O Teorema de Krein-Milman e Aplicações

Lucas Afonso e Sueni Faustino

O Teorema de Krein-Milman é um resultado importante sobre conjuntos compactos convexos em espaços vetoriais topológicos. Ele nos permite relacionar tais conjuntos com o conjunto dos seus pontos extremais. Há diversas aplicações do Teorema de Krein-Milman, geralmente ligadas a existências de certos objetos matemáticos de interesse. Neste trabalho mostraremos como este teorema, em sua primeira versão, nos permite estudar a existência de pré-dual de um espaço de Banach. Provaremos também uma forma de representação integral equivalente ao teorema de Krein-Milman e, com isso, provaremos o teorema de Bernstein, que caracteriza uma certa classe de funções suaves.

1 Preliminares

Nesta seção recordaremos alguma definições e resultados, a fim de enunciar o teorema em questão. Tais conceitos podem ser encontrados em [1] e [3].

Definição 1.1. Seja X um espaço topológico. Dizemos que $f: X \to \mathbb{R}$ é uma função semicontínua superiormente (respectivamente, semi-contínua inferiormente) em $a \in X$ se para cada número real h > f(a) (respectivamente, para cada número real k < f(a)) existe uma vizinhança V de a tal que para qualquer $x \in V$ temos h > f(x) (respectivamente, k < f(x)). Uma função é dita semi-contínua superiormente (respectivamente, semi-contínua inferiormente) em X se é semi-contínua superiormente (respectivamente, semi-contínua inferiormente) em cada $a \in X$.

Proposição 1.1. Seja X um espaço topológico. A função $f: X \to \mathbb{R}$ é semi-contínua superiormente (respectivamente, semi-contínua inferiormente) se, e somente se, para cada número real h, $f^{-1}([-\infty,h])$ (respectivamente, $f^{-1}(]h,+\infty])$) é fechado (respectivamente, aberto) em X.

Proposição 1.2. Sejam X um espaço topológico e $A \subset X$ um compacto. Seja, também, $f: X \to \mathbb{R}$ uma função semi-contínua superiormente. Então, f atinge seu máximo em A.

Definição 1.2. Sejam X um espaço topológico e $A \subset X$. Um hiperplano H é chamado hiperplano suporte de A se existe pelo menos um elemento $x_0 \in H \cap A$ e todos os pontos de A estão inteiramente contidos em um dos lados definidos por H.

2 O Teorema de Krein-Milman

Definição 2.1. Sejam E um espaço vetorial e A um subconjunto convexo de E. Dizemos que $x \in A$ é um ponto extremal de A se x não é ponto interior de nenhum segmento aberto contido em A. Em outras palavras, x é um ponto extremal de A se $y \in A$, $z \in A$, $y \neq z$, $0 \le \lambda \le 1$ tal que

$$x = \lambda y + (1 - \lambda)z$$

 $ent \tilde{a}o, \ x=y \ ou \ x=z.$

Denotaremos o conjunto dos pontos extremais de A por $\mathcal{E}(A)$.

Example 2.1. No espaço \mathbb{R}^N , todos os pontos da esfera \mathbf{S}_{N-1} são pontos extremais da bola fechada \mathbf{B}_N .

De fato, sejam $\sum_i y_i^2 \le 1$, $\sum_i z_i^2 \le 1$ e $0 < \lambda < 1$. A seguinte relação

$$\left(\lambda \sum_{i} y_{i} + (1 - \lambda) \sum_{i} z_{i}\right)^{2} = \lambda^{2} \sum_{i} y_{i}^{2} + (1 - \lambda)^{2} \sum_{i} z_{i}^{2} + 2\lambda(1 - \lambda) \sum_{i} y_{i} z_{i}$$

só é possível se, e somente se, $\sum_i y_i^2 = \sum_i z_i^2 = \sum_i y_i z_i = 1$. Mas, isto implica que $\sum_i (y_i - z_i)^2 = 0$, donde $y_i = z_i$, para todo i; e isto prova o exemplo.

Example 2.2. Seja $A \subset \mathbb{R}^3$ dado por $A = \{(x,y,0)|\ x^2+y^2=1\} \cup \{(1,0,\pm 1)\}$. Denote por B a envoltória convexa de A. Temos que o conjunto dos pontos extremais de B é dado por $\mathcal{E}(B) = \{(x,y,0)|\ x^2+y^2=1, x\neq 1\} \cup \{(1,0,\pm 1)\}$. Note que $(1,0,0)=\frac{1}{2}(1,0,1)+\frac{1}{2}(1,0,-1)$ não é um ponto extremal. E isto nos mostra que $\mathcal{E}(B)$ não é fechado.

