MAP5707 - 10. Semestre de 2022

Lema. Sejam $\Omega \subset \mathbb{C}^N$ aberto e $\{K_j\}$ uma exaustão de Ω por compactos. Então existem uma subsequência $\{K_{j_k}\}$ e uma sequência $p_k \in K_{j_{k+1}} \setminus K_{j_k}$, $k \geq 1$, satisfazendo a seguinte propriedade: dados $z_0 \in \partial \Omega$ e $\varepsilon > 0$ o conjunto $\Omega \cap \Delta(z_0; \varepsilon)$ contém infinitos pontos da sequência $\{p_k\}$.

Demonstração 1. Escrevamos o conjunto enumerável $(\mathbb{Q}^N + i\mathbb{Q}^N) \cap \Omega$ na forma de uma sequência $\{a_n\}$ e para cada n tomemos B_n como sendo a bola de centro a_n e raio $r_n = \operatorname{dist}(a_n, \partial\Omega) > 0$. Tomemos também a sequência $\{\Theta_k\}$ definida do seguinte modo

$$B_1, B_1, B_2, B_1, B_2, B_3, \dots$$

de modo que, para cada n, $B_n = \Theta_k$ para um número infinito de valores de k.

Tomamos $j_1=1$ e assumimos já construídos $K_{j_1},\dots,K_{j_k},\,p_1,\dots p_{k-1},$ satisfazendo

$$p_{\ell} \in K_{j_{\ell+1}} \setminus K_{j_{\ell}}, \quad p_{\ell} \in \Theta_{\ell}, \quad \ell = 1, \dots, k-1.$$

Agora, como K_{j_k} é compacto em Ω então K_{j_k} não pode conter a bola Θ_k (o fecho de Θ_k não está contido em Ω !). Assim, tomamos como p_k qualquer ponto em Θ_k que não pertence a Q_{j_k} e $j_{k+1} > j_k$ tal que $p_k \in K_{j_{k+1}}$. Em resumo, construímos a sequência $\{p_k\}$ com a propriedade adicional que $p_k \in \Theta_k$. Não é demais frisar que todos os pontos p_k são distintos entre si e portanto, pela observação acima, segue que cada bola B_n contém infinitos pontos da sequência $\{p_k\}$.

Assim, para completarmos a demonstração, bastará provar que, dados z_0 e $\varepsilon > 0$ como no enunciado, existe $B_n \subset \Omega \cap \Delta(z_0; \varepsilon)$. De fato, existe a_{n_ℓ} , subsequência de $\{a_n\}$, tal que $a_{n_\ell} \to z_0$. Logo $r_{n_\ell} \to 0$ e portanto podemos escolher ℓ_0 tal que, se $z \in B_{n_{\ell_0}}$,

$$|z - z_0| \le |a_{n_{\ell_0}} - z_0| + r_{n_{\ell_0}} < \varepsilon,$$

o que mostra que $B_{n_{\ell_0}} \subset \Omega \cap \Delta(z_0; \varepsilon)$.

Observação. Minha idéia de tomar $\{B_n\}$ como uma base de abertos para Ω não pode funcionar. O que foi crucial no argumento acima foi o fato de cada B_n não ter fecho compacto em Ω e, portanto, cada B_n não pode estar contida em compacto algum de Ω . Note também que $\{B_n\}$ se acumula na fronteira de Ω . Em vista disto, Vinicius Novelli da Silva elaborou um argumento diferente, usando uma base de abertos que interceptam $\partial\Omega$.

Demonstração 2. Denote por $\mathcal{B} = \{B_n; n \in \mathbb{N}\}$ a coleção (enumerável) das bolas abertas em \mathbb{C}^N com centro em $(\mathbb{Q}^N + i\mathbb{Q}^N) \cap \Omega$, raio racional e que *interceptam a fronteira* $\partial\Omega$. Escrevemos

$$\mathcal{C} = \{C_n := B_n \cap \Omega; B_n \in \mathcal{B}\}.$$

Procedendo como na demonstração 1, obtemos uma subsequência $\{K_{j_k}\}$ e uma sequência de pontos $\{p_k\}$ tais que

$$p_k \in K_{j_{k+1}} \setminus K_{j_k}, \qquad p_k \in B_k, \quad k \ge 2.$$

Para verificar completar a demonstração suponhamos, por absurdo, que exista um ponto $z_0 \in \partial\Omega$ e $\varepsilon_0 > 0$ tal que $\Delta(z_0, \varepsilon_0)$ só contenha um número finito de pontos p_k , digamos, p_{k_1}, \ldots, p_{k_m} . Considere

$$\Delta^* = \Delta(z_0, \varepsilon_0) \setminus \{p_{k_1}, \dots, p_{k_m}\}.$$

Temos que Δ^* é um aberto em \mathbb{C}^N que não contém elemento algum da sequência $\{p_k\}$. Observe, agora, que $z_0 \in \partial \Omega \cap \Delta^*$ e, portanto, existe uma bola $B_{n_0} \in \mathcal{B}$ com $z_0 \in B_{n_0} \subset \Delta^*$. Por construção, $p_{n_0} \in C_{n_0} = B_{n_0} \cap \Omega \subset \Delta^*$, o que é uma contradição. \square