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Key comparisons and bit comparisons

Two measures to quantify the performance of searching or sorting
algorithms:
@ Number of key comparisons

e Algorithms compare keys pairwise irrespective of their
representation.
o Performance is analyzed in terms of the number of key
comparisons required by the algorithms.
@ Number of bit comparisons

o Keys are represented as bit strings.
e Algorithms operate on individual bits to compare keys.
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Background

Key comparisons and bit comparisons
Example: Quicksort

Key comparisons and bit comparisons

Two measures to quantify the performance of searching or sorting
algorithms:
@ Number of key comparisons
e Algorithms compare keys pairwise irrespective of their
representation.
o Performance is analyzed in terms of the number of key
comparisons required by the algorithms.
@ Number of bit comparisons
o Keys are represented as bit strings.
e Algorithms operate on individual bits to compare keys.
e Performance may be analyzed in terms of the number of bit
comparisons required by the algorithms.
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Task: Sort keys in S := {kl, ko, ..., kn} (: {k(1)7 k(2), e k(n)})
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Example: Quicksort

Task: Sort keys in S := {kl, ko, ..., kn} (: {k(1)7 k(2), e k(n)})
(i) Randomly select a pivot key (denote it by k;).
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Example: Quicksort

Task: Sort keys in S := {kl, ko, ..., kn} (: {k(1)7 k(2), e k(n)})
(i) Randomly select a pivot key (denote it by k;).

(i) Compare each of the other keys with k; (ki = k(;)) and create
three subsets of S:
Sy = {k(1)7 ey k(j—l)}r
SQ = {k(J)},
S3 = {k(j+1), RN k(n)}
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Example: Quicksort

Example: Quicksort

Task: Sort keys in S := {kl, ko, ..., kn} (: {k(1)7 k(2), e k(n)})
(i) Randomly select a pivot key (denote it by k;).
(i) Compare each of the other keys with k; (ki = k(;)) and create
three subsets of S:
St = {kay,---» kG-
SQ = {k(J)},
Sz = {k(j11)s- - k() }-
(iii) Apply the algorithm to S, if |Sp| > 1 (m=1,3).
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Background

Key comparisons and bit comparisons
Example: Quicksort

Example: Quicksort

Task: Sort keys in S := {kl, ko, ..., kn} (: {k(1)7 k(2); e k(n)})

(i) Randomly select a pivot key (denote it by k;).

(i) Compare each of the other keys with k; (ki = k(;)) and create
three subsets of S:
Sy = {k(1)7 ey k(j—l)}r
SQ = {k(J)},
S3 = {k(j+1), RN k(n)}

(iii) Apply the algorithm to S, if |Sp| > 1 (m=1,3).
The algorithm accomplishes the task in a recursive and
random fashion.
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Key and bit comparisons required by Quicksort

ki =.0010010..., k» =.0110100...,
ks = .0011011..., ks = .0001101....
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Key and bit comparisons required by Quicksort

ki =.0010010..., k» =.0110100...,
ks = .0011011..., ks = .0001101....

(i) Suppose k3 is selected as a pivot.
(i) Quicksort requires:
@ 4 bit comparisons to determine k; < ks.
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Key and bit comparisons required by Quicksort

ki =.0010010..., k» =.0110100...,
ks = .0011011..., ks = .0001101....

(i) Suppose k3 is selected as a pivot.
(i) Quicksort requires:
@ 4 bit comparisons to determine k; < ks.

e 2 bit comparisons to determine ky > ks.
e 3 bit comparisons to determine k; < ks.
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Background

Key comparisons and bit comparisons
Example: Quicksort

Key and bit comparisons required by Quicksort

ki =.0010010..., k» =.0110100...,
ks = .0011011..., ks = .0001101....

(i) Suppose k3 is selected as a pivot.
(i) Quicksort requires:
@ 4 bit comparisons to determine k; < ks.

e 2 bit comparisons to determine ky > ks.
e 3 bit comparisons to determine k; < ks.

St = {ki, ka}, So = {ks}, S3 = {ko}.
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Background

Key comparisons and bit comparisons
Example: Quicksort

Key and bit comparisons required by Quicksort

ki =.0010010..., k» =.0110100...,
ks = .0011011..., ks = .0001101....