Ambos os exemplos anteriores são em espaços de dimensão finita. Observamos que o conjunto dos pontos extremais não são fechados. Mais adiante veremos exemplos no caso de dimensão infinita e, neste caso, o conjunto dos pontos extremais pode ser denso.

O próximo resultado nos afirma, sob determinadas hipóteses, a existência de pontos extremais.

Proposição 2.1. Seja E um espaço localmente convexo Hausdorff e seja $A \subset E$ compacto, convexo e não-vazio. Suponha que $f: A \to \mathbb{R}$ seja uma função convexa e semi-contínua superiormente em A. Então, f assume seu máximo em algum ponto de $\mathcal{E}(A)$.

Demonstração. Considere \mathcal{F} a família de subconjuntos X de A que são não-vazio, fechado e que para qualquer segmento aberto l em A tal que $l \cap A \neq \emptyset$ temos que $l \subset X$. Temos as seguintes propriedades em relação à \mathcal{F} :

- (i) $\mathcal{F} \neq \emptyset$;
- (ii) Seja $a \in A$, Temos que $a \in \mathcal{F}$ se, e somente se, a é um ponto extremal de A;
- (iii) Toda intersecção não-vazia de uma família $\{X_{\alpha}\}$ de subconjuntos de \mathcal{F} pertence à \mathcal{F} ;

(iv) Seja $X \in \mathcal{F}$ e seja h uma função convexa e semi-contínua superiormente em A. Seja Y o conjunto dos pontos $x \in X$ tais que a restrição h|X assume seu máximo em X. Então, $Y \in \mathcal{F}$.

De fato, como $A \in \mathcal{F}$, temos que $\mathcal{F} \neq \emptyset$; o que mostra (i). Claramente se verifica o item (ii). Para mostrar (iii), seja l um segmento aberto em A tal que $l \cap (\cap X_{\alpha}) \neq \emptyset$. Então, para cada $\alpha, l \cap X_{\alpha} \neq \emptyset$. Como cada $X_{\alpha} \in \mathcal{F}$, temos $l \subset X_{\alpha}$, para todo α . Daí, $l \subset \cap X_{\alpha}$. Por fim, como h é semi-contínua superiormente em A, temos que h|X é semi-contínua superiormente em X. Logo pelas Proposições (1.1) e (1.2), Y é fechado e não-vazio, respectivamente. Agora, seja

$$l: \lambda x + (1-\lambda)y, \quad x \in A, \ y \in A, \ 0 < \lambda < 1,$$

um segmento aberto em A tal que $l \cap Y \neq \emptyset$. Neste caso, temos $z = \lambda x + (1 - \lambda)y$, $z \in Y$. Como $Y \subset X$ e $X \in \mathcal{F}$, segue que $l \subset X$. Isto é, $x \in X$ e $y \in X$. Por outro lado, como h é convexa,

$$\max_{w \in X} h(w) = h(z) \leq \lambda h(x) + (1-\lambda)y \leq \lambda \max_{w \in X} h(w) + (1-\lambda) \max_{w \in X} h(w) = \max_{w \in X} h(w).$$

Logo, podemos sempre ter a igualdade se, e só se, $h(x) = \max_{w \in X} h(w) = h(y)$. Daí, $x \in Y$ e $y \in Y$; donde $l \subset Y$ e, portanto, $x \in \mathcal{F}$. E isto prova o item (iv).

Com estas propriedades estabelecidas, seja M o conjunto de $x \in A$ tal que f assume seu máximo em A. Por (iv), $M \in \mathcal{F}$. Colocaremos em \mathcal{F} a seguinte relação de ordem:

$$X_1, X_2 \in \mathcal{F}, \qquad X_1 \le X_2 \Leftrightarrow X_2 \subset X_1.$$

Logo, temos uma ordenação parcial.

Sejam $\mathcal{F}_0 \subset \mathcal{F}$ totalmente ordenado e $X_0 = \bigcap_{X \in \mathcal{F}_0} X$. Temos que X_0 é fechado e nãovazio. Seja, agora, l um segmento aberto em A tal que $l \cap X_0 \neq \emptyset$. Por (iii), $l \subset X_0$. Assim, $X_0 \in \mathcal{F}$. Logo, pelo Lema de Zorn, existe $N \subset M$ o qual é elemento minimal de \mathcal{F} .

