MAT5014 - 10. Semestre de 2024

3a. lista de exercícios

1. Sejam G um GALC e $1 \leq p \leq \infty$. Mostre que se $f \in L^p(G)$ e $g \in L^1(G)$ então $f \star g \in L^p(G)$ e

$$||f \star g||_{L^p(G)} \le ||f||_{L^p(G)} ||g||_{L^1(G)}$$
.

2. Denote por $\mathsf{B}(L^2(G))$ o espaço dos operadores limitados (contínuos) de $L^2(G)$ em si mesmo; note que $\mathsf{B}(L^2(G))$ é um espaço de Banach, com a norma usual, e também uma álgebra de Banach (produto = composição de operadores), porém não comutativa. Utilize o exercício anterior para mostrar que a aplicação $S:L^1(G)\to \mathsf{B}(L^2(G))$ definida por

$$S(f)(g) = f \star g, \quad f \in L^1(G), \ L^2(G),$$

é um homomorfismo injetor e contínuo entre álgebras de Banach.

3. Mostre que as bijeções apresentadas em aula são, na realidade, isomorfismos de grupos topológicos:

$$\mathbb{R} \simeq \Gamma_{\mathbb{R}}, \quad \mathbb{Z} \simeq \Gamma_{\mathsf{T}}, \quad \mathsf{T} \simeq \Gamma_{\mathbb{Z}}.$$

4. Uma álgebra de Banach comutativa A é semisimples se

$$\bigcap_{h \in \Delta_A} \ker h = \{0\}.$$

Equivalentemente, A é semisimples se, e só se, a transformada de Gelfand $A \to C_0(\Delta_A)$ é injetora. Sejam A e B álgebras de Banach comutativas, com B semisimples. Mostre que todo homomorfismo de álgebras $\Psi: A \to B$ é contínuo.

- **5.** Seja A uma álgebra de Banach com unidade. Mostre que $x \in A$ é inversível se, e somente se, $h(x) \neq 0$ para todo $h \in \Delta_A$. Sugestão: os ideais maximais de A são, precisamente, os núcleos dos elementos de Δ_A . Seja $x \in A$ tal que $h(x) \neq 0$ para todo $h \in \Delta_A$ considere o ideal gerado por x
- (•) O próximo exercício fará uso de alguns fatos sobre funções holomorfas a valores em um espaço de Banach. É uma teoria bem simples para um aluno que já assistiu a um curso de funções holomorfas. Na minha página na web, entrando na disciplina "Tópicos de Análise Funcional, está postado um texto onde, da página 51 à página 55, está apresentado tudo que será necessário a seguir.
- **6.** Seja A uma álgebra de Banach comutativa. Se $x \in A$ seu espectro é, por definição $\sigma(x) \doteq \widehat{x}(\Delta_A) \subset \mathbb{C}$ (se A não tiver unidade, o espectro de x é, por definição, $\sigma(x) = \widehat{x}(\Delta_{A_e})$). Logo, o espectro de x é sempre um subconjunto compacto de \mathbb{C} . O número $\|\widehat{x}\|_{\infty}$ é chamado raio espectral de x e vale

$$\|\widehat{x}\|_{\infty} = \lim_{n \to \infty} \|x^n\|^{1/n}, \quad x \in A.$$

Siga os passos abaixo para demonstrar esta fórmula, no caso particular em que A tem unidade:

1

- (a) Sejam α e β respectivamente o limite superior e o limite inferior da sequência $\{\|x^n\|^{1/n}\}$. Mostre, primeiramente, que $\|\widehat{x}\|_{\infty} \leq \beta$.
- (b) Seja $z \notin \sigma(x)$. Mostre que ze x é inversível e que, portanto, $z \mapsto (ze x)^{-1}$ define uma função holomorfa em $\mathbb{C} \setminus \sigma(x)$.
- (c) Mostre que $\sum_{n=0}^{\infty} (x/z)^n$ coincide com $z \mapsto z(ze-x)^{-1}$ em $\{z: |z| > ||x||\}$. Assim, se R > ||x||,

$$x^{m} = \frac{1}{2\pi i} \int_{|z|=R} z^{m} (ez - x)^{-1} dz, m = 0, 1, 2, \dots$$

(d) A integração nesta última fórmula pode ser modificada para qualquer círculo de raio $r > \|\widehat{x}\|_{\infty}$. Conclua que $\|x^m/r^m\| \to 0$ para tais valores de r, donde $\alpha \leq \|\widehat{x}\|_{\infty}$.