(i) Suppose k3 is selected as a pivot.
(i) Quicksort requires:
@ 4 bit comparisons to determine k; < ks.

e 2 bit comparisons to determine ky > ks.
e 3 bit comparisons to determine k; < ks.

S1 = {ki, ka}, So = {ks}, Sz = {ko}.
(iii) Apply Quicksort to S;1. (3 more bit comparisons to determine
kg < kl.)
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Background

Key comparisons and bit comparisons
Example: Quicksort

Key and bit comparisons required by Quicksort

ki =.0010010..., k» =.0110100...,
ks = .0011011..., ks = .0001101....

(i) Suppose k3 is selected as a pivot.
(i) Quicksort requires:
@ 4 bit comparisons to determine k; < ks.

e 2 bit comparisons to determine ky > ks.
e 3 bit comparisons to determine k; < ks.

S1 = {ki, ka}, So = {ks}, Sz = {ko}.
(iii) Apply Quicksort to S;1. (3 more bit comparisons to determine
kg < kl.)

In total, Quicksort requires 4 key comparisons and 12 bit
comparisons to complete the task.

James Allen Fill Také Nakama Bit Complexity of Quickselect



Background

Key comparisons and bit comparisons
Example: Quicksort

Key comparisons and bit comparisons

@ It is ideal to analyze sorting or searching algorithms in terms
of both key and bit comparisons. (Key-based algorithms can
be compared with digital algorithms.)
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Key comparisons and bit comparisons

@ It is ideal to analyze sorting or searching algorithms in terms
of both key and bit comparisons. (Key-based algorithms can
be compared with digital algorithms.)

@ Only Quicksort has been analyzed in terms of both key and
bit comparisons (Fill and Janson, 2004):
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Background

Key comparisons and bit comparisons
Example: Quicksort

Key comparisons and bit comparisons

@ It is ideal to analyze sorting or searching algorithms in terms
of both key and bit comparisons. (Key-based algorithms can
be compared with digital algorithms.)

@ Only Quicksort has been analyzed in terms of both key and
bit comparisons (Fill and Janson, 2004): Asymptotically,
Quicksort requires 2nln n key comparisons and n(In n)(Ig n)
bit comparisons to sort n keys.
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Prelim S

Our study

Our study

Objective of our study: Analyze the bit complexity of Quickselect
(also known as Find)

@ Quickselect finds an order statistic.

@ Quickselect has been extensively analyzed with regard to the
number of key comparisons required by the algorithm, but our
study is the first to investigate its bit complexity.
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(i) Randomly select a pivot key (denote it by k;).
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Task: Find the m-th smallest key in S := {k1, ko, ..., kn}

(= {kay: k2) - km 1)

(i) Randomly select a pivot key (denote it by k;).

(i) Compare each of the other keys with k; (ki = k(;)) and create
three subsets of S:
Sl = {k(1)7 ey k(j,l)},
Sz := {k(jy},
S3 = {k(j+1), ey k(n)}
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Preliminaries

Quickselect

Task: Find the m-th smallest key in S := {k1, ko, ..., kn}
(: {k(l), k(z), ey k(n)})
(i) Randomly select a pivot key (denote it by k;).

(i) Compare each of the other keys with k; (ki = k(;)) and create
three subsets of S:
Sl = {k(1)7 ey k(j,l)},
S2 = {k()}
S3 = {k(j+1), ey k(n)}
(iii) e If j = m, then the algorithm returns k;.
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Our study

Quickselect

Task: Find the m-th smallest key in S := {k1, ko, ..., kn}
(= {kay: k2) - km 1)
(i) Randomly select a pivot key (denote it by k;).
(i) Compare each of the other keys with k; (ki = k(;)) and create
three subsets of S:
Sl = {k(1)7 ey k(j,l)},
Sz := {k(jy},
S3 = {k(j+1), ey k(n)}
(iii) e If j = m, then the algorithm returns k;.
o If j > m, then the algorithm operates on S; and finds the m-th

smallest key in the set.
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Objective of our study
Quickselect