Para terminar a prova, mostraremos que N consiste de um único elemento; que, por (ii), é um ponto extremal de A. Para isto, provaremos que a restrição $u|_N$, $\forall u \in E'$, é constante. De fato, seja N' o conjunto dos $x \in N$ onde $u|_N$ assume seu máximo em N. Por (iv), $N' \in \mathcal{F}$. Como N é minimal de \mathcal{F} , temos qeu N' = N. Assim, $u|_N = cte$, $\forall u \in E'$. Daí, segue que $N = \{x_0\}$. Pois, suponha, por contradição, que existem $x_1 \in N$ e $x_2 \in N$ tais que $x_1 \neq x_2$. Pelo Teorema de Hahn-Bannach, existe um funcional linear $u \in E'$ tal que $u(x_1) \neq u(x_2)$; o que contradiz o fato de u ser contante em N.

Corolário 2.1. Seja E espaço localmente convexo Hausdorff e seja $A \subset E$ compacto e convexo. Então, todo hiperplano suporte fechado de A contém pelo menos um ponto extremal de A.

Demonstração. Seja $f(x) = \gamma$ uma equação de H. Suponha que $f(x) \leq \gamma$, $x \in A$. Como f é convexa e semi-contínua superiormente em A, pela Proposição 2.1, f assume seu máximo em algum ponto de $\mathcal{E}(A)$.

O próximo resultado será utilizado na demonstração do teorema principal.

Proposição 2.2. Sejam E um espaço localmente convexo, $C \subset E$ fechado e convexo e $A \subset E$. Então, $A \subset C$ se, e somente se, para toda função $u : E \to \mathbb{R}$ afim e contínua tal que $u(x) \geq 0$, $\forall x \in C$, então $u(y) \geq 0$, $\forall y \in A$.

Demonstração. Suponha que $A \subset C$ e seja u uma função afim e contínua tal que $u(x) \geq 0$, $\forall x \in C$. Seja $y \in A$. Como $A \subset C$, $u(y) \geq 0$.

A recíproca mostraremos por contradição. Assuma que se $u: E \to \mathbb{R}$ é uma função afim e contínua tal que $u(x) \geq 0$, $\forall x \in C$, então $u(y) \geq 0$, $\forall y \in A$. Suponha, por contradição, que exista $x \in (A-C)$. Logo, existe um hiperplano fechado que separa x de C. Seja $f(z) = \alpha$ uma equação de H. Suponha que $f(x) < \alpha$ e defina $u = f - \alpha$. Neste caso, $u(y) = f(y) - \alpha \geq 0$, $y \in C$. No entanto, $u(x) = f(x) - \alpha < 0$; o que contradiz a hipótese. Logo, $A \in C$. E isto termina a prova.

Passaremos então ao resultado principal.

Teorema 2.1. (Krein-Milman) Seja E um espaço localmente convexo Hausdorff e seja $A \subset E$ um compacto e convexo. Então, $A = \overline{co}(\mathcal{E}(A))$; onde $\overline{co}(\mathcal{E}(A))$ é o fecho da envoltória convexa de $\mathcal{E}(A)$.

Demonstração. Chamaremos $C = \overline{co}(\mathcal{E}(A))$. Como $\mathcal{E}(A) \subset A$ e A é convexo, segue que $C = \overline{co}(\mathcal{E}(A)) \subset \overline{A} = A$ (a última igualdade resulta do fato de A ser fechado). Logo, $C \subset A$. Para mostrar que $A \subset C$, seja $u : A \to \mathbb{R}$ uma função afim e contínua tal que $u(x) \leq 0$, $x \in C$. Pela Proposição 2.1, temos que $u(y) \leq 0$, $y \in A$. Logo, pela Proposição 2.2, $A \subset C$.

3 Aplicações

Sabemos que, dado um espaço de Banach E, a reflexidade do mesmo implica a reflexividade todo subspaço fechado de E. Além disso, sabemos que a imagem de E sobre o mapa $J: E \to E''$ dado por $J(x)(f) = f(x), \forall f \in E'$ é um subspaço fechado do bidual E''. Isso implica que, quando E não é reflexivo, nenhum dos elementos da sequência $(E_n)_{n\in\mathbb{N}}$ definida por $E_1 = E$ e $E_{n+1} = E''_n$, n > 1 pode ser reflexivo. A primeira aplicação do teorema de Krein-Milman nos ajuda a descobrir quando um espaço de Banach E é o primeiro elemento dessa sequência.

