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Abstract

This article presents a Bayesian nonparametric approach to the estimation of a sys-
tem and its components’ survival functions arising from observing the failure of a series
system or a competing risk model. A Dirichlet multivariate process is used as a prior for
the vector of the components’ random subsurvival function to derive Bayes estimator of
the survival function when the cause of failure belongs to a certain risk subset. This is
done as follows. First, Peterson’s formula is evaluated using the Bayes estimators of the
subsurvival functions corresponding to the risk subset, to obtain a plugged-in nonpara-
metric estimator of the survival function associated with the risk subset. Then, using the
product-integration approach, it is proved that this nonparametric estimator is in fact the
Bayes estimator of the survival function corresponding to the risk subset under quadratic
loss function and the Dirichlet multivariate process. The weak convergence and the strong
consistency of the estimator is established. The special case when the system has only
two components corresponds to well studied randomly censored model.
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1 Introduction

Consider a series system with r (r > 1) components or a competing-risks model with r

sources of failure. Let Xj (j = 1, . . . , r) denote the failure time of the j-th component or

source of failure, where X1, . . . , Xr are independent random variables. When the system

(or organism) fails , the observed random vector is (Z, δ), where Z = min(X1, . . . , Xr) ,

and δ = j if Z = Xj , j = 1, . . . , r .

1.1 Survival and Subsurvival Functions

The survival function of the j-th component is denoted by

Sj(t) = Pr(Xj > t) j = 1, . . . , r .

Let

S∗j (t) = Pr(Z > t, δ = j) ,

be the subsurvival function, called the cumulative incidence function (CIF), of the j-th

component (j = 1, . . . , r). Then, the system survival function is given by

S(t) = Pr(Z > t) =
r∑

j=1

S∗j (t) .

Let ∆ be a nonempty subset of {1, . . . , r}, called a risk subset, and denote by ∆c its

complement. Corresponding to ∆, we define the subsurvival and survival functions

S∗∆(t) = Pr(Z > t, δ ∈ ∆) ,

and

S∆(t) = Pr
(
min
j∈∆

Xj > t
)

,

respectively.
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1.2 Cumulative Hazard Rate and Cause Specific Hazard Rate

Some notions related to hazard failure rate are explained in the context of risk subsets;

however, we obtain their usual notions when the risk set consists of a singleton.

The cumulative hazard rate Λ∆ for the survival function S∆ or random variable

Y∆ = minj∈∆(Xj) is a nonnegative, nondecreasing, right-continuous function on [0,∞)

satisfying

dΛ∆(s) = Λ∆[s, s + ds) = Pr{Y∆ ∈ [s, s + ds)|Y∆ ≥ s}

= −dS∆(s)/S∆(s−).

So that

Λ∆(t) =
∫ t

0

−dS∆(s)

S∆(s−)
, (1.1)

and

S∆(t) =
∫ t

0
−S∆(s−)dΛ∆(s)

=
∏

[0,t]

(1− dΛ∆(s)) , t ≥ 0, (1.2)

where
∏

[0,t] is the product-integral. If Λ∆(·) is continuous,
∏

[0,t](1−dΛ∆(s)) = exp(−Λ∆(t));

otherwise
∏

[0,t]

(1− dΛ∆(s)) = exp(−Λc
∆(t))

∏

i:ti≤t

(1− Λ∆{ti}) ,

where t1, t2, . . . , are the discontinuity points of Λ∆ and Λc
∆ is the continuous part of

Λ∆, i.e., Λc
∆(t) = Λ∆(t)−∑

i:ti≤t Λ∆{ti}. For a complete review of product-integration in

survival analysis see, for example, Gill and Johansen (1990).

If S∆ and Sc
∆ have no common discontinuities, (1.1) becomes

Λ∆(t) =
∫ t

0

−dS∗∆(s)

S(s−)
. (1.3)
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The function (−dS∗∆/S) is called the cause-specific hazard rate of the risk subset ∆.