Framework of our study
Preliminaries

Our study

Quickselect

Task: Find the m-th smallest key in S := {k1, ko, ..., kn}
(: {k(l), k(z), Ceey k(n)})
(i) Randomly select a pivot key (denote it by k;).
(i) Compare each of the other keys with k; (ki = k(;)) and create
three subsets of S:
S1:= {kay- s kG-
Sz = {k(l)}’
S3 = {k(j+1), ey k(n)}
(iii) e If j = m, then the algorithm returns k;.
o If j > m, then the algorithm operates on S; and finds the m-th
smallest key in the set.
e If j < m, then the algorithm operates on S3 and finds the
(m — j)-th smallest key in the set.
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Quickselect

Let x(m, n) denote the expected number of key comparisons

required by Quickselect to find the m-th order statistic in a set of n
keys.
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Quickselect

Let x(m, n) denote the expected number of key comparisons
required by Quickselect to find the m-th order statistic in a set of n
keys.
e x(m,n) =2[n+3+(n+1)H,—(m+2)Hyn—(n+3—m)Hpi11-pm]
(Knuth, 1972).
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Let x(m, n) denote the expected number of key comparisons
required by Quickselect to find the m-th order statistic in a set of n
keys.
e x(m,n) =2[n+3+(n+1)H,—(m+2)Hyn—(n+3—m)Hpi11-pm]
(Knuth, 1972).
o k(m,n) =131 k(m,n)=3n—8H,+13 - 8h
(Mahmoud, Modarres, and Smythe, 1995).
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Objective of our study
Quickselect

Framework of our study
Preliminaries

Our study

Quickselect

Let x(m, n) denote the expected number of key comparisons
required by Quickselect to find the m-th order statistic in a set of n
keys.
e x(m,n) =2[n+3+(n+1)H,—(m+2)Hyn—(n+3—m)Hpi11-pm]
(Knuth, 1972).
o k(m,n) =131 k(m,n)=3n—8H,+13 - 8h
(Mahmoud, Modarres, and Smythe, 1995).
Many other results exist regarding the number of key comparisons
required by Quickselect.
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Framework of our study

@ Quickselect is applied to a set of n distinct keys uniformly and
independently distributed in (0,1).
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Framework of our study

@ Quickselect is applied to a set of n distinct keys uniformly and
independently distributed in (0,1).

@ Each key is represented as a bit string, and Quickselect
operates on individual bits in order to find a target key.
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Objective of our study
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Framework of our study
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Our study

Framework of our study

@ Quickselect is applied to a set of n distinct keys uniformly and
independently distributed in (0,1).

@ Each key is represented as a bit string, and Quickselect
operates on individual bits in order to find a target key.

@ We derive exact and asymptotic formulae for the expected
numbers of bit comparisons required by Quickselect.
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Quickselect finds the m-th smallest key in a set of n keys
Ui, ..., Upn. Let Uy denote the i-th smallest key.

James Allen Fill Také Nakama Bit Complexity of Quickselect



Our study Objective of our study

Preliminaries

Quickselect finds the m-th smallest key in a set of n keys
Ui, ..., Upn. Let Uy denote the i-th smallest key.

e P{Uj and Ujy are compared} = j—:2+1 ifi<m<y
T if j < m.
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Preliminaries

Quickselect finds the m-th smallest key in a set of n keys
Ui, ..., Upn. Let Uy denote the i-th smallest key.

e P{Uj and Ujy are compared} = J_% ifi<m<y
T if j < m.

© Uy (5:t) = (g1 i 110) $HE—sY T L — )"
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Our study of our study

of our study
Preliminaries

Preliminaries

Quickselect finds the m-th smallest key in a set of n keys
Ui, ..., Upn. Let Uy denote the i-th smallest key.

e P{Uj and Ujy are compared} = J_% ifi<m<y
T if j < m.

