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Model selection: Full Bayesian approach
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SUMMARY

We show how the Full Bayesian Significance Test (FBST) can be used as a model selection criterion. The FBST
was presented in Pereira and Stern as a coherent Bayesian significance test. Copyright © 2001 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The Full Bayesian Significance Test (FBST) was presented in Pereira and Stern (1999b, 2000) as a
coherent Bayesian significance test. The FBST is intuitive and has a geometric characterization. It can
be easily implemented using modern numerical optimization and integration techniques. The method
is ‘Full’ Bayesian and consists in the analysis of credible sets. By ‘Full’ we mean that we need only the
knowledge of the parameter space represented by its posterior distribution. The FBST needs no
additional assumption, like a positive probability for the precise hypothesis, that generates the
Lindley’s paradox effect. Given a model, we can use the FBST to test if one of its parameters is null.
Such a test is used as the basis for a model selection procedure.

2. MOTIVATION FOR THE FBST

In order to better illustrate the FBST we discus a well known problem. Given a sample from a normal
distribution with unknown parameters, we want to test if the standard deviation is equal to a constant.
The hypothesis ¢ = c is a straight line. We have a precise hypothesis since it is defined by a manifold
(surface) of dimension (one) strictly smaller than the dimension of the parameter space (two).

It can be shown that the conjugate family for the normal distribution is a family of bivariate
distributions, where the conditional distribution of the mean, y, for a fixed precision; p = 1/62, is
normal, and the marginal distribution of the precision, p, is gamma (DeGroot, 1970). We use the
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Figure 1. Tangent and other highest probability density sets

standard improper priors, uniform on ] — oo, 4 oo[ for y, and 1/p on ]0, + oo[for p, in order to get a
fair comparison with p-values (DeGroot, 1970). Hence we have the parameter space, hypothesis and
posterior joint distribution:
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In Figure 1 we plot some level curves of the posterior density function, including the level curve
tangent to the hypothesis manifold. At the tangency point, 6", the posterior density attains its
maximum, f~, on the hypothesis. The interior of the tangent level curve, T, includes all points with
posterior density greater than f~, i.e. it is the highest probability density set tangent to the hypothesis.

Also in Figure 1 we test ¢ =1 with n= 16 observations of mean m = 10 and standard deviation
s=1.02, 1.1, and 1.5. We give the FBST evidence, Ev, and the standard ;{z-test, chi2.
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The posterior probability of T*, «", gives an indication of inconsistency between the posterior and
the hypothesis: small values of «" indicate that the hypothesis traverses high density regions, favoring
the hypothesis. Therefore we define Ev(H)=1—x" as the measure of evidence (for the precise
hypothesis).

Of course this example is a mere illustration: there is no need of new methods to test the standard
deviation of a normal distribution. However, efficient numerical optimization and integration
computer programs make it straightforward to extend the FBST to more complex structures. A
formal definition of the FBST, several applications, and some philosophical considerations can be
found in Pereira and Stern (1999b, 2000) and Irony et al. (2000). In the next section we give an
operational construction of the FBST.

3. FBST OPERATIONAL DEFINITION

We restrict the parameter space, O, to be always a subset of R”, and the hypothesis is defined as a
further restricted subset, @y C © C R". Usually, Oy is defined by vector valued inequality and equality
constraints:

Qo = {0 €O |g(0) <OARO) =0}

We are interested in precise hypotheses, so we have at least one equality constraint, hence
dim(©g) < dim(0). f(0) is the posterior probability density function.

The computation of the evidence measure used on the FBST is performed in two steps: a numerical
optimization step and a numerical integration step. The numerical optimization step consists of finding
an argument (" that maximizes the posterior density f(0) under the null hypothesis. The numerical
integration step consists of integrating the posterior density over the region where it is greater than
(0. That is,

Numerical optimization step:

0" € argmax f(0),p =f* =f(0").
00y
Numerical integration step:
& = [0 a0
S}

where f,,(x) = f(x) if f(x) > ¢ and zero otherwise.

Efficient computational algorithms are available, for local and global optimization as well as for
numerical integration, and they can be implemented in very user friendly environments (Pereira and
Stern, 1999b, 2000; Irony et al., 2000).