1.3 Peterson’s Formula

Peterson’s formula (Peterson, 1977) expresses the survival function associated with the

risk subset ∆ as a functional of the subsurvival functions associated with ∆ and ∆c. The

formula is given by

S∆(t) = ϕ(S∗∆(·), S∗∆c(·); t) , for t ≤ t∗ = min(tS∆
, tS∆c ) , (1.4)

where

ϕ(F (·), G(·); t) = exp

{∮ t

0

dF (s)

F (s) + G(s)

} ∏

t

F (s+) + G(s+)

F (s−) + G(s−)
,

tS∆
= sup{t : S∆(t) > 0}, and

t∮
0

is the integral over the union of intervals of points

less than t for which F (·) is continuous.
∏

t indicates the product over the set {s ≤ t :

s is a jump point ofF}. For (1.4) to be well defined we assume that S∆ and S∆c have no

common discontinuities. If S∆ and S∆c are continuous, then (1.4) is analogous to equation

(7.5) in Breslow and Crowley (1974):

S∆(t) = exp

[∫ t

0

dS∗∆(s)

S∗∆(s) + S∗∆c(s)

]
.

1.4 Objectives

Let (Xi1, . . . , Xir), i = 1, . . . , n, be n independent latent or imaginary observations on

(X1, . . . , Xr). The actual observations consist of pairs (Zi, δi), i = 1, . . . , n, which forms

a sample on (Z, δ).

The main objective of this paper is to derive Bayes estimator of S∆ from the data

(Z1, δ1), . . . , (Zn, δn).
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When r = 2, the risk subset is the singleton subset ∆ = {1} and ∆c = {2}, the data

(Z1, δ1), . . . , (Zn, δn) correspond to a random (right) censored model and the estimation

of S1(t) = Pr(X1 > t) has been considered by a number of authors. For example, Kaplan

and Meier (1958) derived the product-limit (PL) estimator for S1 and showed that it

is in fact a maximum likelihood estimator. Breslow and Crowley (1974) studied several

properties of the PL estimator.

Susarla and Van Ryzin (1976) considered the Dirichlet process prior (Ferguson, 1973)

for S1 and obtained a nonparametric Bayes estimator (denoted hereafter as SV estimator).

The SV estimator reduces to PL estimator as the “prior sample size” tends to zero. Susarla

and Van Ryzin (1978) studied the large sample properties of the SV estimator. For a

survey of work on the Bayesian estimation of survival function using Dirichlet processes,

see Ferguson, Phadia and Tiwari (1992).

Other works consider different approaches. Hjort (1990) studied the problem of find-

ing Bayes estimators for cumulative hazard rates and related parameters considering a

class of Beta processes as a prior distribution. Bayesian inference for a weigthed dis-

tribution model is considered by Lo (1993) using Dirichlet processes defined in terms of

Gamma processes.

This paper has a special interest in the general case r ≥ 2, i.e, a series system or a

competing-risks model.

In Section 2, we use Dirichlet multivariate processes, introduced by Salinas-Torres,

Pereira and Tiwari (1997), to derive Bayes estimators of the system survival function

corresponding to a risk subset, ∆. This is done as follows. We first substitute the Bayes

estimator of S∗∆ = (S∗∆, S∗∆c) in Peterson’s formula (1.4), and obtain a nonparametric

estimator of S∆. Using the product-integration approach described in Subsection 1.2, we

then show the nonparametric estimator of the S∆ is in fact a Bayes estimator under the

quadratic loss function, i.e., the posterior mean of S∆ given the data. The case r = 2,
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which corresponds to the censored data problem is a consequence. In Section 3, the

large sample properties such as strong consistency, law of iterated logarithm, and weak

convergence of our estimator of S∆ are studied.

2 Bayesian Analysis

The objective of this section is to consider the Bayesian approach to a competing-risks

model or a series system and to derive the Bayes estimator of the survival function S∆

associated with a risk set ∆.

