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Four "accidents” can happen to a bivariate (or multivariate) polynomial
over a field:

» a nontrivial factor,
» a square factor,
» a factor over an extension field,
» a singular root, where all partial derivatives also vanish.
We have a ground field F. The accidents may occur at two places:
> in F (“rational”),

> in an algebraic closure of F (“absolute”).
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Notation:
» B,(F) C F[x,y]: bivariate polynomials with total degree < n.
» Certain natural sets A,(F) C B,(F).

Two different languages: geometric and combinatorial.

> Geometry: B,(F) affine space over F, A,(F) union of images of
polynomial maps, thus (reducible) subvariety. Geometric goal:
determine the codimension of A,(F) = codimension of irreducible
components of maximal dimension.

» Combinatorial goal: F = Fq for a prime power g, find functions
an(q) and B,(q) so that

#An(Fq)
#T(Fq) — an(q) < Oén(CI) '6n(q)a

with 3,(q) tending to zero as g and n grow.
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Thus a random element of B,(F4) is in A,(F4) with probability about
an(q).

» Best results: 3,(g) goes to zero like g~ ".

» Simpler results: a,(q) = g~™ with 3,(q) = O(qg~1).

» Weil bounds: 3,(q)= n®Mg=1/2,
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n| all reducibles

1] q¢®—g¢q 0

21¢°-¢ | (°+q"—q*—q)/2

31¢"9-¢° | (36 +29" —2¢° —3¢° — ¢* +2¢° — q)/3

4 q15_q10 (4q212+6q11—2q10—5q9_7q8+6q6—2q4—q3
+q°)/4

5 q21 _ q15 (5q17 + 5q16 + 5q15 _ 10q13 _ 15q12 _ 6q11
+11¢"° +10¢° - 59" — ¢® + ¢° + ¢* — q) /5

6 q28 q21 (6q23 + 6q22 + 6q20 + 3q19 _ 3q18 _ 21q17

—23q'% — 10¢"® + 18¢™* + 32¢*2 + 10¢'% — 15¢™!
—12¢'°+3¢® — q" +2¢° —3¢° +¢* +q)/6

The numbers of reducible polynomials of degrees up to 6




Theorem
Consider polynomials of degree n > 2.

1. {reducibles} is a subvariety of codimension n — 1 in {all}.
2. Let ps(q) =(q+1)g=". Then for n >3
#{reducibles} i3
RN Shibehehaiutiind S < .
#{reducibles}  p>(q)

2:
at degree ol 5

3. For n > 6, we have

#{reducibles} g

#{ally =297
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For 1 < k < n: multiplication map

~ {degree k} x {degree n—k} — {degree n},
Hk,n: (g.h) — g-h

{reducibles} = U im fig .
1<k<n/2

Multiplication by units gives fiber dimension > 1
= Zariski closure of im fu , is a proper irreducible subvariety
= complement (= irreducible polynomials) is dense.

g, h irreducible

— fiber dimension = 1.

= generic fiber dimension is 1,

b, = dim{polynomials of degree n}.

dimim pix,.n = bk + bo—x — 1 = b, — k(n — k).

Maximum at k =1: b, — n+ 1. Hence codim = n—1.
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Let n > 3. Each fiber of i , has at least ¢ — 1 elements.

1
#impgn < 1 #{degree k} - #{degree n — k}

qbk(l — q_k_l) . qbnfk
qg—1
_ pa(q) - {all} - g1 K=R(1 — g=k L)
G-ada-a9

<

Some calculation gives the upper bound for g > 3.
More calculation for g =2 and n > 8.
Even more for ¢ =2 and n #£ 6.

vV v v v

One more for g =2 and n = 6.
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Corollary
We have for n > 2

#{irreducibles} > ¢" - (1 — (g +2)q™").

Lower bound: g, h irreducible, k < n/2,
— fiber size is ¢ — 1,
— lower bound on reducibles.
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Previous work:

» Carlitz 1963:
fraction of irreducibles — 1 = O((g — 1)g~"1).

“As the referee pointed out, [it] can be proved by a crude counting
argument” that

—n+4
q

S P

< fraction of irreducibles < 1.

» Carlitz 1965, Cohen 1968, 1970: fraction of irreducibles is
1— g~ ™+ O(ng~(m+"*1)) among polynomials of degrees m < n in
X, y, respectively.

» Corresponding results for multivariate polynomials.



Cohen 1968 comes to “a fairly long, complicated argument, which
we shall omit”, and warns the interested reader that “the derivation
of the above results is increasingly complicated. Each further
computation, using this method, would require considerable
calculation.”

Ragot 1997 shows:
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Gao & Lauder 2002, for polynomials monic in x.

Bodin 2007: relative error bound of % for large enough n.
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Cohen 1968 comes to “a fairly long, complicated argument, which
we shall omit", and warns the interested reader that “the derivation
of the above results is increasingly complicated. Each further
computation, using this method, would require considerable
calculation.”

Ragot 1997 shows:

g " (1- g) < fraction of reducibles < g~ ""(1 + g)

Gao & Lauder 2002, for polynomials monic in x.