Teorema 3.1. Seja E um espaço de Banach e $B_1(0) = \{x \in E \mid ||x|| \le 1\}$ a bola unitária centrada no zero. Se $\mathcal{E}(B_1(0))$ for finito e dim $E = \infty$ então não existe F espaço de Banach tal que F' = E.

Demonstração. A prova segue por absurdo. Suponha que exista tal F. O teorema de Banach-Alaoglu implica que $B_1(0)$ é compacto na topologia fraca*. Como $B_1(0)$ é convexo, o teorema de Krein-Milman implica que $B_1(0) = \overline{co}(\mathcal{E}(B_1(0)))$. Como $\mathcal{E}(B_1(0))$ é finito, temos duas possibilidades:

• $\mathcal{E}(B_1(0)) = \emptyset$ Neste caso, $B_1(0) = \emptyset$ e, portanto, $E = \emptyset$. Como isso é absurdo, concluímos o teorema. • $\mathcal{E}(B_1(0)) \neq \varnothing$

Neste caso, temos que $F = lin(\mathcal{E}(B_1(0)) \simeq \mathbb{K}^n$, onde $\mathbb{K} = \mathbb{C}$, \mathbb{R} e $n = |\mathcal{E}(B_1(0))|$, onde lin(V) é o menor subespaço vetorial que contém V. O teorema de Krein-Milman nos diz que $B_1(0) = \overline{co}(\mathcal{E}(B_1(0)) \subset F$ e, com isso, concluímos que E = F. Como $n < \infty$ e dim $E = \infty$ por hipótese chegamos a um absurdo.

Corolário 3.1. Não existe E espaço de Banach tal que E' = C([0,1])

Demonstração. Tome $f \in B_1(0)$. Suponha que $\exists x_0 \in [0,1]$ tal que $|f(x_0)| < 1$. Como f é contínua, para $\varepsilon = \frac{1-|f(x_0)|}{2}$ temos que $\exists \delta > 0$ tal que:

$$|x - y| < \delta \Rightarrow |f(x_0) - f(y)| < \varepsilon$$

Isso implica que $|f(y)| < \frac{1+|f(x_0)|}{2}, \forall y \in (x_0 - \delta, x_0 + \delta)$. Considere a função $g: [0, 1] \to \mathbb{R}$:

$$g(x) = \begin{cases} 1, & x \in (x_0 - \frac{\delta}{2}, x_0 + \frac{\delta}{2}) \\ \frac{-2}{\delta}(x - x_0) + 2, & x \in [x_0 + \frac{\delta}{2}, x_0 + \delta) \\ \frac{2}{\delta}(x - x_0) - 2, & x \in (x_0 - \delta, x_0 + \frac{\delta}{2}] \\ 0, & \text{caso contrário} \end{cases}$$

Vamos mostrar que as funções $f \pm \varepsilon g$ estão em $B_1(0)$. Para isso devemos mostrar que $||f \pm \varepsilon g|| \le 1$. Note que a função g é nula fora de $(x_0 - \delta, x_0 + \delta)$, então só precisamos checar o que acontece para $y \in (x_0 - \delta, x_0 + \delta)$. Neste intervalo temos que:

$$|f(y) \pm \varepsilon g(y)| \le |f(y)| + \varepsilon < 1$$

E, portanto, concluímos que, se $f \in \mathcal{E}(B_1(0))$ então |f(x)| = 1, $\forall x \in [0, 1]$. Como as únicas funções satisfazendo esta condição no caso real são $f = \pm 1$ temos que $\mathcal{E}(B_1(0))$ tem, no máximo, dois elementos. Aplicando o teorema 1.1, concluímos o corolário.

Observação 3.1. No caso das funções à valores complexos, há uma complicação pois |f(x)| = 1, $\forall x \in [0,1]$ não implica que f é constante. Para lidar com isto, basta tomar Re(f) e aplicar o raciocínio do corolário 1.1. Dessa forma, concluímos que se $f \in \mathcal{E}(B_1(0))$, então $Re(f) = \pm 1$. Como |f(x)| = 1 temos que Im(f(x)) = 0, $\forall x \in [0,1]$

Definição 3.1. Seja E um espaço localmente convexo Hausdorff. Tome $X \subset E$ compacto e μ^1 uma medida de probabilidade em X. Um ponto $x \in E$ é dito ser o baricentro de μ se, e somente se, $\forall \Lambda \in E'$ vale:

$$\Lambda(x) = \int_X \Lambda(y) d\mu(y)$$

Denotaremos tal ponto por $b(\mu)$.

