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wtLog, {i | pi>0} has no gaps and contains 1.
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tn whitch 1 is the Moebius function.
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pan() = kH( R

Pan (€) converges, as g grows, to
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in which Cg(w) is the number of k-cycles n the cycle-
decomposition of the n-permutation w, and C(w) = (Cr (W) ) eos.

As n grows, pn(.) comverges to the law of a sequence of
independent Poisson random variables (with respective parameters
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TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR
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Fic. 1. A riffle shuffle. (a) We begin with an ordered deck. (b) The deck is divided into two
packets of similar size. (c) The two packets are riffled together. (d) The two packets can still be
identified in the shuffled deck as two distinct ‘‘rising sequences” of face values.
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shuffle, results tn an ab-riffle-shuffle (wot so obvious ...).

Proof:

Let {x} be the fractional part of the real number x.

Let U= (Uk) 1=k=n e W random numbers, uniform own [0,1].

Map the rank of {au} tn {aul to the rank of W tn W: this is a
realisation of an a-riffle-shuffle.

{a{bx}}={abx}.
{aug} ts random uniform on [0,11 and iwd&pewdewt of [au].
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distribution, for
(gqn) —> + x,
in which M (w) Ls the number of cycles with length k wn the
permutation w.

Birthday paradox:
DV (RS, uniform) =0 (n2/2q).

Bayer § Diaconis (19922):
DV (qu,uwi-{:orm) = owW*2/q).
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Diaconis et al. gives the asywmptotic distribution of the lengths of
the shortest factors, while the position of these factors is lost.

what about the lengths of the longest factors ? the lengths of the
last factors ?

More general distribution p= (p;)i-1 on letters ?
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X, (R) is the renormalised size of the k™ Lywndon factor, starting
from the end of the word.

For a gewneral alphabet A={a;}, and a general
distribution p=(pi), X, converges to a p;-sticky
GEM(1).
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Wi/ W1 are tnoependant and uniform on [0,1].

Wo=1

The size X of the k™ piece of the stick is given by
X = Wi-We 1= Ug Us ... Up1 (1-Uk).

W= (W )= LS @ MarRov chatn with transttion Rernel

px.dy) =1p,q(y)dy/x.
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The a—s’cioleg GEM(1): the resitdual size W, Ls a Markov chain
starting from 1, with transition kernel

Px.ady) =1p,q(y)dy/x, x#1,

p(L,dy) =ao, + (1-a)1111(Y) Ay.

W starts with a sequence of S 1’s, P(S=k)=a%*(1-a), k=1, rather
thawn with OWL5 W,o=1.

X starts with a sequence of T 0’s, P(T=R)=a"(1-a), k=0, rather
than with X,>o0.
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X = U Us ... Up1 (i—l/hg).

Rearranging X = (Xi)r=o tn decreasing order gives the asymptotic
distributions of the normalised sizes of eycles, or of logarithwms of
prime factors of integers, or of degrees of prime factors of
polynomials on finite fields.

The distribution of max X, s related to the Dickman function:

K. Bickman, On the frequency of numbers containing prime factors of a certain relative magnitude.
Ark. Mat. Astronoml och ngil@ 22, 1930, 1-14.

The wormalised size of the longest factor wn the Lywndon

decomposition converges to the Dickman distribution, regardless

of p=(po).
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