© Uy (5:t) = (g1 i 110) $HE—sY T L — )"

@ The event that U;y and U(;) are compared is independent of
the random variables Uy and Uj;.
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of our study
Preliminaries

Preliminaries

e Define Pi(s,t,m,n) = ngi<jgnj_%+1fU(;),U(j)(5? t),

P>(s,t,m,n) := Zl<l<m<j<nj :2+1f Ugy. Uy (S5 £),

P3(S7 t,m, n) Zl<l<1<mm :+1fU Uiy (5 t)
P(s,t,m,n) := Pi(s,t,m,n) + Pa(s, t,m, n) + Ps3(s, t,m, n).
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Our study of our study

of our study
Preliminaries

Preliminaries

e Define Pyi(s,t,m, n) := ngi<j§”j—%+1fu(i)’u(j)(s’ t),
Pa(s,t,m,n) := 3 1 cicmej<n jl%f UgysUgy (S5 1),

P3(57 t,m, n) Zl<l<]<mm i1 fU Uy (5 t)
P(s,t,m,n) := Pi(s, t, m, n)+P2(s t m, n) + P3(s,t, m,n).

@ we can write the expectation p(m, n) of the number of bit
comparisons required to find the rank-m key in a set of n keys

1 1
)= [ [ (s, 0)P(s. ) e .

where (s, t) denotes the first bit at which the keys s and t
differ.

as
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@ Hence

1,1
uw(m,yn) = //ﬂ(s,t)P(s,t,m,n)dtds

:zz/

k=0 1=1 7 (I=1)27K

(1-3)2
/ (k+1)P(s,t,m,n) dtds,
1)2 k

where k represents the last bit at which s and t agree.
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Preliminaries

@ Hence

1,1
uw(m,yn) = //ﬂ(s,t)P(s,t,m,n)dtds

:zz/

k=0 1=1 7 (I=1)27K

(1-3)2
/ (k+1)P(s,t,m,n) dtds,
1)2 k

where k represents the last bit at which s and t agree.

@ We analyze this expression in order to quantify the bit
complexity of Quickselect.
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Exact computatlon of p(1, n)
Asymptotic
Results Exact comp!
Asymptotic ana

Asymptotic

Closed formula for p(m, n)

Results: Exact computation of (1, n)

@ The expected number p(1, n) of bit comparisons required by
Quickselect to find the smallest key in a set of n keys satisfies

— n—j+1- ()
(1, n) = 2n(H, — 1) +2§2 D 2)

where B; denotes the j-th Bernoulli number. (Note that
(1, n) = p(n, n) by symmetry.)
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Exact computatlon of p(1, n)
Asymptotic

Exact comp!

Asymptotic ana as
Asymptotic of p(m, n)

[N

Closed formula for p(m, n)

Results: Exact computation of (1, n)

@ The expected number p(1, n) of bit comparisons required by
Quickselect to find the smallest key in a set of n keys satisfies

— n—j+1- ()
(1, n) = 2n(H, — 1) +2§2 D 2)

where B; denotes the j-th Bernoulli number. (Note that
u(1,n) = p(n, n) by symmetry.)
e We analyzed this expression (in particular,

-1 n—j+1
t, = ZJ’.’:2 JJ(J—1)(71(2)1)) to obtain an asymptotic

expression for u(1, n).
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Exact computation of p(1, n)
Asymptotic analysis of p(1, n)
Exact computation fo 2
Asymptotic ar g
Asymptotic anal f p(m, n)

[N

Closed formul w(m, n)

Results: Asymptotic analysis of 1(1, n)

Lemma. For n > 2, let u, := ty41 — t, (with t, = 0) and

Vn i= Vpt1 — Vp. Let 7y denote Euler’s constant (= 0.57722), and

define yx := 2|:’2k Then
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Exact computation of p(1, n)
Asymptotic analysis of ,u(l n)
Exact computatio

Asymptotic /
Asymptotic of /1(/77 n)

[N

Closed formula for p(m, n)

Results: Asymptotic analysis of 1(1, n)

Lemma. For n > 2, let u, := ty41 — t, (with t, = 0) and
Vn i= Vpt1 — Vp. Let 7y denote Euler’s constant (= 0.57722), and
define yy : 2|:’2k Then

Hn+2 _( b 1

/ — 1 n n
(1) va =71 + iz — I

where
=3 CA—x )M (n+1)M(T—x4) .
keZ\{0} (In2)F(n+3—xx) '
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Exact computation of p(1, n)
Asymptotic analysis of p(
Exact computation fol
Asymptotic 2

Asymptotic a of p(m, n)

