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Chains with memory of variable length

Introduced by Rissanen (1983) as a universal system for
data compression.
He called this model a finitely generated source or a tree
machine.
Statisticians call it variable length Markov chain (Bühlman
and Wyner 1999).
Also called prediction suffix tree in bio-informatics
(Bejerano and Yona 2001).
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Heuristics

When we have a symbolic chain describing

a syntatic structure,

a prosodic contour,

a protein,....

it is natural to assume that each symbol depends only on a
finite suffix of the past

whose length depends on the past.
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Warning!

We are not making the usual markovian assumption:

at each step we are under the influence of a suffix of the past
whose length depends on the past itsel.

Even if it is finite, in general the length of the relevant part of the
past is not bounded above!

This means that in general these are chains of infinite order, not
Markov chains.
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Contexts

Call the relevant suffix of the past a context.

The set of all contexts should have the suffix property:

Suffix property: no context is a proper suffix of another
context.

This means that we can identify the end of each context
without knowing what happened sooner.

The suffix property implies that the set of all contexts can
be represented as a rooted tree with finite branches.
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Chains with variable length memory

It is a stationary stochastic chain (Xn) taking values on a finite
alphabet A and characterized by two elements:

The tree of all contexts.

A family of transition probabilities associated to each
context.
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Chains with memory of variable length

A context Xn−`, . . . , Xn−1 is the finite portion of the past
X−∞, . . . , Xn−1 which is relevant to predict the next symbol Xn.

Given a context, its associated transition probability gives the
distribution of occurrence of the next symbol immediately after
the context.

Antonio Galves Chains with memory of variable length



Chains with memory of variable length

A context Xn−`, . . . , Xn−1 is the finite portion of the past
X−∞, . . . , Xn−1 which is relevant to predict the next symbol Xn.

Given a context, its associated transition probability gives the
distribution of occurrence of the next symbol immediately after
the context.

Antonio Galves Chains with memory of variable length



Example: the renewal process on Z

A = {0, 1}

τ = {1, 10, 100, 1000, . . .}

p(1 | 0k1) = qk

where 0 < qk < 1, for any k ≥ 0, and∑
k≥0

qk = +∞ .
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Contexts, partitions and stoping times

The set of all contexts should define a partition of the set of all
possible infinite pasts

Given an infinite past x−1
−∞ its context x−1

−` is the only element of
τ which is a suffix of the sequence x−1

−∞.

The length of the context ` = `(x−1
−∞) is a function of the

sequence.

More precisely, the event

{`(X−1
−∞) = k}

is measurable with respect to the σ-algebra generated by X−1
−k .
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Probabilistic context trees

A probabilistic context tree on A is an ordered pair (τ, p) with

τ is a complete tree with finite branches; and

p = {p(·|w); w ∈ τ} is a family of probability measures on
A.
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Probabilistic context trees and chains

A stationary stochastic chain (Xn) is compatible with a
probabilistic context tree (τ, p) if

for any infinite past x−1
−∞ and any symbol a ∈ A we have

P
{

X0 = a | X−1
−∞ = x−1

−∞

}
= p(a | x−1

−` ) ,

where x−1
−` is the only element of τ which is a suffix of the

sequence x−1
−∞.
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A first mathematical question

Given a probabilistic context tree (τ, p) does it exist at least (at
most) one stationary chain (Xn) compatible with it?

First answer: verify if the infinite order transition probabilities
defined by (τ, p) satisfy the sufficient conditions which assure
the existence and uniqueness of a chain of infinite order.
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Type A probabilistic context trees

A type A probabilistic context tree (τ, p) on A satisfies the
conditions;

Weakly non-nullness, that is∑
a∈A

inf
w∈τ

p(a | w) > 0 ;

Continuity β(k) → 0 as, k →∞, where

β(k) := sup |p(a | w)− p(a | v)|,

and the sup is taken wih respect to all
a ∈ A, v ∈ τ, w ∈ τ with w−1

−k = v−1
−k .

{β(k)}k ∈ N is called the continuity rate of the chain.
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A uniqueness result

For a probabilistic suffix tree of type A

with summable continuity rate,

the maximal coupling argument used in Fernández and Galves
(2002)

implies the uniqueness of the law of the chain compatible with
it

.
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A basic statistical question

Given a sample is it possible to estimate the smallest
probabilistic context tree generating it ?

In the case of finite context trees, Rissanen (1983) introduced
the algorithm Context to estimate in a consistent way the
probabilistic context tree out from a sample.
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The algorithm Context

Starting with a finite sample (X0, . . . , Xn−1) the goal is to
estimate the context at step n.