2.1 Dirichlet Multivariate Processes

For definitions of the Dirichlet process and singular Dirichlet distributions we refer to

Ferguson (1973) and Wilks (1962), Section 7.7, respectively. The Dirichlet multivariate

process is defined as follows.

Let (X ,A) be a measurable space, and α1, . . . , αr be finite, nonnull, and nonneg-

ative measures defined on (X ,A). Let ρρρ = (ρ1, . . . , ρr); P1, . . . , Pr be mutually inde-

pendent random elements defined on a probability space (Ω,F , Q). Suppose that ρρρ has

a singular Dirichlet distribution Ds(α1(X ), . . . , αr(X )), and Pj is the Dirichlet process

with parameter αj, that is, Pj ∼ D(αj), j = 1, . . . , r. Define P∗ = (P ∗
1 , P ∗

2 , . . . , P ∗
r ) =

(ρ1P1, . . . , ρrPr). Then P∗ is a Dirichlet multivariate (r-variate) process with parameter

ααα = (α1, α2, . . . , αr), that is, P∗ ∼ DMr(ααα).

In a context of a series system or a competing risks model, the definition of the

Dirichlet multivariate process is established as follows.

Let α1, . . . , αr be finite, nonnull, and nonnegative measures on ((0,∞),B(0,∞)). Let

ρρρ = (ρ1, . . . , ρr) = (Pr(δ = 1), . . . , Pr(δ = r)) ∼ Ds(α1(0,∞), . . . , αr(0,∞)),

T ∗
j (t) = Pr(Z > t|δ = j), T ∗ ∼ D(αj); j = 1, . . . , r. Suposse that ρρρ, T ∗

1 , . . . , T ∗
r
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are mutually independent. Then the prior for S∗ is given by S∗ = (ρ1T
∗
1 , . . . , ρrT

∗
r ) ∼

DMr(α1, . . . , αr). (See Salinas-Torres, Pereira and Tiwari, 1997).

The induced prior for S∗∆ is given by

S∗∆(t) ∼ Beta (crS
∗
∆,0(t) , cr(1− S∗∆,0(t)) , t > 0, (2.1)

where cr =
∑r

j=1 αj(0,∞) and S∗∆,0(t) =
∑

j∈∆ αj(t,∞)/cr is the prior mean of S∗∆.

Also, S0(t) = S∆,0 + S∆c,0 is the prior mean of S.

Note that S∗∆(·) is a Beta process on [0,∞) with independent increments of the type

(see Hjort,1990)

dS∗∆(t) ∼ Beta (crdS∗∆,0(t) , cr(1− dS∗∆,0(t)). (2.2)

The following result gives the prior mean of the survival function S∆ in terms of the

prior mean of its associated cumulative hazard rate Λ∆.

Lemma 1. Suppose that S∆ and S∆c have no common discontinuities. Under the prior

(2.1) for S∗∆(·), the prior mean of the survival function S∆ is given by, for each t > 0,

S∆,0(t) := IE [S∆(t)] =
∏

[0,t]

(1− dΛ∆,0(s)),

where Λ∆,0(s) := IE [Λ∆(s)] is the prior mean of Λ∆ associated with the survival function

S∆.

Proof.

Define a sequence of partitions of [0,∞) by {[(k − 1)/l, k/l) : k, l = 1, 2, . . . , } and

let

S̃∗∆(k/l) = S∗∆((k − 1)/l)− S∗∆(k/l).
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So that

S̃(k/l) = S̃∗∆(k/l) + S̃∆c ∗ (k/l).

Also, let

S̃∗∆,0(k/l) = S∗∆,0((k − 1)/l)− S∗∆,0(k/l),

S̃0(k/l) = S̃∗∆,0(k/l) + S̃∗∆c,0(k/l).