[N

Closed formula for p(m, n)

Results: Asymptotic analysis of 1(1, n)

Lemma. For n > 2, let u, := ty41 — t, (with t, = 0) and
Vn i= Vpt1 — Vp. Let 7y denote Euler’s constant (= 0.57722), and

define yy : 2|:’2k Then

(1) va =51 + Motz — Zn
where
=3 CA—x )M (n+1)M(T—x4) .
keZ\{0} ~  (In2)[(n+3—xx)

(i) up=—Hn+a— W+(In2 _%> 1t I

where ( . |
17-6 1—x )M (1—
2= + 163 — i3 Lokez\{0} CF(“&TX)’
=3 C1—x)M(1—xx) T(n+1)
keZ\{0} ~ (In2)(1—xx) T(n+2—xk)’

Hn+2 ( o] 1
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Exact computation of p(1, n)
Asymptotic analysis of p(1, n)
Exact computatio

Asymptotic av
Asymptotic of p(m, n)

[N

Closed formula for p(m, n)

Results: Asymptotic analysis of 1(1, n)

Lemma.
(iif) tn = —(nHp —n —1) +a(n —2) = {H,% +HP -1
v—1 1 3 &
+(In2 —z) (Hn—3) +b—%,,
where

b= 20 (1= )T (—xk)
- keZ\{0} (In2)(1—x))T(3—x«k)’

y D C(1—x )M (=x)) M (n+1)
n - £2keZ\{0} (In2)(T—x) )T (n+1-xx)’

and H,(72) denotes the n-th Harmonic number of order 2, i.e.,
H(2) - Z(l 1
n . =1 2"
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Exact computation of p(1, n)
Asymptotic analysis of p(1, n)
Exact computation fe
Asymptotic a i

Asymptotic of p(m, n)

[N

Closed formula for p(m, n)

Results: Asymptotic analysis of 1(1, n)

Asymptotic expression for p(1, n):
(1, n) Lnm?— (2 £1)nn+ 0(1)
n)=cn— —(Inn)* - | — nn
S In2 In2 ’

where ¢ = 5.27938.
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Exact computation of p(1, n)
Asymptotic analysis of p(1, n)
Exact computation fo
Asymptotic ar

Asymptotic anal f p(m, n)

[N

Closed formul p(m, n)

Results: Asymptotic analysis of 1(1, n)

Asymptotic expression for p(1, n):
(1, n) Lnm?— (2 £1)nn+ 0(1)
n)=cn— —(Inn)* - | — nn
oS In2 In2 ’
where ¢ = 5.27938.

Cf. the expectation for key comparisons is asymptotically 2n.
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Exact computation of p(1, n)
Asymptotic analysis of (1, n)
Exact computa for average case
Results p G e eSS (i
Asymptotic s of average case
Asymptotic s of p(m, n)

Closed formula for p(m, n)

Results: Exact computation for average case: p(m, n)

p(m,n) = % an:l p(m, n)
= 2(n—1) = SFi(n) + FFa(n) + §F3(n) — 4Fa(n) + S Fs(n),

Fi(n) := Z =3 (= 1)21( )2) Fa(n) 227:211(1531)[”1_({")—1],
F3(n) := 21”2_21 (—1j)1_7(:jl)’
o [ ),

( ) Z 31(1 1)(1 2-J) j—2

R ()
Fs(n) = 2 s sGnig2m 2 o)
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Exact computation of p(1, n)
Asymptotic ar s of (1, n)
Exact computati for average case
Asymptotic analysis of average case

[N

Asymptotic ar s of u(m, n)
Closed formula for p(m, n)

Results: Asymptotic analysis of u(m, n)

Asymptotic expression for p(m, n):

4 2
/,L(ﬁ'], n) = Z‘n — m(ln n)2 + 4 (Inz — 1> In n-—+ O(l),
where ¢ = 8.20731.

