AULA 23

Complexidade computacional: P versus NP

CLR 36 ou CLRS 34

Consumo de tempo de um algoritmo

Complexidade de um problema

Problemas e instâncias

Instâncias = cadeias de caracteres

N =tamanho de uma instância

Exemplos

- problema da subseqüência crescente máxima
- problema subcoleção disjunta máxima de intervalos
- problema da mochila
- problema da árvore geradora de peso mínimo

Complexidade de um problema

Problema **polinomial**: existe algoritmo $O(N^i)$ para algum i

Por que polinômios?

Classe P de problemas

Para muitos problemas, não se conhece algoritmo melhor que "testar todas as possibilidades". (Exemplo: examinar todas as 2^n seqüs de n bits.) Em geral, isso não está em P.

Problemas de decisão: respostas SIM ou NÃO

- ullet subseqüência crescente $\geq k$
- ullet subcoleção disjunta $\geq k$ de intervalos
- ullet mochila de valor $\geq k$
- ullet árvore geradora de peso $\leq k$

Verificação de soluções

Certificados de respostas SIM Certificados de respostas NÃO

- existe subsequência crescente $\geq k$?
- ullet existe subcoleção disjunta $\geq k$ de intervalos?
- existe mochila de valor $\geq k$?
- grafo tem árvore geradora de peso $\leq k$?
- grafo tem circuito de comprimento $\geq k$?
- ullet grafo tem conjunto independente de tamanho $\geq k$?
- ullet grafo tem emparelhamento de tamanho $\geq k$?

Certificados polinomiais

Classe NP:

resposta SIM tem certificado polinomial

Não confunda **NP** com "não-polinomial"

Classe coNP:

resposta NÃO tem certificado polinomial

Fácil: $P \subseteq NP$ $P \subseteq coNP$

Ninguém sabe: $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$

Redução entre problemas

Converta instância de problema A em instância de B. Resolva instância de B.

Converta solução de B em solução de A.

Redução polinomial

Permite comparar o "grau de complexidade" de problemas diferentes.

Problemas completos em NP

A é completo em ${\bf NP}$ se todo problema em ${\bf NP}$ pode ser polinomialmente reduzido a A

Classe NPC

Classe dos problemas "mais difíceis" de NP

$$P = NP \Leftrightarrow P \cap NPC \neq \emptyset$$

Teorema de S. Cook: **NPC** $\neq \emptyset$

- mochila
- circuito hamiltoniano
- caminho máximo
- escalonamento de tarefas
- clique máximo

TAREFA 22

Exercício 22.A

Suponha que os algoritmos A e B transformam cadeias de caracteres em outras cadeias de caracteres. O algoritmo A consome $O(n^2)$ unidades de tempo e o algoritmo B consome $O(n^4)$ unidades de tempo, onde n é o número de caracteres da cadeia de entrada. Considere agora o algoritmo AB que consiste na composição de A e B, com B recebendo como entrada a saída de A. Qual o consumo de tempo de AB?