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Objectives

Present optimal stopping with two kinds of constraints

Problem:

— n fixed;

— X1, X2, · · · , Xn , i.i.d. random variables ≥ 0.

— Sequential observation (no recall)

(1, X1).....................(k , Xk ) • • • • • • • • • • • • • •

Cost = sum of selected Xk ’s.
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Goal:

We want to select online at least r and in expectation at least
µ ≥ r items with minimal cost!

– Interest of the problem

Surfing!!!

Sales contracts

Online knappsack problems

.....

Origin
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Preview

- Probabilistic setting

- The hierarchy of constraints

- Recurrence

- Precise solution for total selection cost

- Asymptotic behaviour of total selection cost
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2. Problem formulation.

• n fixed; X1, X2, ...., Xn i.i.d. U[0, 1] random variables.

• Define indicators

If Ik = 1 then Xk is selected

If Ik = 0 then Xk is refused.

{Ik = 1} ∈ σ -field Fk generated by Xk ’s and Ik ’s together.

Selection rules T = {τ := τn = (I1, I2, · · · , In)}.
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Objective:

Find

vr ,µ(n) = min
τ∈T

E

(
n∑

k=1

IkXk

)
, n ≥ µ ≥ r

and

τ∗ = arg min
τ∈T

E

(
n∑

k=1

IkXk

)

subject to

n∑
k=1

Ik ≥ r , 1 ≤ r ≤ n (D-constraint)

and

E

(
n∑

k=1

Ik

)
= µ, µ ∈ IR, µ ≥ r . (E-constraint)
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Recurrence

• vr ,µ(n) := optimal value for n with (r , µ)-constraints.

• Vr ,µ(n|Fk ) := E(min total cost expectation | Fk ).

• Nk := I1 + · · ·+ Ik = # selections up to k under optimal rule.

Lemma 1 For all (stopping) times 0 ≤ τ ≤ n :

V (n|Fτ ) = vr−Nτ ,µ−Nτ (n − τ) +
τ∑

j=1

IjXj a.s.
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Lemma

Vδ(n) = v0,µ−r (n − δ) +
δ∑

j=1

IjXj a.s.

with

v 0,µ−r (k) =
(µ− r)2

2k .
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Sketch of Proof.

— Conditioned on δ = d , ... clear.

— Future variables Xδ+1, · · · , Xn are Fδ− independent .

— Conditional expectation.

..............................

Statement holds unconditionally.
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Remains to be shown :

v0,µ−r (k) = (µ− r)2/2k .

At time δ+ , we must design a rule which selects in expectation
µ− r from K = n − δ i.i.d U[0, 1]-random variables.
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Threshold rules

— If it is optimal to select Xj = x , say, then it is optimal to
accept X ′

j < x .

— If optimal to refuse Xj = x , .... optimal to refuse X ′
j > x .

=⇒ Each opt. decision is based on a unique threshold!
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t1, t2, · · · , tK := selection thresholds for Xδ+1, Xδ+2, · · · , Xn

Then
E(Iδ+jXδ+j) = tjE(X |X ≤ tj) = t2

j /2.

Minimize
K∑

j=1

t2
j

subject to
K∑

j=1

E(Iδ+j) =
K∑

j=1

tj = µ− r .
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Optimization (e.g. Lagrange multiplyer method) yields

tj ≡ (µ− r)/K , j > δ.

Hence

v0,µ−r (K ) = K
µ− r

K
× µ− r

2K
=

(µ− r)2

2K
.
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Optimal rule.

Theorem 3.1

vr ,µ(n) = vr ,µ(n − 1)− 1
2
[
vr ,µ(n − 1)− vr−1,µ−1(n − 1)

]2
,

for n = [µ]+, [µ]+ + 1, · · · , with initial conditions

vr ,µ([µ]+) =
µ

2
; v0,µ−r (n) =

(µ− r)2

2n
, n = 1, 2, · · ·

Proof. Suppose it is optimal to select X1 iff X1 ≤ t . Then

ṽr ,µ(n, t) = t
[
E(X |X ≤ t) + vr−1,µ−1(n− 1)

]
+ (1− t)vr ,µ(n− 1).

E(X |X ≤ t) = t/2, differentiable in t for all
t ∈]0, 1[ ∂ṽr ,µ(n, t)/∂t = 0 with ∂2ṽr ,µ(n, t)/∂t2 > 0 minimizes
vr ,µ(n, t).
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Unique

solution
t∗ = vr ,µ(n − 1)− vr−1,µ−1(n − 1).

We must have
ṽr ,µ(n, t∗) = vr ,µ(n).

....insert ... elementary steps....
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Initial conditions:

Suppose µ ∈ IN and n = µ. The optimal policy must select all
observations.... value µ/2. The second initial condition stems
from (4), and thus the Theorem is proved.