Cf. the expectation for key comparisons is asymptotically 3n.
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Exact computation of p(1, n)
Asymptotic ana of p(1, n)
Exact computation for average
Asymptotic analysis of av
Asymptotic analysis of p(m, n)

[N

Closed formula for p(m, n)

Results: Asymptotic analysis of p(m, n)

Asymptotic analysis of p(m, n) for fixed m has yet to be completed.
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Exact computation of p(1, n)
Asymptotic an s of (1, n)
Exact computation for
Asymptotic an

Asymptotic an

[N

Closed formula for p(m, n)

Results: Closed formula for p(m, n)

1 k
p(m, ) = S50 S0 8 S (K 1)P(s, £, m, n) dt ds
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Exact computation of p(1, n)
Asymptotic of p(1, n)
Exact computation f
Asymptotic /
Asymptotic of /1(/77 n)

[N

Closed formula for p(m, n)

Closed formula for ;(m, n)

_oyroo g2k (=502 etk g i d
u(m, n) ZkzOZ/:lf(/fl)fk f(/—%)z—k( +1)P(s, t,m,n) S
n— n—f— f+h
:szi(l—Qb) i ha X ajsei(reht2)
f+1 f+h+2 (j—i—1 n—j i
(”+1 (f+1) 2i= E =f+2 ( f:+1) (n—j+1jf+2)(_1)n 1

2 )(_1)f+h—j+1(%)n—j+2

jfTJrl(ifl,l,jf;Ll,l,nfj
f i’ f+1
M (EY ) B = ()] where

ajr ::%(Jr'j) ifr>2;, = Jl,% if r=0,1.

X

The running time for the computation is of order n’.
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Exact computation of p(1, n)
of p(1, n)

A
Closed formula for p(m, n)

Results: Closed formula for p(m, n)

Expected number of bit comparisons

w{m.n)

James Allen Fill

Také Nakama
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Summary

Summary

@ At least for finding the smallest (or largest) key and in the
average case, the expected number of bit comparisons
required by Quickselect is asymptotically different from that
of key comparisons only by a constant factor.
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of key comparisons only by a constant factor.

e Asymptotic analysis of u(m, n) for fixed m has yet to be
completed.
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average case, the expected number of bit comparisons
required by Quickselect is asymptotically different from that
of key comparisons only by a constant factor.

e Asymptotic analysis of u(m, n) for fixed m has yet to be
completed.

e Exact computation of p(m, n) for fixed m can be achieved by
O(n") elementary operations.
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Summary

Summary

@ At least for finding the smallest (or largest) key and in the
average case, the expected number of bit comparisons
required by Quickselect is asymptotically different from that
of key comparisons only by a constant factor.

e Asymptotic analysis of u(m, n) for fixed m has yet to be
completed.

e Exact computation of p(m, n) for fixed m can be achieved by
O(n") elementary operations.

@ Ongoing work: Generalize the bit-string input model, for
example to Bernoulli trials with success probability p.

James Allen Fill Také Nakama Bit Complexity of Quickselect



More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Ongoing work: More general bit-string input models

@ This was not on a previous slide, but we recall

1t
(1, n) :2/0 /0 B(s, t)F(t)2[(1—F(t))"—14nF(t)] dF (s) dF (t)

with input (key) distribution function F(t) = t.
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Ongoing work: More general bit-string input models

@ This was not on a previous slide, but we recall

1t
(1, n) :2/0 /0 B(s, t)F(t)2[(1—F(t))"—14nF(t)] dF (s) dF (t)

with input (key) distribution function F(t) = t.
@ By the same argument, this is true for general continuous F
on [0,1].
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Ongoing work

Ongoing work: More general bit-string input models

@ This was not on a previous slide, but we recall

w(1,n _2/ / B(s, t)F(t)2[(1—F(t))"—14nF(t)] dF (s) dF (t)

with input (key) distribution function F(t) = t.

@ By the same argument, this is true for general continuous F
on [0,1].

@ Since
0 < (1— F(1))" = 1+ nF(t) < (n— 1)F(t),

it follows by the dominated convergence theorem that if

c=crm 2/01/;6(5, £YF(£) L dF (s) dF (£) < oo

then p(1,n) ~ cnas n— occ.
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More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Asymptotic slope ¢

@ The asymptotic slope constant

1 pt
_ o s —1 s
c=cr ._2/0 /O B(s, )F(t)"Y dF (s) dF (¢)

is not always finite; a necessary condition is that
3 log(1/t) dF (t) < oc.
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More general bit-string input models
Asymptotic slope ¢
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Ongoing work

Asymptotic slope ¢

@ The asymptotic slope constant

1 pt
_ o s —1 s
c=cr ._2/0 /O B(s, )F(t)"Y dF (s) dF (¢)

is not always finite; a necessary condition is that
3 log(1/t) dF (t) < oc.

