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Lexicographic Order

w is a Lyndon word if w is primitive, and is the 

smallest word in its necklace

cbaa,  baac,  aacb,  acba: ! aacb is a Lyndon word,

aabaab, baac ! are not
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FACTORIZATIONS

The standard right factor v of a word w is its smallest proper 
suffix. 

The related factorization  w=uv is often called the standard 
factorization of w.  

w=abaabbabaabb! u=abaabbab! v=aabb

w=abaabbabaabb! u’=ab! v’=aabbabaabb!! v<v’

Theorem (Lyndon, 1954)  Any word w may be written uniquely as 
a non-increasing product of Lyndon words (by iteration of the  
standard factorization).

The standard factorization of a Lyndon word is the first step in 
the construction of some basis of the free Lie algebra over A



PROBABILISTIC MODEL



PROBABILISTIC MODEL



PROBABILISTIC MODEL



PROBABILISTIC MODEL



PROBABILISTIC MODEL

WLOG, {i | pi>0} has no gaps and contains 1.
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PROFILE OF THE DECOMPOSITION

For a word , set
N(w)=(Nk(w))k≥1,

in which Nk(w) is the number of k-letters long factors in the 
Lyndon decomposition of w.

N=(2,0,0,2,0,0,1,0,0, ... ).
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UNIFORM CASE

In the uniform case (pi=1/q, 1≤i≤q), Diaconis, McGrath and 
Pitman (Riffle shuffles, cycles, and descents, 1995) give the exact distribution of 
the profile 

N(w)=(Nk(w))k≥1.

in which µ is the Moebius function.
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ASYMPTOTICS

pq,n(ξ) converges, as q grows, to

in which Ck(w) is the number of k-cycles in the cycle-
decomposition of the n-permutation w, and C(w)=(Ck(w))k≥1.

As n grows, pn(.) converges to the law of a sequence of 
independent Poisson random variables (with respective parameters 
1/k for Ck). 
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 RSa* RSb= RSab
Doing a b-riffle-shuffle, followed by an independent a-riffle-
shuffle, results in an ab-riffle-shuffle (not so obvious ...).

Proof:

Let {x} be the fractional part of the real number x. 

Let U=(Uk)1≤k≤n be n random numbers, uniform on [0,1].

Map the rank of {aUi} in {aU} to the rank of Ui in U: this is a 
realisation of an a-riffle-shuffle. 

{a{bx}}={abx}.

{aUi} is random uniform on [0,1] and independent of [aUi].
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Bonus: 

! RSq ---->  uniform permutation,

leading to the convergence of M=(Mk)k≥1 to a Cauchy 
distribution, for

! (q,n) ----> + ∞,

in which Mk(w)  is the number of cycles with length k in the 
permutation w.

Birthday paradox: 
! DV(RSq,uniform) =O(n2/2q).

Bayer & Diaconis (1992):
! DV(RSq,uniform) = O(n3/2/q).
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GESSEL’S BIJECTION

Correspondance 

! {random uniform words from a q-letters alphabet}

! <---->

! {RSq-distributed permutations}

In which cycles are sent on Lyndon factors with the same length, 

And the profile of the permutation is sent on N.
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NEXT ...

Diaconis et al. gives the asymptotic distribution of the lengths of 
the shortest factors, while the position of these factors is lost. 

What about the lengths of the longest factors ? the lengths of the 
last factors ?

More general distribution p=(pi)i≥1 on letters ?
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X(1)X(2)X(3)X(4)X(5)

X20= (1,1,4,9,5,0,0,...)/20

Xn(k) is the renormalised size of the kth Lyndon factor, starting 
from the end of the word.

For a general alphabet A={ai}, and a general 
distribution p=(pi), Xn

 converges to a p1-sticky 
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The sequence of residual sizes after the kth break, Wk, satisfies 
! Wk/Wk-1 are independant and uniform on [0,1].

W0=1

The size Xk  of the kth piece of the stick is given by
Xk = Wk-Wk-1= U1 U2 ... Uk-1(1-Uk).

W=(Wk )k≥0 is a Markov chain with transition kernel
! p(x,dy)=1[0,x](y)dy/x.
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The a-sticky GEM(1): the residual size Wk is a Markov chain 
starting from 1, with transition kernel

! p(x,dy)=1[0,x](y)dy/x,! x≠1,

! p(1,dy)=aδ1 +(1-a)1[0,1](y)dy.

W starts with a sequence of S 1’s, P(S=k)=ak-1(1-a), k≥1, rather 
than with only W0=1.

 X starts with a sequence of T 0’s, P(T=k)=ak(1-a), k≥0, rather 
than with X0>0.

U12U (1-U )1.....
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! Xk = U1 U2 ... Uk-1(1-Uk).

Rearranging X=(Xk)k≥0 in decreasing order gives the asymptotic 

distributions of the normalised sizes of cycles, or of logarithms of 

prime factors of integers, or of degrees of prime factors of 

polynomials on finite fields.

The distribution of max Xk is related to the Dickman function:
K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude. 

Ark. Mat. Astronomi och Fysik 22,  1930, 1-14.

The normalised size of the longest factor in the Lyndon 

decomposition converges to  the Dickman distribution, regardless 

of p=(pi).

U12U (1-U )1.....
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PROOF OF THE MAIN RESULT

EXERCISES 1 & 2  ???