If the probability of the set 7" is ‘large’, it means that the null set is in a region of low probability
and the evidence in the data, Ev(H) =1 — «, is against the null hypothesis. On the other hand, if the
probability of 7" is ‘small’, then the null hypothesis is in a region of high probability and the evidence
in the data is in its favor.

Copyright © 2001 John Wiley & Sons, Ltd. Environmetrics 2001; 12: 559-568
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4. MULTIPLE LINEAR REGRESSION MODEL

In the standard normal multiple linear regression model we have y = Xf + u, X n x k, where n is the
number of observations, k the number of independent variables, f§ the regression coefficients, and u is
white noise, i.e. a Gaussian noise with E(u) =0 and Cov(u) = o’ (Zellner, 1971). Using the diffuse
prior p(f,0) =1/, the joint posterior probability density for the parameters and ¢ € [0, co[ and
B €] — 0o, oo[* is given by:

18, 1530 = e (= 5oz (0= 07+ (8= XX~ )

B=(XX)"xy
5 =Xp
£ =-3)—3)/n—k).

The log-likelihood and its gradients are given by:

FU(B, 0) = —(n+ 1) log(6) — =5 ((n — K) + (B — BYX'X(B — )

202
ofl 1 .
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A selection of interesting environmetric statistical studies using regression and related models can
be found in Pratt (1974) and El-Shaarawi (1991).

5. MODEL SELECTION AND REGULARIZATION

The multiple linear regression model family presented in the last section is typical, in the sense that it
offers a class of models of increasing dimension or complexity. This poses the problem of deciding,
among all models in the family, the ‘better’ adapted to our data. It is natural to look for a model that
accomplishes a small empirical error, the estimated model error in the training data, R. A regression
model is estimated by minimizing the 2-norm empirical error. However, we cannot select the ‘best’
model based only on the empirical error, because we would usually select a model of high complexity.
In general, when the dimensionality of the model is high enough, the empirical error can be made
equal to zero by simple interpolation. It is a well known fact in statistics (or learning theory), that the
prediction (or generalization) power of such high dimension models is poor. Therefore the selection
criterion also has to penalize the model dimension. This is known as a regularization mechanism.
Some models selection criteria define a penalized (or prediction) error R = r(d,n) * R, using a
regularization (or penalty) function, r(d, n), where d is the model dimension and n the number of
training data. Common regularization functions, using p = (d/n), are:

e Akaike’s final prediction error: FPE = (1 +p)/(1 —p)
e Schwarz’ Bayesian criterion: SBC = 1+ In (n)p/(2 — 2p)

Copyright © 2001 John Wiley & Sons, Ltd. Environmetrics 2001; 12: 559-568
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o Generalized cross-validation: GCV = (1 — p)f2
o Shibata model selector: SMS =1+ 2p.

All those regularization functions are supported by theoretical arguments as well as by empirical
performance; other regularization methods are model dependent, like Akaike information criterion
(AIC), and Vapnik-Chervonenkis (VC) prediction error, Akaike (1970 and 1974), Barron (1984),
Breiman et al. (1984), Cherkassky and Mulier (1998), Craven and Wahba (1979), Michie et al. (1994),
Mueller and Wysotzki (1994), Shibata (1981), Stern et al. (1998), Rissanen (1978), Schwarz (1978),
Unger and Wysotzki (1981), Vidyasagar (1997) and Vapnik (1995, 1998).

We can use the FBST as a model selection criterion, testing the hypothesis of some of its parameters
being null, and using the following version of the ‘Ockham razor: Do not include in the model a new
parameter unless there is strong evidence it is not null.’

The FBST selection criterion has an intrinsic regularization mechanism, under some general
circumstances discussed later.