For all r and µ , vr ,µ(n) ≥ 0 . Hence (vr ,µ(n)) decreases in n ,
whenever the sequence (vr−1,µ−1(n)) decreases in n .
(v0,µ−r (n)) decreases in n

Hence must converge (to the only possible limit 0.)
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Corollary For µ ≥ 1 and n ≥ µ ≥ r (vr ,µ(n))n≥µ is monotone
decreasing with limit 0.
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Lemma

For n fixed with n ≥ [µ]+ and µ ≥ r

(i) vr ,µ(n) ≥ vr−1,µ−1(n)

(ii) vr ,µ(n) ≥ vr ,µ−1(n)

Proof: ṽµ,r (n) := minimal expected total cost of the optimal
strategy for the (r , µ)-constraints under the additional
hypothesis, that the r th selection for free. Then
ṽµ,r (n) ≤ vµ,r (n) . However if we play right away optimally under
the weaker (r − 1, µ− 1)-constraints, ....

vr−1,µ−1(n) ≤ ṽr ,µ(n).

Hence vr ,µ(n) ≥ vr−1,µ−1.

Inequality (ii) follows from v0,µ−r (.) > v0,µ−1−r (.) uniformly.
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4. The optimal rule.

Definition For s ∈ {0, 1, · · · , r} and k ∈ {0, 1, · · · , n} we say
we are in state (s, k) , if s selections have been made until time
n − k included.

(Note that the current E-constraint is implicit for 0 ≤ s ≤ r .)

Since the continuation thereafter is, by hypothesis, a fixed
selection rule, it becomes irrelevant once the D-constraint is
satisfied. Hence we need not list it as a separate
state-coordinate.

Recall: Optyimal thresholds are all unique.
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Computing optimal thresholds and values

The optimal thresholds for each state can be computed
recursively.

We have to start with two independent lines of initial conditions,
namely for v0,µ−r (k) with k ≥ µ− r and for vs,k (k) with k ≥ s .
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5.1 Algorithm:
A

Optimal values

(A1) v0,µ−r (k) = (µ− r)2/(2k) , k = µ− r , · · · , n − r .

(A2) vs,k (k) = k/2, k = µ− r , · · · , n − r ; s = 1, · · · r .

(A3) For s = 1, · · · , r and init. cond. (A1), (A2) compute

vs,µ−r+s(k)

= vs,µ−r+s(k−1)−1
2
[
vs,µ−r+s(k − 1)− vs−1,µ−r+(s−1)(k − 1)

]2
,

k = µ− r + s, · · · , n − r ; s = 1, · · · r .
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B

Optimal thresholds

(B1) tr ,k = v0,µ−r (k) = (µ− r)2/2, k = µ− r , · · ·n − r .

(B2) ts,k = vr−s,µ−s(k − 1)− vr−s−1,µ−s−1(k − 1) ,
s = 0, · · · , r − 1
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5.2 Bounds of vr ,µ(n) for general r and µ.

Motivation ...

Lemma For all 0 ≤ s ≤ r , s ≤ m ≤ µ and max{s, m} ≤ k ≤ n

vr ,µ(n) ≤ vs,m(k) + vr−s,µ−m(n − k).
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Proof.

Fix indices s, m and k such that the conditions for the Lemma
are fufilled. This is always possible ...at least (r , µ, n) and
(0, 0, 0) are possible (by definition.)

Consider a two-legged strategy.

— Leg 1 minimizes the expected total cost of accepting items
until time k under the (s, m) constraint.

— Leg 2 remembers the occured cost at time k and then
minimizes (independently) the additional cost of accepting
further items under the constraints r − s, mu −m.

This composed strategy is admissable since it fulfills the
original constraints, and since Xk+1, Xk+2 · · ·Xn are
independent of the past, its value is vs,m(k) + vr−s,µ−m(n − k).
The inequality follows then by sub-optimality.
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For the special case s = r = m we obtain

Corollary For 1 ≤ r ≤ µ ≤ n : vr ,µ(2n) ≤ vr ,r (n) + 1
2n (µ− r)2.
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Lemma For all 1 ≤ r ≤ µ there exist constants α = α(r , µ) and
β = β(r , µ) such that α/n ≤ vr ,µ(n) ≤ β/n for all n ≥ µ, with n
sufficiently large.

Proof. We first prove that the existence of a lower bound
α(r , µ)/n .
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By definition of the D-constraint and E-constraint we have
µ ≥ r . Since vr ,µ(·) is increasing in µ for fixed r and n , it
suffices to show vr ,r (n) ≥ α/n for some constant α.

The optimal strategy for the (r , r)-constraints cannot do better
than selecting the r smallest order statistics.

