
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Idea of the Proof — Partial Fraction Decomposition

Gy (λ2, 1, z/λ) =
λz + 2

(z − 1)(z + 1)

+
16z6 − 24wz4 − 40z4 + 13wz2 + 17z2 − 2w − 2

(z − 1)(z + 1)(2z − 1)2(2z + 1)2(w − 2λz + 1)

−
2
(
2z2 − w − 1

)
z2

(z − 1)(z + 1)(2z − 1)(2z + 1)(w − 2λz + 1)2

− 16z6 + 24wz4 − 40z4 − 13wz2 + 17z2 + 2w − 2

(z − 1)(z + 1)(2z − 1)2(2z + 1)2(w + 2λz − 1)

−
2
(
2z2 + w − 1

)
z2

(z − 1)(z + 1)(2z − 1)(2z + 1)(w + 2λz − 1)2
,

where the abbreviation w :=
√

1− 4z2 has been used.
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Applying MacMahon’s Operator

We have

1

w − 2λz + 1
=

1

(1 + w)
(
1− 2λz

1+w

) =
∑
m≥0

(2λz)m

(1 + w)m+1
,

1

w + 2λz − 1
=

1

2λz
(
1− 1−w

2λz

) =
∑
m≥0

(1− w)m

(2λz)m+1
,

keeping in mind that

2λz

1 + w
∼ z ,

1− w

2λz
∼ 2z2

2z
= z

for z → 0 and λ → 1, thus the former survives MacMahon’s Ω

,
while the latter does not. Singularity analysis does the rest.
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Binary and NAF Weight As a Random Vector

Up to now, we always had the input weight k as a parameter.

Now: n is the only parameter. Study the random variables
H(Binary(Xn)) and H(NAF(Xn)), where

Xn . . . random nonnegative integer with standard binary
expansion of length ≤ n,

Binary(m) . . . standard binary expansion of m,

NAF(m) . . . NAF of m,

H( · ) . . . Hamming weight of an expansion.
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Covariance

Theorem

We have

E(H(Binary(Xn))) =
n

2
,

E(H(NAF(Xn))) =
n

3
+

4

9
+ O(2−n),

Var(H(Binary(Xn))) =
n

4
,

Var(H(NAF(Xn))) =
2n

27
+

14

81
+ O(n2−n),

Cov(H(Binary(Xn)),H(NAF(Xn))) =
2

3
+ O(n2−n).
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Theorem

The random vector Vn := (H(Binary(Xn)),H(NAF(Xn))) is
asymptotically normal, i.e.,

P
(Vn −

( 1/2
1/3

)
n

√
n

≤ x

)
=

1

54
Φ(2x1)Φ

(
3
√

3√
2

x2

)
+ O

(
1√
n

)
,

where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt.

This means that although H(Binary(Xn)) and H(NAF(Xn)) are
correlated, they are asymptotically independent. Their limiting
distribution is the product of two normal distributions. This is
proved via a 2-dimensional version of Hwang’s Quasi-Power Thm.
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Quasi-Power Theorem, Dimension 1

Theorem (Hwang)

Let {Ωn}n≥1 be a sequence of integral random variables. Suppose
that the moment generating function satisfies the asymptotic
expression

E(eΩns) =
∑
m≥0

P(Ωn = m)ems = eu(s)φ(n)+v(s)(1 + O(κ−1
n )),

the O-term being uniform for |s| ≤ τ , s ∈ C, τ > 0, where

1 u(s) and v(s) are analytic for |s| ≤ τ and independent of n;
and u′′(0) 6= 0;

2 limn→∞ φ(n) = ∞;

3 limn→∞ κn = ∞.
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Quasi-Power Theorem, Dimension 1, continued

E(eΩns) =
∑
m≥0

P(Ωn = m)ems = eu(s)φ(n)+v(s)(1 + O(κ−1
n )),

Theorem (Hwang, cont.)

Then the distribution of Ωn is asymptotically normal, i.e.,

P

(
Ωn − u′(0)φ(n)√

u′′(0)φ(n)
< x

)
= Φ(x) + O

(
1√
φ(n)

+
1

κn

)
,

uniformly with respect to x, x ∈ R, where Φ denotes the standard
normal distribution

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−1

2
y2

)
dy .
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Quasi-Power Theorem, Dimension 2

Theorem

Let {Ωn}n≥1 be a sequence of two dimensional integral random
vectors.

Suppose that the moment generating function satisfies the
asymptotic expression

E(e〈Ωn,s〉) =
∑
m≥0

P(Ωn = m)e〈m,s〉 = eu(s)φ(n)+v(s)(1 + O(κ−1
n )),

the O-term being uniform for ‖s‖∞ ≤ τ , s ∈ C2, τ > 0, where

1 u(s) and v(s) analytic for ‖s‖ ≤ τ and independent of n; and
the Hessian Hu(0) of u at the origin is nonsingular;

2 limn→∞ φ(n) = ∞;

3 limn→∞ κn = ∞.
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Quasi-Power Theorem, Dimension 2

Theorem

Let {Ωn}n≥1 be a sequence of two dimensional integral random
vectors. Suppose that the moment generating function satisfies the
asymptotic expression

E(e〈Ωn,s〉) =
∑
m≥0

P(Ωn = m)e〈m,s〉 = eu(s)φ(n)+v(s)(1 + O(κ−1
n )),

the O-term being uniform for ‖s‖∞ ≤ τ , s ∈ C2, τ > 0, where

1 u(s) and v(s) analytic for ‖s‖ ≤ τ and independent of n; and
the Hessian Hu(0) of u at the origin is nonsingular;

2 limn→∞ φ(n) = ∞;

3 limn→∞ κn = ∞.
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Quasi-Power Theorem, Dimension 2, continued

E(e〈Ωn,s〉) = eu(s)φ(n)+v(s)(1 + O(κ−1
n )),

Theorem (cont.)

Then, the distribution of Ωn is asymptotically normal, i.e.,

P

(
Ωn − grad u(0)φ(n)√

φ(n)
≤ x

)
= ΦHu(0)(x) + O

(
1√
φ(n)

+
1

κn

)
,

where ΦΣ is the distribution function of the two dimensional
normal distribution with mean 0 and variance-covariance matrix Σ:

ΦΣ(x) =
1

2π
√

det Σ

∫∫
y1≤x1
y2≤x2

exp

(
−1

2
ytΣ−1y

)
dy.
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Lemma (Sadikova)

Let X and Y be two-dimensional random vectors with distribution
functions F and G and characteristic functions f and g,

f̂ (s1, s2) = f (s1, s2)− f (s1, 0)f (0, s2),

ĝ(s1, s2) = g(s1, s2)− g(s1, 0)g(0, s2),

A1 = sup
x1,x2

∂G (x1, x2)

∂x1
, A2 = sup

x1,x2

∂G (x1, x2)

∂x2
.

Then for any T > 0, we have

1

2
sup
x ,y

|F (x , y)− G (x , y)| ≤ 1

(2π)2

∫∫
‖s‖≤T

∣∣∣∣∣ f̂ (s1, s2)− ĝ(s1, s2)

s1s2

∣∣∣∣∣ ds

+sup
x
|F (x ,∞)−G (x ,∞)|+sup

y
|F (∞, y)−G (∞, y)|+12(A1 + A2)

T
.
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