¹Consideramos sempre medidas de Borel neste texto.

Teorema 3.2. Seja E um espaço localmente convexo Hausdorff e $Y \subset E$ um compacto. Suponha que $X = \overline{co}(Y)$ é compacto. Dado μ uma medida de probabilidade sobre Y, existe um único $b(\mu) \in X$ tal que

$$\Lambda(b(\mu)) = \int_{Y} \Lambda(y) d\mu(y), \ \forall \Lambda \in E'$$

Demonstração. Vamos dividir a prova do teorema em duas partes

• Existência de $b(\mu)$

Vamos considerar primeiro E como sendo um espaço vetorial sobre \mathbb{R} . Para $\Lambda \in E'$ fixado considere $H_{\Lambda} = \{x \in X \mid \Lambda(x) = \int_{Y} \Lambda(y) d\mu(y)\}$. Afirmamos que este conjunto não é vazio. De fato, como X é compacto, por hipótese, existem x^* e x_* tal que:

$$\Lambda(x_*) \le \Lambda(x) \le \Lambda(x^*), \quad \forall x \in X \tag{1}$$

Por μ ser medida de probabilidade, (1) implica que:

$$\Lambda(x_*) \le \int_Y \Lambda(x) d\mu(x) \le \Lambda(x^*)$$

Portanto, existe $\lambda \in (0,1)$ tal que $\lambda x_* + (1-\lambda)x^* \in H_{\Lambda}$ Note que este conjunto é fechado, pela continuidade de Λ . A existência de $b(\mu)$ segue de mostrarmos que $\bigcap_{\Lambda \in E'} H_{\Lambda} \neq \emptyset$. Como X

é compacto, basta mostrar que toda intersecção finita é não vazia. Tome $\Lambda_i \in E', i = 1, ...n$. Considere o mapa $F: Y \to \mathbb{R}^n$ definido por $F(y) = (\Lambda_1(y), ..., \Lambda_n(y))$. Claramente F é contínua e linear e F(X) é um compacto convexo de \mathbb{R}^n . Suponha, por absurdo, que o ponto $x = (\int_Y \Lambda_1(y) d\mu(y), ..., \int_Y \Lambda_n(y) d\mu(y)) \notin F(X)$. O teorema de Hahn-Banach implica que existe $a = (a_1, ..., a_n)$ tal que $\langle a, x \rangle > \sup\{\langle a, F(y) \rangle \mid y \in X\}$. Se definirmos $\Lambda = \sum_{i=1}^n a_i \Lambda_i$. Isso implica que:

$$\langle a, x \rangle = \int_{Y} \Lambda(y) d\mu(y) > \sup \{ \Lambda(y) | y \in X \}$$

Com isto concluímos um absurdo pois $\int_Y \Lambda(y) d\mu(y) \leq \sup\{\Lambda(y)|y \in X\}$ e, assim, concluímos a primeira parte. Para o caso complexo, basta tomar a parte real e imaginária de Λ e aplicar o raciocínio acima para cada uma delas. Temos que $H_{\Lambda} = H_{Re(\Lambda)} \cap H_{Im(\Lambda)}$ e daí o resto do raciocínio fica igual.

• Unicidade de $b(\mu)$

A unicidade é clara pelo teorema de Hahn-Banach. Se existisse outro baricentro x então haveria um funcional Λ tal que $\Lambda(x) \neq \Lambda(b(\mu))$. Portanto x não poderia ser baricentro. \square

Teorema 3.3. Seja E um espaço localmente convexo Hausdorff, $Y \subset E$ compacto e suponha $X = \overline{co}(Y)$ um compacto. Então $x \in X$ se, e somente se, existe μ medida de probabilidade sobre Y tal que $x = b(\mu)$