Bodin 2007: relative error bound of % for large enough n.
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“Self-reducibility”:
Upper bound on reducibles

— lower bound on irreducibles
= lower bound on reducibles, by induction
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squareful polynomials

SO WN DS

0

P —q

P+d - -

®+q +q°—2¢° —2¢" + ¢?

g2 4+ g — g’ —2q° — ¢° + g* + ¢

g7 + g% — g2 4 g10 — ¢° — 4¢B — g7 + 245 + 3¢° — ¢

The number of squareful polynomials of degrees up to 6.




Theorem
Let n> 1.
1. For n > 2, {squareful} is a subvariety of codimension 2n — 1.

2. Let ) L
(g+1)g~*"(1—q~""")
1— q—n—l :

na(q) =
Then
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Theorem
Let n> 1.

1. For n > 2, {squareful} is a subvariety of codimension 2n — 1.
2. Let

(q + 1)q—2n(1 _ q—n+1)
1 _ q—n—l

na(q) =
Then

|fraction of squareful — n,(q)| < 1a(q) - 3¢72"*5,

and forn <3
fraction of squareful = n,(q).

Cohen 1970: fraction of r-power-free polynomialsis 1 — g~ + O(g—"™)
among polynomials of degrees at most m < n in x, y, respectively.
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An irreducible bivariate polynomial is relatively irreducible if it is not
absolutely irreducible. Then it is the product of all conjugates of an
irreducible polynomial over some extension field.

Application: algorithms for curves: point finding, estimating the size.
Huang & lerardi, 1993; von zur Gathen, Shparlinski & Karpinski, 1993,
1996; von zur Gathen & Shparlinski 1995, 1998; Matera & Cafure 2006.



relatively irreducibles

SOl WNS

3q19 _ 3q18 + 3q17 _ q16 _ 2q15 _ 2q13 +2q12
—3¢" +3¢°+q9" —2¢° +3¢° — ¢* — q)/6

The numbers of relatively irreducible polynomials of degrees up to 6.
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Theorem
Let n > 2, let | > 2 be the smallest prime divisor of n,

2
. (q) _ q—n (l—l)/2/(1 _ q—l)
" (1—q )1 —g 1)
[ 2g7%*2  ifnis prime,
On(q) = { 2g—"H*L otherwise.

Then
1. |fraction of rel irred — 5,,(q)' < en(q) - 9n(q)-

2. en(q) < q " 4)2.
3. If nis prime, then e,(q) < q~""~1/2/n and

#{rel irred} = (¢ — 1)(¢°" +q" — 4" — q)/n.



Singular polynomials

feFlx,y],P=(uv)eF?:
f(P) =0 <= P is on the curve V(f) C F?
< femy,=(x—uy—v)CFlxy]
maximal ideal.
=_—(P)= g(P) = (0 < P is singular on V(f)
Ox Oy
<= f is singular at P

— 2
> f €sp,=m;.



Quotient ring
Flx,yl/sp =F + (x —u)F + (y — v)F
is a 3-dimensional vector space over F.

COdimF[X’y] Sp = 3.



Affine Hilbert function of sp:
codim sp = 3
at degree n for n large enough.
Ragot 1997, 1999:
fraction of singular = 1 — (1 — ¢3)¢

forn > 4q — 2.
Similar result for multivariate polynomials.

Theorem
(Lenstra 2006): (1) <= n>3q — 2.

85
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Affine Hilbert function of sp:
codim sp = 3
at degree n for n large enough.
Ragot 1997, 1999:
fraction of singular =1 — (1 — ¢g3)¢
for n > 4q — 2.

Similar result for multivariate polynomials.

Theorem
(Lenstra 2006): (1) <= n>3q — 2.
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R =TFq4[x,y]:

P € F?

g random polynomial:

prob(singular at P) = q~3

prob(nonsingular at P) = 1 — q—3



R =TFq4[x,y]:

Pe Ff,, random polynomial:

°
prob(singular at P) = g3
prob(nonsingular at P) =1 —¢~3
I R/sp, random polynomial: X e X
PEF2 [) °

prob(nonsingular at all P) = (1 — g~3)9
Independence: Chinese Remainder Theorem



HR/mp = H R/(x —u,y —v)

PEF2 u,vel,

R/ T (x—uy—v)

u,vel,
= R/(x?—x,y?—y)

Monomial x'y/ « (i, }):

J
(g—1,9-1)
q71 ° e [
.
[ ]
0l 8-
g—1 i

Representatives for R/(x9 — x,y9 — y)



Representation of
H R/sp = H R/m3
PeF? PeF?

= RIIT mb) = R/ = x,y7 = y)?

R/((x7 — %)%, (x7 = x)(y? = y), (7 — ¥)).



(n,0)

2g—1

qg—149



(1) holds <« degree n — R/(x7 — x,y9 — y)? surjective
& n>3g-2. O



Small n?

1-(1-q%)7 = (qf)q‘3—<q;)q‘6+—---

2
QO
Q\
_|_

|

Theorem

1. {singular} is an irreducible subvariety with codimension 1.
2. Forg,n > 3, we have

1 . .
qf1 — quz < fraction of singular < q’l.



Theorem

The fraction T of absolutely singular and rationally nonsingular
polynomials satisfies
T < 13n13q*3/2.

Conjecture
7 —q7?[=0(q7?).



Current work

» Exact counting, generating functions (alas, nowhere convergent),
multivariate polynomials (with Alfredo Viola).

» Estimates for curves in higher dimensional spaces (with Guillermo
Matera).

» Decomposable polynomials.



Thank you!