Start with a candidate context (Xn−k(n), . . . , Xn−1), where
k(n) = C1 log n.

Then decide to shorten or not this candidate context using
some gain function. For instance the log-likelihood ratio
statistics.

The intuitive reason behind the choice of the upper bound
length C log n is the impossibility of estimating the
probability of sequences of length longer than log n based
on a sample of length n.
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Estimation of the probability transitions

For any finite string w−1
−j = (w−j , . . . , w−1), denote Nn(w−1

−j )
the number of occurrences of the string in the sample

Nn(w−1
−j ) =

n−j∑
t=0

1
{

X t+j−1
t = w−1

−j

}
.

If
∑

b∈A Nn(w−1
−k b) > 0, we define the estimator of the

transition probability p by

p̂n(a|w−1
−k ) =

Nn(w−1
−k a)∑

b∈A Nn(w−1
−k b)

.
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Log-likelihood ratio statistic

We also define

Λn(i , w) = −2
∑

w−i∈A

∑
a∈A

Nn(w−1
−i a) log

[
p̂n(a|w−1

−i )

p̂n(a|w−1
−i+1)

]
.

Λn(i , w) is the log-likelihood ratio statistic for testing the
consistency of the sample with a probabilistic suffix tree
(τ, p) against the alternative that it is consistent with (τ ′, p′)
where τ and τ ′ differ only by one set of sibling nodes
branching from w−1

−i+1.
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Length of the estimated current context

ˆ̀(X n−1
0 ) = max

{
i = 2, . . . , k(n) : Λn(i , X n−1

n−k(n)) > C2 log n
}

,

where C2 is any positive constant.
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Rissanen’s theorem

Theorem. (Rissanen 1983) Given a realization X0, . . . , Xn−1 of
a probabilistic suffix tree (τ, p) with finite height, then

P
{

ˆ̀(X n−1
0 ) 6= `(X n−1

0 )
}
−→ 0

as n →∞.
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Extending the algorithm Context

Is it possible to extend the algorithm Context to the case of
unbounded probabilistic context trees?

How fast does the algorithm Context converge?
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A theorem for unbounded trees.

Theorem. (Duarte, Galves and Garcia 2006)
Let (X0, X2, . . . , Xn−1) be a sample from a type A unbounded
probabilistic suffix tree (τ, p)

with continuity rate

β(j) ≤ f (j) exp{−j} ,

with f (j) → 0 as j →∞.

Then, for any choice of the constants C1 and C2 defining the
algorithm we have

P
{

ˆ̀(X n−1
0 ) 6= `(X n−1

0 )
}
≤ C1 log n(n−C2 + D/n) + C f (C1 log n) ,

where D is a positive constant.
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Ingredients of the proof

The proof has two ingredients:

the first ingredient is the convergence of the log-likelihood
ratio statistics of a finite order Markov chain.

The problem is that an unbounded probabilistic context
tree defines a chain of infinite order, not a Markov chain!

That’s why we need a second ingredient which is the
canonical Markov approximation to chains of infinite order.
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The canonical Markov approximation

Theorem.(Fernández and Galves 2002)
Let (Xt)t∈Z be a chain compatible with a type A
probabilistic suffix tree (τ, p) with summable continuity rate,

and let (X [k ]
t ) be its canonical Markov approximation of

order k .

Then there exists a coupling between (Xt) and (X [k ]
t ) and a

constant C > 0, such that

P
{

X0 6= X [k ]
0

}
≤ Cβ(k) .
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constant C > 0, such that

P
{

X0 6= X [k ]
0

}
≤ Cβ(k) .
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The chi-square approximation

At each step of the algorithm Context we perform at most
k(n) sequential tests, where k(n) →∞ as n diverges.

To control the error in the chi-square approximation we use
a well-known asymptotic expansion for the distribution of
Λn(i , w) due to Hayakawa (1970) which implies that

P
{

Λn(i , w) ≤ x | H i
0

}
= P

{
χ2 ≤ x

}
+ D/n ,

where D is a positive constant and χ2 is random variable
with distribution chi-square with |A| − 1 degrees of
freedom.
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The paper with Duarte and Garcia can be downloaded
from
www.ime.usp.br/˜galves/artigos/uvlmc.pdf
My review paper with Eva Löcherbach can be downloaded
from
www.ime.usp.br/˜galves/artigos/rissanen.pdf
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