Consider, as a simple example, the d-dimensional vector x with normal distribution, (f,1), and
suppose we want to use the FBST to test the hypothesis: f; = 0. Consider the normal distribution with
parameter (0,7) on a prior for 5. The posterior distribution of f8 is (x/2, (1/2) I'), DeGroot (1970).
The probability of the H.P.D. region tangent to the null hypothesis manifold,: f; = O, is
K= {yg < xi/2}

The chi-square density with d degrees of freedom is

x4/2=1(—x/2)

gy 0 Vi () =d. Var(fulx)) = 24,

Ja(x) =

so0, subtracting the mean and dividing by the standard deviation,

2 2
< — Pr m_\/ﬁg X _\/3,
vaa V2=2ma Va2

Using the central limit theorem, as d — oo,

o jd_ |
Pr{\/—Z_d_ \/: < t} ~ ®(1),

making it is easy to see that, as d — oo, (H)=1— k —1.

The intrinsic regularization of the example above is partially explained by simple geometry related
to symmetry properties of the model density function (Fang et al., 1990). The normal distribution is
spherically (or elliptically) symmetric, i.e. the (scaled) distribution is invariant under action of the
orthogonal group, whose invariant metric is the 2-norm, whereas the unitary volume in R is defined by
a cube, a sphere in the infinite-norm. The volumes of the unitary radius d-dimensional (2-norm) sphere
and cube are Vol(S,) = (2/d)n?/?/T'(d/2) and Vol(C,) = 2¢. These volume ratios make it easy to see
that the model invariant sphere has comparatively ‘small volume inhigh dimension’,

v 2 (0" Jr(2),
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Table 1. Hildebrand and Liu’s production data

i Value Labor Capital i Value Labor Capital
1 657.29 162.31 279.99 15 1917.55 536.73 2109.34
2 935.93 214.43 542.50 16 9849.17 1564.83 13989.55
3 1110.65 186.44 721.51 17 1088.27 214.62 884.24
4 1200.89 245.83 1167.68 18 8095.63 1083.10 9119.70
5 1052.68 211.40 811.77 19 3175.39 521.74 5686.99
6 3406.02 690.61 4558.02 20 1653.38 304.85 1701.06
7 2427.89 452.79 3069.91 21 5159.31 835.69 5206.36
8 4257.46 714.20 5585.01 22 3378.40 284.00 3288.72
9 1625.19 320.54 1618.75 23 592.85 150.77 357.32
10 1272.05 253.17 1562.08 24 1601.98 259.91 2031.93
11 1004.45 236.44 662.04 25 2065.85 497.60 2492.98
12 598.87 140.73 875.37 26 2293.87 275.20 1711.74
13 853.10 145.04 1696.98 27 745.67 137.00 768.59
14 1165.63 240.27 1078.79

6. NUMERICAL EXAMPLES

The classical data set in Table 1, by Hildebrand and Liu (1957), presents the value added, v, labor
input, p, and capital (gross value of plant and equipment), p,, for several industrial establishments in
the primary metals sector. This data set has subsequently been used by a number of authors, like
Aigner et al. (1977) and Greene (1991).

The classical econometric Cobb—-Douglas production function assumes constant elasticity, i.e. a
constant relative growth in value for a given production input. Defining y; = In(v;) and x;; = In(p; ),
i=1l...nj=1...2,

y = Po+ Pix1 + Prx2 + (0,01),
ov/v _ Oln(v) _5
opj/pj On(p;) "V

The log-linear regression model has great importance in econometrics as well as in environmetric
modeling (El-Shaarawi and Viveros, 1997).

In the following, we will compare the Cobb—Douglas first order log-linear model with the more
general second order Translog model:

y = Bo+ Pix1 + Baxa + Bax1 /2 + Bux3 /2 + Psxixa + (0, 01).

Table 2 presents the empirical error, EMP = ||y — 3||3/n, for several sub-models of the Translog
model. The first column presents the index list of non-null parameters, fij. .. f5, in the sub-model.
Table 2 also presents several regularizations defined in Section 5, and the FBST for the hypothesis
stating that the last parameter in the sub-model index list is equal to zero. The FBST is computed with
an absolute numerical error of 1 per cent or less.