Under the prior (2.1) for S∗∆(t), we have

S̃∗∆(k/l) ∼ Beta(crS̃
∗
∆,0(k/l) , cr(1− S̃∗∆,0(k/l))),

and

S̃∗∆(k/l)
∑

i≥k S̃(i/l)
∼ Beta(crS̃

∗
∆,0(k/l) , cr(

∑

i≥k

S̃0(i/l)− S̃∗∆,0(k/l)))

∼ Beta(crS̃
∗
∆,0(k/l) , cr

∑

i>k

S̃0(i/l)).

Also,

S∆(t) = lim
l→∞

k−1
l
→t

∏

i:i≤k

(
1− S̃∗∆(i/l)

∑
r≥i S̃(r/l)

)

and hence

S∆,0(t) = IE[S∆(t)] = lim
l→∞

k−1
l
→t

∏

i:i≤k


1− S̃∗∆,0(i/l)∑

r>i S̃0((r/l)




=
∏

[0,t]

(
1− dS∗∆,0(s)

S0(s−)

)
=

∏

[0,t]

(1− dΛ∆,0(s)) ,

where the last equality follows from (1.3). 2

Let

S∗jn(t) =
1

n

n∑

i=1

I(Zi > t, δ = j), j = 1, . . . , r,

be the empirical subsurvival function of the j-th component, j = 1, . . . , r, where I(·) is

the indicator function. Let Sn(t) =
∑r

j=1 S∗jn(t) be the empirical survival function of the

system.
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The posterior distribution of S∗(t) is again an updated Dirichlet multivariate process

given by S∗(t)|nS∗n(t) ∼ DMr(α1 + nS∗1n, . . . , αr + nS∗2n); see Salinas-Torres, Pereira and

Tiwari (1997).

Let S∗∆n(t) =
∑

j∈∆ S∗jn(t) =
1

n

n∑

i=1

I(Zi > t, δ ∈ ∆) be the empirical subsurvival

associated with the risk subset ∆.

Consider the quadratic loss function

L(S∗, Ŝ∗) =
∫ ∞

0
‖ S∗(t)− Ŝ∗(t) ‖2 dW (t), (2.3)

where ‖ · ‖ is the usual Rr norm, Ŝ∗ = (Ŝ∗1, . . . , Ŝ
∗
r) is an estimator of S∗ = (S∗1 , . . . , S

∗
r )

and W (·) is a weight function.

Let pn = cr/(cr + n). Then the Bayes estimators of S∗∆(·) and S(·) are given by

Ŝ∗∆(t) = pnS
∗
∆,0(t) + (1− pn)S∗∆,n(t),

and

Ŝ(t) =
r∑

j=1

Ŝ∗j (t) = Ŝ∗∆(t) + Ŝ∗∆c(t) ,

respectively.

As a remark we would like to point out that the Bayes estimators Ŝ∗∆, Ŝ are strongly

consistent. For instance, using Glivenko Cantelli Theorem and the fact that pn ↓ 0, it can

be shown that Ŝ∗∆ converges to S∗∆ uniformly w.p. 1.

2.2 Main Result

Let the m(≤ n) distinct order statistics of Z be Z(1) < . . . < Z(m). Set

nj =
∑n

i=1 I(Zi ≥ Z(j)) and dj =
∑n

i=1 I(Zi = Z(j), δi = 1), j = 1, . . . , m. Define

i∆(t) = exp





−1

cr + n

∑

j∈∆c

∫ t

0

dαj(s,∞)

Ŝ(s)
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and

πr(t) =
∏

i:Z(i)≤t

∑r
j=1 αj(Z(i),∞) + ni − di∑r

j=1 αj(Z(i),∞) + ni

,

where ∆c is the complement of ∆. The main result is given below.

Theorem 1. Suppose that the function fff(s) = (α1(s,∞), . . . , αr(s,∞)) is continuous on

(0, t), for each t > 0, and S∆ and S∆c have no common discontinuities then, for t ≤ Z(m),

Ŝ∆(t) = ϕ(Ŝ∗∆, Ŝ∗∆c ; t) = Ŝ(t)i∆(t)π∆(t) ,

is the Bayes estimator of S∆(t) under the quadratic loss function (2.3).

