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Abstract

The full Bayesian signi/cance test (FBST) for precise hypotheses is presented, with some
illustrative applications. In the FBST we compute the evidence against the precise hypothesis.
We discuss some of the theoretical properties of the FBST, and provide an invariant formulation
for coordinate transformations, provided a reference density has been established. This evidence
is the probability of the highest relative surprise set, “tangential” to the sub-manifold (of the
parameter space) that de/nes the null hypothesis.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

The full Bayesian signi/cance test (FBST) is presented in Pereira and Stern (1999b)
as a coherent Bayesian signi/cance test. The FBST is intuitive and has a geometric
characterization. It can be implemented using modern numerical optimization and in-
tegration techniques. The method is “fully” Bayesian and consists in the analysis of
credible sets. By fully we mean that we need only the knowledge of the parameter space
represented by its posterior distribution. The FBST needs no additional assumption, like
a positive prior probability of the precise hypothesis, that leads to the Lindley’s para-
dox (Lindley, 1957). Like all Bayesian analysis, the FBST regards likelihoods as the
proper means for representing statistical information, a principle stated by Basu (1988),
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Birnbaum (1972), Finetti (1974, 1981/1991, 1993), Good (1983), Kempthorne (1976,
1980), Royall (1997), and others, to simplify and unify statistical analysis. Another
important aspect of the FBST is its consistency with the “Onus Probandi” juridical
principle (Gaskins, 1992; Kokott, 1998).
The FBST formulation presented in this paper provides explicit invariance under

general coordinate transformations of the parameter space, provided a reference density
has been established. The FBST is illustrated with some examples.
As shown in Madruga et al. (2001), the FBST is also in harmony with Bayesian

decision theory of Rubin (1987), in the sense that there are speci/c loss functions
which render the FBST decision theoretic aspects. Although, we can cast the FBST in
a decision theoretic framework, it was originally de/ned in a pure operational form,
based only on the Onus Probandi juridical principle, Pereira and Stern (1999b). Com-
pliance with this juridical principle, also known as Bene/t of the Doubt, Presumption
of Innocence or (in accounting) Safe Harbor Liability Rule, was imperative in some of
our consulting projects, Pereira and Stern (1999a). This kind of principle establishes
that:
“There is no liability as long as there is a reasonable basis for belief, eIectively

placing the burden of proof (Onus Probandi) on the plaintiI, who, in a lawsuit, must
prove false a defendant’s misstatement, without making any assumption not explicitly
stated by the defendant, or tacitly implied by existing law or regulation”. Accordingly,
a working hypothesis is not rejected if there is not suJcient evidence against it.
Interesting connections of some of the characteristics stated above, with ethics, epi-

stemology, law, psychology and statistics can be found in Carnap (1962), Box and
Tiao (1973), Cox (1977), DeGroot (1970), Finetti (1974, 1981/1991), Gaskins (1992),
Kokott (1998), Lauretto et al. (2002), Lindley (1957, 1978), Madruga et al. (2001),
Pereira and Wechsler (1993), Pereira and Stern (1999a, b), Popper (1989), Savage
(1962), Sellke et al. (1999), and Stern and Zacks (2002).

2. Computing the evidence against H0

Let X1; : : : ; Xn be random variables having a joint density f(x; �), with respect to a
�-/nite measure 	. � is a parameter vector in a parameter space 
 ⊆ Rp (p¿ 1). We
are interested in a precise null hypothesis H0: �∈
0, 
0 ⊂ 
, and dim(
0)¡ dim(
).
Let L(�; x) denote the likelihood function of � on 
. Let p(�) be a prior density

on 
, and r(�) a reference density on 
. We denote by pn(�) the posterior density
of � on 
, i.e.

pn(�)˙ L(�; x)p(�); x = [x1; : : : ; xn]; �= [�1; : : : ; �p]

and de/ne

� ∗ = arg max
�∈
0

{
pn(�)
r(�)

}
; s∗n = max

�∈
0

{
pn(�)
r(�)

}
=
{
pn(� ∗)
r(� ∗)

}
:

The function sn(�) = pn(�)=r(�) is called the “relative surprise” (Good, 1983). We
de/ne now, in the space 
, the highest relative surprise set (HRSS) 
∗

n of points
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�∈
 with higher relative surprise s(�) than any point in 
0, i.e.,


∗
n =

{
�∈


∣∣∣∣pn(�)
r(�)

¿ s∗n

}
:

Notice that the set 
∗
n is “tangential” to 
0 at 
∗

n . The evidence against H0, given by
the sample data x, is de/ned as the posterior probability of the tangential HRSS, i.e.