Demonstração. A volta deste teorema segue do teorema 1.2. Falta apenas a ida. Tome $x \in X$. Então existe um net $(x_{\alpha})_{\alpha \in A} \in co(Y)$ que converge para x. Dai temos que, para cada x_{α} , existe λ_i^{α} , $i=1,...,n_{\alpha}$ e $y_i^{\alpha} \in Y$ tal que $x_{\alpha} = \sum_{i=1}^{n_{\alpha}} \lambda_i^{\alpha} y_i^{\alpha}$. Temos que cada x_{α} é, portanto, baricentro da medida $\sum_{i=1}^{n_{\alpha}} \lambda_i^{\alpha} \delta_{y_i^{\alpha}}$ onde $\delta_{y_i^{\alpha}}$ é a medida de Dirac centrada em y_i^{α} . Defina $\mu_{\alpha} = \sum_{i=1}^{n_{\alpha}} \lambda_i^{\alpha} \delta_{y_i^{\alpha}}$. Temos que $(\mu_{\alpha})_{\alpha \in A}$ é um net em C(Y)'. Como as medidas de probabilidade formam um conjunto compacto em C(Y)' na topologia fraca* temos que existe um subnet $(\mu_{\beta})_{\beta \in B}$ convergente, para μ , digamos.

Concluímos que, para todo $\Lambda \in E'$ vale $\int_Y \Lambda(y) d\mu_{\beta}(y) \Rightarrow \int_Y \Lambda(y) d\mu(y)$. Como x_{β} é subnet de x_{α} , ela também converge para x. Além disso, x_{β} é baricentro da μ_{β} . Então $\Lambda(x) = \lim_{\beta} \Lambda(x_{\beta}) = \lim_{\beta} \int_Y \Lambda(y) d\mu_{\beta}(y) = \int_Y \Lambda(y) d\mu(y)$. Como isso vale para todo funcional $\Lambda \in E'$, temos que x é baricentro da μ .

Agora podemos enunciar a representação integral dos pontos de um compacto convexo em um espaço localmente convexo Hausdorff que segue do teorema de Krein-Milman.

Teorema 3.4. Seja E um espaço localmente compacto Hausdorff $e X \subset E$ um compacto convexo. Então, $\forall x \in X$ existe μ uma medida de probabilidade em $\overline{\mathcal{E}(X)}$ tal que $x = b(\mu)$.

Demonstração. Tomando $Y = \overline{\mathcal{E}(X)}$ no teorema 1.3 temos que todo $x \in \overline{co(Y)}$ é o baricentro de uma medida de probabilidade μ sobre Y. Pelo teorema de Krein-Milman, temos que $X = \overline{co(Y)}$.

Observação 3.2. Usando o teorema acima podemos provar o teorema de Krein-Milman. A prova segue assim: Já sabemos que $\overline{co}(\mathcal{E}(X)) \subset X$, falta mostrar a outra inclusão. Assumindo 2, o teorema 1.2 nos diz que, dado $x \in X$ temos que $x \in \overline{co}(\overline{\mathcal{E}(X)})$, ou seja, $X = \overline{co}(\overline{\mathcal{E}(X)})$. Note que $\mathcal{E}(X) \subset co(\mathcal{E}(X))$, portanto $X = \overline{co}(\overline{\mathcal{E}(X)}) \subset \overline{co}(\mathcal{E}(X))$.

Vamos dar uma aplicação desse teorema provando um importante teorema de Bernstein sobre uma classe especial de funções suaves. Vamos começar com uma definição:

Definição 3.2. Seja $f \in C^{\infty}((0,\infty))$. Dizemos que f é completamente monótona se, e somente se, vale:

$$(-1)^n \frac{d^n f}{dx^n} \ge 0, \quad \forall n \in \mathbb{N}$$

Example 3.1. A função $f(x) = e^{-x}$ é um exemplo de função completamente monótona. Outro exemplo é a função $f(x) = \frac{1}{x}$. Este último exemplo é interessante pois se trata de uma função completamente monótona não limitada.

Vamos colocar em $C^{\infty}((0,\infty))$ a topologia gerada pelas seminormas:

$$p_{m,n}(f) = \sup \left\{ \left| \frac{d^i f}{dx^i}(y) \right| \mid y \in [1/m, m], i = 1, ..., n \right\}$$

Isso torna $C^{\infty}((0,\infty))$ um espaço de Montel, em particular, um espaço localmente convexo Hausdorff.

Lema 3.1. Seja $K \subset C^{\infty}((0,\infty))$ o conjunto das funções completamente monótonas tais que f é limitada e $f(0^+) = \lim_{x\downarrow 0} f(x) \leq 1$. Então K é compacto e convexo.