We see that all the penalized errors are minimized for the sub-model O, 1, 2. The FBST gives strong
evidence against , =0, k=0, 1, 2, and weak evidence for non-null parameters of higher order. So all

Copyright © 2001 John Wiley & Sons, Ltd. Environmetrics 2001; 12: 559-568
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Table 2. Selection criteria, X 10_2, and FBST for Trabslog model

Sub-model EMP FPE SBC GCV SMS FBST
0,1 5.701 7.126 6.876 7.216 6.968 0.00
0,1,2 3.154 4.251 4.058 4.347 4.089 0.00
0,1,2,4 3.004 4.369 4.129 4.524 4.116 0.99
0,1,2,5 3.122 4.542 4.292 4.703 4.279 1.00
0,1,2,3 3.149 4.581 4.329 4.743 4.316 1.00

selection criteria elect the Cobb—Douglas sub-model as the better adapted to the example at hand. The
situation is illustrated in Figure 2, presenting for some of the sub-models the data points, (+ ), the
fitted maximum posterior density model with free parameters in the list, (*), and the fitted maximum
posterior model with all but the last free parameters in the list, (O).

As a second example we model the chemical concentration of a toxic industrial contaminant, in a
deactivated solid waste land fill in the city of Cubatao, Brazil. The old land fill is now located inside a
‘preservation’ area, and the model is being used to weight the relative adverse impacts of processing
(cleaning by incineration) the contaminated soil, versus leaving it in its present condition.
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Figure 2. Models 0,1; 0,1,2; 0,1,2,4; and 0,1,2,5
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Table 3. Selection criteria, and FBST for contamination model

Sub-model EMP FPE SBC GCV SMS FBST
0,4 38.924 41.918 42.213 41.975 41.807 0.00
0,43 10.450 11.535 11.642 11.563 11.482 0.00
0,4,3,1 10.384 11.750 11.885 11.795 11.666 0.99
0,4,3,5 10.431 11.804 11.939 11.849 11.719 1.00
0,432 10.436 11.809 11.944 11.854 11.724 1.00

We consider a second order response surface, as in Chen and Shao (1999),

y = Bo + ix1 + Baxa + Baxt + Puxs + Bsxixa + (0, 01).

The independent variables have already been ordered in decreasing explanatory power. Table 3 is
similar to Table 1, presenting the selection criteria for several sub-models and the FBST for the
hypothesis: ff;, = 0 for the last parameter in the sub-model. The elliptic model is the most adequate to

the data at hand, as may be suggested from the contamination level contour plot at Figure 3, for our 81
field samples.

_4 1 1 1 |
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Figure 3. Contamination level contour plot
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7. FINAL REMARKS

The objective of this article was to present a model selection criterion based on the Full Bayesian
Significance Test (FBST) for the precise hypothesis. The authors are currently working on several
applications with models of higher dimension, where the FBST is the only exact test known. In some
of these models the FBST is also used for automatic model selection. In these applications, as well as
in those in Pereira and Stern (1999a, 1999b, 2000) and Irony et al. (2000), it is desirable or necessary
to use a test with the following characteristics:
e be formulated directly in the parameter space
e take into account the full geometry of the null hypothesis as a manifold (surface) imbedded in the
whole parameter space
e have an intrinsically geometric definition, independent of any non-geometric aspect, like the
particular parameterization of the (manifold representing the) null hypothesis being used
e be consistent with the benefit of the doubt juridical principle (or safe harbor liability rule), i.e.
consider in the ‘most favorable way’ the claim stated by the hypothesis
e considering only the observed sample, allowing no ad hoc artifice (that could lead to judicial
contention), like a positive prior probability distribution on the precise hypothesis
e consider the alternative hypothesis in equal standing with the null hypothesis, in the sense that
increasing sample size should make the test converge to the right (accept/reject) decision
e give an intuitive and simple measure of significance for the null hypothesis, ideally, a probability
in the parameter space.

FBST has all these theoretical characteristics and can be efficiently implemented with the
appropriate computational tools. Moreover, as shown in Madruga et al. (2000), the FBST is also in
perfect harmony with the Bayesian decision theory of Rubin (1987), in the sense that there are specific
loss functions which render the FBST. Finally, we notice that statements like ‘increase sample size to
reject (accept) the hypothesis’ made by many users of frequentist (standard Bayesian) tests do not hold
for the FBST.
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