Evn =
∫

∗

n

pn(�) d�:

This de/nition of the evidence against H0 is invariant with respect to a proper repa-
rameterization. For instance, let ! = �(�), where � is a measurable and integrable
function. For the purpose of illustration, assume that � is bijective (one-to-one) and
continuously diIerentiable. Let J (!) denote the Jacobian of the transformation, i.e.,

J (!) =
[

@
@!

�−1(!)
]
=
[
@�
@!

]
=




@�1
@!1

: : : @�1
@!n

...
. . .

...

@�n
@!1

: : : @�n
@!n


 :

The posterior density of !, given x, is

p̃n(!) = pn(�−1(!))|J (!)|:
Notice that the reference density under the reparameterization changes to

r̃(!) = r(�−1(!))|J (!)|:
Thus, the new surprise function is

s̃n(!) = p̃n(!)=r̃(!) = pn(�−1(!))=r(�−1(!)):

Let �0 = �(
0). It follows that

s̃∗n = sup
!∈�0

s̃n(!) = sup
�∈
0

sn(�) = s∗n :

Accordingly, 
∗
n �→ �(
∗

n) = �∗
n .

The evidence under reparameterization is

Ẽvn =
∫
�∗

n

p̃n(!) d!=
∫

∗

n

pn(�) d�= Evn:

This proves invariance by proper reparameterizations of Evn.

Remark. (1) The original de/nition of the evidence against H0, Pereira and Stern
(1999a, b), did not employ the reference density r(�). In the former de/nition, the
“tangential” set 
∗

n was the highest probability density set (HPDS) (whose points have
posterior density pn(�) greater than that of any point in 
0), instead of the HRSS.
The evidence in that former de/nition is the credibility of the set 
∗

n . If this evidence
is suJciently high, it is customary to reject H0. The former de/nition of evidence is
not invariant under reparameterization, as can be shown by various examples.
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Taking the reference density as the (possibly improper) uniform density, r(�)=U (�),
the former and present de/nitions of evidence de/ne the same tangent set, i.e. the HRSS
and the HPDS coincide. In a proper reparameterization ! = �(�), using the present
de/nition, we are just automatically mapping to the new coordinates the tangential set
computed in the original coordinates, �∗

n = �(
∗
n).

(2) We can generalize the procedure using other reference densities. For exam-
ple, we may use as reference density the uninformative prior (also known as neutral
or reference prior), if one is available. This possibility is suggested by the paper of
Evans (1997), in conjunction with JeIreys’ rules to obtain uninformative priors,
Zellner (1971, appendix to Chapter 2).

One of JeIreys’ rules to obtain an uninformative prior is to de/ne a transformation
! = �(�) of the parameter space so that, in the new coordinate system, the uniform
uninformative prior in Rn is “natural”. According to this perspective, using the un-
informative prior as reference density is equivalent to specify a transformation � of
the parameter space, so that, in the transformed parameter space, the uninformative
prior is uniform. We also observe that, in Rn, the uniform measure and the evidence
computed by the former de/nition of the FBST are both invariant under proper linear
transformations, Klein and Rota (1997) and Santalo (1976).
JeIreys suggests  = log(�) as a suitable transformation for a parameter �∈ ]0;∞[.

Using d =d�=� and assuming the uniform reference prior on  , we obtain the reference
prior for �, r(�)˙ 1=�. This transformation also has an interesting property of being
invariant under transformations of the form �= �n, i.e., r(�)˙ 1=�. We will use this
prior in following examples.
In order to be consistent with the Onus Probandi principle, we will generally choose

as reference density on 
, the uniform density or a non-informative prior which yields
a proper posterior density pn(�). In the examples in the next sections, we often use
the uniform reference density. It is possible to use other reference densities, although
doing so may impair the adherence to the Onus Probandi principle, or change its
interpretation.
(3) The determination of the “tangential” set 
∗

n might have to be done numerically,
since analytic solutions might not be available, see Stern and Zacks (2002). EJcient
numerical methods for optimization (/nding � ∗) and integration are readily available.
The reader is referred to Gentle (2000), Liu (2001), Luenberger (1984), Ljung et al.
(1992), McCormick (1983), QOkten (1999), PRug (1999), Spall (2000). In addition,
the evidence integral could be estimated by Monte Carlo techniques, as shown in
Stern and Zacks (2002). The /nal computer implementation makes use of user friendly,
interactive and extensible environments, like Matlab, or the open source softwares
Scilab, and Python.
(4) We notice that the FBST is used in full dimentionality of the parameter space.