The expectation of the sum of these is
r(r + 1)/(2(n + 1)) ≥ r2/(2n). Hence vr ,µ(n) ≥ vr ,r (n) ≥ α/n
for α = r2/2.
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Concerning the upper bound β we see that the statement is
true, if it is true for vr ,r (n).

Now, vr ,r (rn) ≤ vr−1,r−1((r − 1)n) + v1,1(n) , and hence by
induction vr ,r (rn)) ≤ rv1,1(n). The sequence (v1,1(n)) coincides
with Moser’s sequence, which is known to satisfy v1,1(n) ≤ c/n
for all n.
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Therefore vr ,r (rn)) ≤ (cr)/n . But then, for general n we have
vr ,r (n) ≤ vr ,r ([n/r ]r) , where [x ] denotes the floor of x . Hence
vr ,r (n) ≤ cr/[n/r ] ≤ (cr2 + ε)/n for all ε > 0 and n sufficiently
large, and the proof is complete.
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Example:

Aldous’ problem (2006). What is v1,2(n) and what is the
behaviour of nv1,2(n)?

We have µ− r = 1, v0,1(k) = (µ− r)2/(2k). Initial condition:
v1,2(2) = 1.

Recurrence:
v1,2(k) = v1,2(k − 1)− 1

2

(
v1,2(k − 1)− 1

2(k−1)

)2
, k = 2, 3, · · ·n.
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—(v1,2(n)) is decreasing and bounded below by 0.
v1,2 = lim v1,2(n) exists and taking limits shows v1,2 = 0.

What is the asymptotic behaviour of (nv(n))?

Answer: We will see (nv1,2(n)) → 3/2 +
√

2.
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Approximation of general solution.

Asymptotic behaviour

We rewrite for t ∈ IN and ε = 1as

1
ε

(
vr ,µ(t)− vr ,µ(t − ε)

)
= −1

2

(
vr ,µ(t − ε)− vr−1,µ−1(t − ε)

)2

with initial condition (6). We fix r and µ and can then simplify
the notation by writing vr−1,µ−1(t) =: v(t) and vr ,µ(t) =: w(t) ,
say. Let ṽ(t) and w̃(t) be diffentiable functions which coincide
with v(t) and w(t) for t ∈ IN with t ≥ µ.
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It follows from Lemma 5.3 and the mean value theorem that the
differential equation

w̃ ′(t) = −1
2

(w̃(t)− ṽ(t))2

defined for t ∈ [µ,∞] must catch the asymptotic behaviour of
w(t) for t ∈ IN .

Note that this is a general Riccati differential equation, and the
idea is now to show that only exactly one solution of equation
(12) is compatible with (11).
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Theorem 6.1

If ṽ(t) = c/t for some constant c ≥ 2 then the unique solution
w̃(t) satisfying limt→∞ vr ,µ(t)/w̃(t) = 1 is the function

w̃(t) := w̃1(t) =
1
t

(
1 + c +

√
1 + 2c

)
.

Proof: We first prove that w̃1(t) =
(
1 + c +

√
1 + 2c

)
/t is a

particular solution of equation (12). Indeed, there must be a
constant, c1 say, such that c1/t is a particular solution,
because plugging in yields the equation

−c1

t2 =
−1
2t2 (c2

1 − 2cc1 + c2)

with solutions in{1 + c +−
√

1 + 2c}.
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Only the solution c1 =
(
1 + c +

√
1 + 2c

)
is meaningful

because with c > 0 we would have
(
1 + c −

√
1 + 2c

)
< c

contradicting w̃(t) ≥ ṽ(t). Hence w̃1(t) is a particular solution.
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From the general theory of Riccati differential equations (see
e.g. Grauert und Fischer (1967), 109-112) we know that we
can generate a general solution {w̃2} from a particular solution
by solving (substitution u(t) = 1/(w2(t)− w1(t)) the first order
linear equation

u′(t) = −(Q(t) + 2R(t)w̃1(t))u(t)− R(t)

where, in our case, R(t) = −1/2 and Q(t) = c/t . The set {w̃2}
of solutions is then the set {w̃2(t) = w̃1(t) + u(t)−1} with a
single undetermined constant.
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Plugging our particular solution w̃1(t) into the first order
equation yields, after straightforward simplification, the equation
u′(t) = u(t)

(
1 +

√
1 + 2c

)
/t + 1/2 . We solve its associated

homogeneous equation and then apply the method of the
variation of constants. This yields ....

Finally wee see that all other solutions are incompatible with
at least one of the precedingly proved properties of vΣ,µ(n) and
v0,µ−r (n)
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Limiting behaviour:

nvr ,µ(n) → cr

where

c0 :=
(µ− r)2

2

ck := ck−1 + 1 +
√

2ck−1 + 1.

Outlook.
***
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