@ In the Bernoulli(p)-strings case, one can show ¢ =23 22 5 v«
converges geometrically quickly, where

=1 55 [F () = FUZH) ] InF () and
m—1

k
F(.biby...b)=q Y bm [] ¢ %p".

m=1 i=1
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More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Asymptotic slope c: Bernoulli(p) s

25 . . . . ‘ . . .
T
— sum of first 11 terms — sum of first 11 terms
— 11th term . = 11th term
20
5
= —
a ©
= By
T =
@ ©
— =1
e —3
© 1)
2
1
0 . . — 0 ‘ . ,
0 0.2 04 0.6 0.8 1 0.4 05 06 07 08
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More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Asymptotic slope c: uniform case

@ To be investigated: How does ¢ behave as a function of the
success probability p?
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More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Asymptotic slope c: uniform case

@ To be investigated: How does ¢ behave as a function of the
success probability p?

@ In the uniform case F(t) =t (i.e.,, p = 1/2), the
series-formula for ¢ = 2372 o 4 = 5.27937 82410 80958+

reduces:
w=1+27%32 In (&)

Earlier, complex analysis gave, with xx := 27ik/In 2,

_ B/ 16y 4 ZC(l—xk)r(l—xk)
9 9In2 |n2k7’é (4 —xk)(1—xx)
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More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Asymptotic slope c: uniform case

@ To be investigated: How does ¢ behave as a function of the
success probability p?

@ In the uniform case F(t) =t (i.e.,, p = 1/2), the
series-formula for ¢ = 2372 o 4 = 5.27937 82410 80958+

reduces:
w=1+27%32 In (&)

Earlier, complex analysis gave, with xx := 27ik/In 2,

_ B/ 16y 4 ZC(l—xk)r(l—xk)
9 9In2 |n2k7’é (4 —xk)(1—xx)

@ We, and independently Grabner and Prodinger (2007), first
found the real series for cynif by “reverse engineering”.

James Allen Fill Také Nakama Bit Complexity of Quickselect



More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Still to do (or at least to try)

@ Higher moments? (or at least concentration)
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Asymptotic slope ¢
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Still to do (or at least to try)

@ Higher moments? (or at least concentration)
o Get beyond lead term for p # 1/2 and other F with ¢ < 007
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Still to do (or at least to try)

@ Higher moments? (or at least concentration)
o Get beyond lead term for p # 1/2 and other F with ¢ < 007
@ What if cg = 00? We can even have p(1,2) = cc.
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More general bit-string input models
Asymptotic slope ¢
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Ongoing work

Still to do (or at least to try)

@ Higher moments? (or at least concentration)

o Get beyond lead term for p # 1/2 and other F with ¢ < 007

@ What if cg = 00? We can even have p(1,2) = cc.

@ Handle Quicksort similarly. This is actually easier, at least for
Bernoulli(p) strings: With

E(p) = entropy = —[pInp+ (1 — p)In(1 — p)], we have

B ° (*1)](7) n(Inn)2
S B ey ) R R

and periodic fluctuations are no longer involved. Among
distributions F with a density* f, lead-order asymptotics are
not affected by choice of f [Fill and Janson, 2004].
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More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Still to do (or at least to try)

@ Back to Quickselect, how much is saved if compared bits are
remembered? (For Quicksort, Fill and Janson [2004] showed
that this can remove extra log-factor from lead order of
asymptotics.)
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More general bit-string input models
Asymptotic slope ¢
Still to do

Ongoing work

Still to do (or at least to try)

@ Back to Quickselect, how much is saved if compared bits are
remembered? (For Quicksort, Fill and Janson [2004] showed
that this can remove extra log-factor from lead order of
asymptotics.)

@ What happens if we work in higher order bases? In particular,
how do results for Bernoulli trials generalize to multinomial
trials?
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