Proof. Substituting the Bayes estimates S∗∆ and S∗∆c in Peterson’s formula (1.4) , we

have

Ŝ1(t) = exp

{∫ t

0

dŜ∗∆
Ŝ(s)

} ∏ ∑r
j=1 Ŝ∗j (s+)

∑r
j=1 Ŝ∗j (s−)

, t ≤ t∗. (2.4)

Note that dŜ∗∆(s) = dŜ(s) −
∑

j∈∆c dαj(s,∞)

cr + n
, and the first term in (??) becomes

Ŝ(t)i∆(t). Since for each fixed t > 0, fj(·,∞) is monotone decreasing and continuous on

(0, t), and 1/Ŝ is monotone increasing on (0, t) and both are of bounded variation on (0, t),

fj can be decomposed uniquely as the difference of two monotone continuous functions

(cf. Rudin, 1964, Corollary 1 of Theorem 6.27) and 1/Ŝ as the difference of two monotone

functions (not necessarily unique). Thus, the integral
∫ t

0

∑
j∈∆c dαj(s,∞)

Ŝ(s)
is well defined.

Moreover, the second factor in (??) is

∏

s≤t

∑r
j=1 αj(s,∞) +

∑n
i=1 I(Zi > s+)

α1(s,∞) + α2(s,∞) +
∑n

i=1 I(Zi > s−)
= πr(t).

On the other hand, proceeding as in Lemma 1,

Ŝ∆(t) = IE[S∆(t) | data ] =
∏

[0,t]

(1− dΛ̂∆(s)), (2.5)
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where dΛ̂∆(s) =
crdS∗∆,0(s) + ndŜ∗∆(s)

cS0(s−) + nŜ(s−)
. Simplifying (2.5) yields (2.4). 2

Note that (2.5) is the posterior mean of S∆(t) given the data; that is the Bayes

estimator of S∆ under the loss function (2.3).

When r = 2, ∆ = {1} and ∆c = {2}, the series system corresponds to the randomly

censored data model. In this case, letting α1(t,∞) + α2(t,∞) = α(t,∞), for each t, the

product Ŝ(t)πr(t) is analogous to the equation (3.2) of Tsai (1986). Also, Ŝ(t)πr(t) is

similar to the SV estimator. If αj(0,∞) tend to zero, for all j = 1, 2 the estimator Ŝ1

reduces to the PL estimator.

3 Large sample properties of Ŝ∆

Let D[0, T ] be the space of cadlag functions on [0, T ] equipped with the supremum

norm ||F ||T = sup0≤t≤T |F (t)|. Denote by D[0, T ] × D[0, T ] the product space, where

||(F,G)||T = max(||F ||T , ||G||T ).

The strong consistency of Ŝ∆ follows from the strong consistency of Ŝ∗ = (Ŝ∗1 , . . . , Ŝ
∗
r )

in conjunction with the following result.

Lemma 2. The functional ϕ from D[0, T ]×D[0, T ] into D[0, T ] defined in Theorem 1 is

continuous. 2

Lemma 2 can be easily shown by considering a sequence (Fn, Gn) in D[0, T ]×D[0, T ]

such that ||(Fn, Gn)− (F, G)||T → 0 for some (F,G) ∈ D[0, T ]×D[0, T ] and showing that

for Hn(·) = ϕ(Fn, Gn; ·), ||Hn −H||T → 0, where H(·) = ϕ(F,G; ·).