In the way it is de/ned and to preserve all its properties, elimination of “nuisance”
parameters is not recommended.
(5) As shown by Madruga et al. (2001), one can de/ne a loss function with respect

to which the optimal Bayesian decision is to reject H0 if Evn is greater than a critical
level 0¡�¡ 1.
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In the next section we present several examples which illustrate the use of the
methodology and its potential.

3. Testing the normal mean

3.1. Variance known

Let X1; : : : ; Xn be i.i.d. random variables, having a common normal distribution, i.e.,
Xi ∼ N(	; 1), −∞¡	¡∞. The null hypothesis is H0: 	=	0. The minimal suJcient
statistics is Sx, Sx = (1=n)

∑n
i=1 xi. The likelihood function is

L(	; n; Sx) = exp(−(n=2)(	 − Sx)2):

We choose the uniform improper prior, i.e. p(	)d	= d	, and r(	) = 1. The posterior
density is

pn(	) =
√

n=2� exp(−(n=2)(	 − Sx)2);


0 = {	0} and s∗n = pn(	0). The “tangential” set is


∗
n =

{
[	0; 	0 + 2 Sx] if Sx¿	0;

[	0 − 2 Sx; 	0] if Sx¡	0:

The evidence against H0 is

Evn = 2�(
√
n| Sx − 	0|)− 1;

where �( ) is the standard normal integral. Notice that if E(x)=	0 then, by the strong
law of large numbers, limn→∞ Evn = 0 a.s. [	0]. On the other hand, if E(x) = 	 = 	0,
then limn→∞ Evn = 1 a.s. [	]. This is an example of a general result.

3.2. Variance unknown

Let � = 1=�2, and let X1; : : : ; Xn be i.i.d. N(	; 1=�). The minimal suJcient statistic
is ( Sx; Q), where Q =

∑n
i=1(xi − Sx)2. The likelihood function is, for −∞¡	¡∞;

0¡�¡∞,

L(	; �; n; Sx; Q)˙ �n=2exp
(
−�Q=2− n

2
�(	 − Sx)2

)
:

Taking the non-informative prior p(	; �)=(1=�) d	 d�, we obtain the posterior density

pn(	; �; n; Sx; Q) = c�n=2−1 exp
(
−�

Q
2

(
1 +

n
Q
(	 − Sx)2

))
;

c =
2n=2

√
n

Q(n+1)=2!( 12 )!((n− 1)=2)
:
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Fig. 1. FBST for 	0 = 10 on a normal pdf hypothesis and tangential set.

Hence the logposterior kernel is

f =
n− 2
2

ln �− �
Q
2

(
1 +

n
Q
(	 − Sx)2

)

whose gradient is given by
 @f

@	

@f
@�


=

[
n�(	 − Sx)

( n2 − 1) 1� − Q
2 (1 +

n
Q (	 − Sx)2)

]
:

If we want to test H : 	 = 	0, using r(�) = 1, the constrained optimum is given by

�∗ =
n− 2

Q(1 + (n=Q)(	0 − Sx)2)
:

The integration step has to be performed numerically. Fig. 1 presents some examples
showing the constrained and unconstrained optima, H and 
∗.
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4. Behrens–Fisher problem

At the Behrens–Fisher problem we want to test the hypothesis that two normal
random variables, with unknown means, 	1 and 	2, and unknown precisions, �1 =1=�2

1
and �2 = 1=�2

2, have the same mean:


= {[	1; �1; 	2; �2]∈ (R× R+)2};


0 = {[	1; �1; 	2; �2]∈
|	1 = 	2}:
We use the standard improper priors, uniform on ]−∞;+∞[ for 	, and 1=� on ]0;+∞[
for the precision �=1=�2, for the normal parameters, in order to get a fair comparison
with p-values, DeGroot (1970), giving to each normal variate the posterior

pn(	; � | x)˙ √
� exp(−n�(	 − u)2=2) exp(−b�)�a−1;

x = [x1 : : : xn]; a=
n− 1
2

; m=
1
n

n∑
i=1

xi; b=
1
2

n∑
i=1

(xi − m)2:

At the numerical steps it is better, for numerical stability, to work with the loglikeli-
hood. Given two samples, of size n1 and n2,

f(	1; �1; 	2; �2|n1; m1; b1; n2; m2; b2)

= (n1=2− 1) log(�1)− b1�1 − (n1�1=2)(	1 − m1)2

+ (n2=2− 1) log(�2)− b2�2 − (n2�2=2)(	2 − m2)2;

the hypothesis being represented by the constraint

g(	1; �1; 	2; �2) = 	1 − 	2 = 0:

The gradients of f( ) and g( ) have easy analytical expressions, that can be given to
the optimizer:

df= [− n1�1(	1 − m1); (n1=2− 1)=�1 − b1 − (n1=2)(	1 − m1)2;

− n2�2(	2 − m2); (n2=2− 1)=�2 − b2 − (n2=2)(	2 − m2)2];

dg= [1; 0;−1; 0]:

For the logsurprise relative to JeIreys’ uninformative prior density and its gradient, we
only have to replace the factors (n=2− 1) by (n=2).
Table 1 presents the results for some examples, comparing the FBST evidence, with

the uniform and JeIreys’ uninformative prior reference densities, EvU(H) and EvJ(H),
and the p-values of the Welsh approximated t-test, tt, Lehmann (1986, pp. 208–209).
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Table 1
Tests for Behrens–Fisher

m2 EvJ(H) EvU(H) 1− tt

100 0.00 0.00 0.00
101 0.08 0.07 0.66
102 0.53 0.50 0.94
103 0.89 0.87 0.99
104 0.98 0.98 1.00
105 1.00 1.00 1.00

n1 = 16, n2 = 20.
m1 = 100, s1 = s2 = 3.

While the FBST is a probability in the parameter space, the p-value is a probability
in the sample space. Therefore, we can only check if they agree in tendency, but there
would be no meaning in a direct comparison of the /gures. We are comparing the
mean of a /rst sample, of size, mean, and standard deviation n1 = 16, m1 = 100 and
s1 = 3, with a second sample, of size and standard deviation n2 = 20 and s2 = 3. The
mean of the second sample, m2, is given in Table 1.

5. Coe$cients of variation application

The coeJcient of variation (CV) of a random variable X is de/ned as the ratio
CV(X ) = Std(X )=E(X ), i.e., the ratio of its standard deviation by its mean. We want
to test the hypothesis that two normal random variables, with unknown mean and
variance, have the same CV. Using the same notation of the last section,


0 = {[	1; �1; 	2; �2]∈
 | 	2
1�1 = 	2

2�2}:
The hypothesis is represented by the constraint

g(	1; �1; 	2; �2) = 	2
1�1 − 	2

2�2 = 0

whose gradient can be given to the optimizer:

dg= [2	1�1; 	2
1;−2	2�2;−	2

2]:

Table 2 presents results for some examples. Some simpler hypothesis on the CV are
analyzed in Lehmann (1986). However we are not aware of the exact p-values to
compare with the FBST. We are comparing the coeJcient of variation of a /rst sample,
of size, mean, and standard deviation n1 = 16, m1 = 100 and s1 = 2, with a second
sample of size and mean n2 = 20 and m2 = 200. The standard deviation of the second
sample, s2, is given in Table 2.

5.1. Hardy–Weinberg equilibrium law

In this biological application there is a sample of n individuals, where x1 and x3 are
the two homozygote sample counts and x2 = n − x1 − x3 is the heterozygote sample
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Table 2
Tests for coeJcients of variation

s2 EvU(H) EvJ(H) CV1=CV2

1 1.00 1.00 4.00
2 0.90 0.90 2.00
3 0.17 0.16 1.33
4 0.00 0.00 1.00
5 0.05 0.06 0.80
6 0.32 0.37 0.67
8 0.83 0.87 0.50
10 0.97 0.98 0.40
12 1.00 1.00 0.33

n1 = 16, n2 = 20, s1 = 2.
m1 = 100, m2 = 200.

count, and �=[�1; �2; �3] is the parameter vector. The posterior density for this trinomial
model is

pn(� | x)˙ �x1
1 �x2

2 �x3
3 :

The parameter space and the null hypothesis set are:


= {�¿ 0 | �1 + �2 + �3 = 1};


0 = {�∈
|�3 = (1−
√

�1)2}:
The problem of testing the Hardy–Weinberg equilibrium law using the Bayes factor is
discussed in detail by Montoya-Delgado et al. (2001) and Pereira and Rogatko (1984).
The Bayes factor (BF), considering uniform priors over 
0 and 
−
0, and probability
1
2 for H, is given by the following expression:

BF =
(n+ 2)!t!(2n− t)!2x2

(2n+ 1)!x1!x2!x3!