Demonstração. Note que no caso de f ser limitada o limite $f(0^+)$ sempre existe pois f é decrescente. Vamos dividir a prova em duas partes:

K é convexo

Tome $f, g \in K$ e $\lambda \in (0, 1)$. É claro que $\lambda f(0^+) + (1 - \lambda)g(0^+) \leq 1$. Além disso, como $0 < \lambda < 1$ temos que $\lambda (-1)^n \frac{d^n f}{dx^n} + (1 - \lambda) \frac{d^n g}{dx^n} \geq 0$.

• K é compacto

Como $C^{\infty}((0,\infty))$ é Montel, basta mostrar que K é fechado e limitado. É fácil ver que K deve ser fechado, então apenas mostraremos que K é limitado. Para isso, basta mostrar que existe $C_{m,n} > 0$ tal que:

$$p_{m,n}(f) \le C_{m,n}, \quad \forall f \in K$$

Para isso, vamos precisar do seguinte lema:

Lema 3.2. Seja $f \in K$, a > 0 e $n \in \mathbb{N}$ fixado. Então, para todo $y \in [a, \infty)$:

$$(-1)^n \frac{d^n f}{dx^n}(y) \le a^{-n} 2^{n(n+1)/2} \tag{2}$$

Demonstração. A prova segue por indução. Para n=0 segue que:

$$f(a) \le f(0^+) \le 1$$

Considere [a/2, a], onde a > 0. O teorema do valor médio implica que $\exists c \in (a/2, a)$ tal que:

$$\frac{a}{2}\frac{d^{n+1}f}{dx^{n+1}}(c) = \frac{d^nf}{dx^n}(a) - \frac{d^nf}{dx^n}(a/2)$$
(3)

Assuma que (2) vale para n. Então usando a desigualdade para a/2 temos que:

$$\left(\frac{a}{2}\right)^{-n} 2^{n(n+1)/2} \ge (-1)^n \frac{d^n f}{dx^n} (a/2) \ge (-1)^{n+1} \frac{a}{2} \frac{d^{n+1} f}{dx^{n+1}} (c)$$

Pois, por (3), temos que $(-1)^{n+1} \frac{a}{2} \frac{d^{n+1}f}{dx^{n+1}}(c) = (-1)^n \frac{d^nf}{dx^n}(a/2) - (-1)^n \frac{d^nf}{dx^n}(a)$ Como $(-1)^{n+1} \frac{d^{n+1}f}{dx^{n+1}}$ é decrescente, por f ser completamente monótona, temos que:

$$\left(\frac{a}{2}\right)^{-n} 2^{n(n+1)/2} \ge (-1)^{n+1} \frac{a}{2} \frac{d^{n+1} f}{dx^{n+1}}(a)$$

Em vista do lema 1.2 e como f é completamente monótona temos que, fixado $m \in \mathbb{N}$ vale, para todo $n \in \mathbb{N}$:

$$-m^n 2^{n(n+1)/2} \le 0 \le (-1)^n \frac{d^n f}{dx^n}(y) \le m^n 2^{n(n+1)/2}, \ \forall y \in [1/m, m]$$

Isso implica que:

$$p_{m,n}(f) \le m^n 2^{n(n+1)/2}$$

Precisamos calcular os pontos extremais de K. Isso será feito no próximo lema:

Lema 3.3. Seja $f \in \mathcal{E}(K)$. Então $\exists \alpha \in [0, +\infty]$ tal que $f(x) = e^{-\alpha x}$

Demonstração. Tome $x_0 > 0$, $f \in K$ e defina a função $u(x) = f(x + x_0) - f(x)f(x_0)$ para todo x > 0. Vamos mostrar que $f \pm u \in K$. Vamos começar mostrando que o limite a direita de 0 é menor que 1. De fato,

$$\lim_{x \downarrow 0} (f+u)(x) = f(x_0) + f(0^+)(1 - f(x_0)) \le 1$$

E também temos:

$$\lim_{x \to 0} (f - u)(x) = f(0^+) - f(x_0) + f(0^+)f(x_0) \le 1$$

Falta mostrar que ambas são completamente monótonas.

$$(-1)^n \frac{d^n(f+u)}{dx^n}(y) = (-1)^n \frac{d^n f}{dx^n}(y) + (-1)^n \frac{d^n f}{dx^n}(y+x_0) - f(x_0)(-1)^n \frac{d^n f}{dx^n}(y) \ge 0$$

E para f - u temos:

$$(-1)^n \frac{d^n (f - u)}{dx^n}(y) = (-1)^n \frac{d^n f}{dx^n}(y) - (-1)^n \frac{d^n f}{dx^n}(y + x_0) + f(x_0)(-1)^n \frac{d^n f}{dx^n}(y) \ge 0$$

Se $f \in \mathcal{E}(K)$ então $f \pm u = f$, logo u = 0. Isso nos dá que $f(x + x_0) = f(x)f(x_0)$ como f é contínua, temos que ou f = 0, ou $f(x) = e^{-\alpha x}$ para algum α real. Como f é completamente monótona, concluímos que $\alpha \geq 0$.