To establish the weak convergence of Ŝ∆, note that
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n1/2[(Ŝ∗∆, Ŝ∗∆c)− (S∗∆, S∗∆c)] = n1/2[(S∗∆,n, S
∗
∆c,n)− (S∗∆, S∗∆c)] + op(1) , (3.1)

since pn ↓ 0. The bivariate empirical process n1/2[(S∗∆,n, S∗∆c,n)(t) − (S∗∆, S∗∆c)(t)]

converges weakly to a Gaussian process (U, V ) with mean (0, 0) and a covariance kernel

given by, for 0 ≤ s ≤ t ≤ t∗, ( see Tsai and Crowley, 1985)

Cov (U(s), U(t)) = (1− S∗∆(s))S∗∆(t)

Cov (U(s), V (t)) = −S∗∆(s)S∗∆c(t) (3.2)

Cov (V (s), U(t)) = −S∗∆c(s)S∗∆(t)

Cov (V (s), V (t)) = (1− S∗∆c(s))S∗∆c(t) .

From (??) it follows that n1/2[(Ŝ∗∆, Ŝ∗∆c)(t) − (S∗∆, S∗∆c)(t)] converges weakly to the

Gaussian process (U, V ) in (3.2).

Using the von Mises’ (1947) representation of statistics and applying results from

Breslow and Crowley (1974), and Tsai and Crowley (1985), the following theorem gives

the weak convergence and the law of iterated logarithm for Ŝ∆.

Theorem 2.

a) Suppose that the survival functions S∆ and S∆c have no common discontinuities.

Then n1/2(Ŝ∆ − S∆) converges weakly to a Gaussian process W (·) with mean zero

and a covariance kernel given by, for s ≤ t < t∗ = min(tS∆
, tS∆c ),

Cov (W (s),W (t)) = S∆(s)S∆(t)
∫ s

0

dS∗∆(u)

[S(u−)]2
.

b) Suppose that, in addition, the survival functions S∆ and S∆c are continuous. Then

sup
0≤t≤t∗

|Ŝ∆(t)− S∆(t)| = O




√
log log n

n


 a.s. as n →∞ .
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Proof. The arguments being fairly routine, we only sketch the proofs.

a) n1/2(Ŝ∆ − S∆) = ϕ′((S∗∆, S∗∆c); n1/2((Ŝ∗∆, Ŝ∗∆c) − (S∗∆, S∗∆c)) + o(n1/2||(Ŝ∗∆, Ŝ∗∆c) −
(S∗∆, S∗∆c)||t∗ , where ϕ′((S∗∆, S∗∆c); ·) is the Frechet differential of ϕ at point (S∗∆, S∗∆c).

Applying, Lemma 4.3 of Tsai and Crowley(1985), and Kiefer’s inequality to the sec-

ond term, we obtain

n1/2(Ŝ∆ − S∆)(t) = S∆(t)

{
n1/2 (Ŝ∗∆ − S∗∆)(t)

S(t)
+

∫ t

0
n1/2 (Ŝ∗∆(u)− S∗∆(u))

[S(u−)]
dS(u)

−
∫ t

0
n1/2 (Ŝ(u)− S(u))

[S(u−)]2
dS∆(u)

}
+ op(1).

We conclude the proof using Theorem 4.4 of Tsai and Crowley (1985) and Breslow

and Crowley (1974).

b) Note that the ϕ′((F,G); ·) is a linear and continuous transformation, therefore

||Ŝ∆ − S∆||t∗ ≤ ||ϕ′||||(Ŝ∗∆, Ŝ∗∆c)− (S∗∆, S∗∆c)||t∗ + O(||(Ŝ∗∆, Ŝ∗∆c)− (S∗∆, S∗∆c)||t∗),

where ||ϕ′|| is the norm on the space of linear transformations. The strong consis-

tency of the estimator (Ŝ∗∆, Ŝ∗∆c) and the law of iterated logarithm for Ŝ∗∆ and Ŝ∗∆c

along with the continuity assumption, imply the conclusion. 2

We note that Ŝ∆ is a generalized self consistent estimator (Tsai, 1986), since it is

obtained by using Peterson’s formula and the asymptotic properties of S∗.
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