[
5=6− 2(t + 1)(2n− t + 1)

(2n+ 2)(2n+ 3)

]
:

Here t=2x1 + x2 is a suJcient statistic under H. This means that the likelihood under
H depends on the data only through t.
Fig. 2 presents H and 
∗ for x1 = 5, y3 = 10 and n= 20. Fig. 3 compares Ev with

the other standard measures: pv, the p-value for the standard ,2 test, and the posterior
probability of H using the BF, pp= 1=(1 + 1=BF).

6. Holgate distribution: testing independence

This /nal example brieRy describes a complex test where the FBST is consider-
ably more powerful than competing tests, at least in the parts of the parameter space
relevant to the application. The Holgate distribution appears in reliability theory, ac-
tuarial sciences and risk modeling, see for example Barlow and Prochan (1981), and
Kocherlakota and Kocherlakota (1992).
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Fig. 2. H–W equil. hypothesis and tangential set for x1 = 5, x2 = 5, x3 = 10, Ev = 0:91.

Let p(j; �) denote the pdf of a Poisson distribution with mean �. The pdf of the
Holgate bivariate Poisson distribution can be derived by considering independent Pois-
son random variables J1, J2, J3 with means, �1, �2, �3. Let X = J1 + J3; Y = J2 + J3
and Z = J3. The marginal bivariate distribution of W = (X; Y ) is the Holgate distribu-
tion with parameters �1 = �1 + �3, �2 = �2 + �3, �3 = �3; 0¡�1 ¡∞, 0¡�2 ¡∞,
06 �3 ¡min(�1; �2).
Thus, the pdf of the Holgate distribution is

f(x; y; �1; �2; �3) =
min(x;y)∑

l=0

p(x − l; �1 − �3)p(y − l; �2 − �3)p(l; �3): (1)

The variates X and Y are independent if and only if �3 = 0, the null hypothesis.
Paul and Ho (1989) compared the power of several alternative tests, including

Kocherlakota’s C(3), Wald’s, and variations of t, F and the likelihood ratio. They
established, by numerical simulations, that the modi/ed-F test (MF) based on the sam-
ple correlation, �n, is more powerful than the other tests. The MF test statistic is

MF =
1
2
log

(
1 + �n

1− �n

)(
1− 3

4(n− 1)

)
+

�n

4(n− 1)
: (2)

The eJcient implementation of the FBST requires an eJcient (in this case recursive)
calculation of the Holgate distribution. The numerical integration of Ev is performed
by Monte Carlo techniques, with careful estimation of the Monte Carlo precision. In
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Fig. 3. FBST Ev (*), 1 − p.val. (o), and 1−post.prob. (x), for H–W equil., vs. x3. n = 20 and x1 = 1, 5
and 9.

order to compare the performance of the FBST and the MF tests we need estimates
of quantiles under the null hypothesis, and power under the alternative. Careful itera-
tive estimation-re/nement procedures are necessary to obtain the desired accuracy in
reasonable computation time. These techniques are detailed in Stern and Zacks (2002).
Since the correlation in the Holgate distribution is � = �3=

√
�1�2, we can plot the

power as a function of �. The tests’ power changes slowly for [�1; �2] in the area of
interest, �1 =1, �2 ∈ [0:5; 2:0]. Average interpolated power values, for signi/cance level
3 = 0:05, are presented in Fig. 4. As expected, Fig. 4 indicates that the power of the
test is an increasing function of �. We also see that the FBST is considerably more
eJcient than the MF test when the sample size is about 20 and � is not too close to
zero. Since both tests are consistent, the diIerence in power diminishes as the sample
size n grows. This is shown in Fig. 4 for n= 50.

7. Final remarks

The FBST evidences presented were computed, to 1% precision, using Monte Carlo
Simulation, as detailed in Stern and Zacks (2002). The power of FBST tests can be
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Fig. 4. Power as a function of � FBST: solid line, MF: dashed line. 3 = 0:05.

computed using similar techniques. FBST tests can be far more powerful than existing
procedures when testing some complex hypothesis, specially in higher dimensions,
Irony et al. (2002), Lauretto et al. (2002), Pereira and Stern (2001), Stern and Zacks
(2002).
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