Falta demonstrarmos que alpha percorre todo o intervalo do enunciado. Considere, para r > 0 a função $T_r : K \to K$ definida por $T_r(f)(x) = f(rx), \ \forall x \in [0, \infty)$. A função é claramente injetora e convexa. Com isso, $T_r(\mathcal{E}(K)) \subset \mathcal{E}(K)$. De fato, pois se para algum $f \in \mathcal{E}(K)$ $Tf \notin \mathcal{E}(K)$ conseguimos achar uma combinação convexa não trivial que resulta em f. Como isso vale para todo r > 0, em vista do que já foi provado, temos que α deve percorrer todo o intervalo $[0, \infty]$.

Observação 3.3. Note que a função $T:[0,+\infty]\to\mathcal{E}(K)$ definida por:

$$T(\alpha) = \begin{cases} 0, & \alpha = \infty \\ e^{-\alpha x} & \text{caso contrário} \end{cases}$$

é um homeomorfismo, logo $\mathcal{E}(K)$ é compacto e, em particular, é fechado.

Por fim, enunciaremos e provaremos o teorema de Bernstein.

Teorema 3.5 (Bernstein). Seja $f \in C^{\infty}((0,\infty))$ uma função completamente monótona com $f(0^+) < \infty$. Então existe uma medida de probabilidade λ tal que:

$$f(x) = \int_0^\infty e^{-\alpha x} d\mu(\alpha)$$

Demonstração. Seja f em K. Em vista do Lema 1.1, sabemos que K é um conjunto convexo e compacto. Como visto na Observação 1.3, $\mathcal{E}(K)$ é fechado, portanto o teorema 2.4 implica que existe μ uma medida de probabilidade sobre $\mathcal{E}(K)$ onde:

$$\Lambda(f) = \int_{\mathcal{E}(K)} \Lambda(y) d\lambda(y), \ \forall \ \Lambda \in C^{\infty}((0, \infty))'$$

Como os funcionais $\delta_x(f) = f(x)$, para x > 0, são contínuos, temos que:

$$f(x) = \int_{\mathcal{E}(K)} \delta_x(y) d\lambda(y)$$

Novamente, em vista da Observação 1.3, defina para os borelianos $E \subset [0, \infty]$ a medida $\mu(E) = \lambda(T(E))$ Isso está bem definido porque, como T é homeomorfismo a imagem de boreliano é um boreliano. Temos que para funções simples $\phi : [0, \infty] \to \mathbb{R}$, escrita como $\phi(x) = \sum_{k=1}^{n} a_k \chi_{E_k}$, vale a seguinte relação:

$$\int_{[0,\infty]} \phi(x) d\mu(x) = \sum_{k=1}^n a_k \mu(E_k) = \sum_{k=1}^n a_k \lambda(T(E_k)) = \int_{\mathcal{E}(K)} \phi \circ T^{-1}(x) d\lambda(x)$$

O teorema da convergência monótona garante que a mesma relação vale para funções positivas. Isso nos dá que:

$$f(x) = \int_{\mathcal{E}(K)} \delta_x(y) d\lambda(y) = \int_0^\infty e^{-\alpha x} d\mu(\alpha)$$

Referências

- [1] Bourbaki, N., Topological Vector Spaces, Springer, Berlin, 1987.
- [2] Barry, S., Convexity: An Analytic Viewpoint, Cambrigde University Press, New York, 2011.
- [3] Bourbaki, N., General Topology, Springer, Berlin, 1997.
- [4] Dales, H. G., Dashiell, F. K., Jr A.T.-M. Lau D. Strauss, Banach Space of Continuous Functions as Dual Spaces, CMS Books in Mathematics, 2016.
- [5] Phelps, R.R., Lectures on Choquet Theorem, Second Edition, Lecture Notes in Mathematics, 2001.