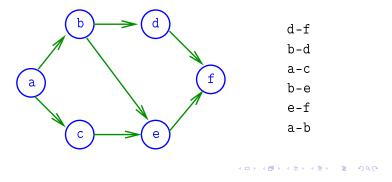
Melhores momentos

AULA 1

Especificação

Digrafos podem ser especificados através de sua **lista** de arcos

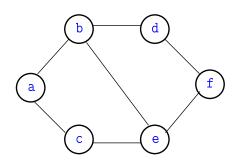
Exemplo:



Grafos

Um grafo é um digrafo simétrico

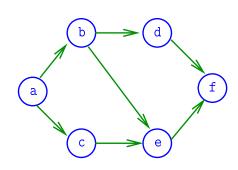
Exemplo: representação usual



Digrafos

digrafo = de vértices e conjunto de arcos
arco = par ordenado de vértices

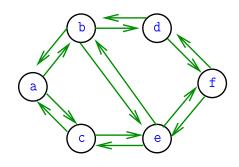
Exemplo: v e w são vértices e v-w é um arco



Grafos

grafo = digrafo simétrico
aresta = par de arcos anti-paralelos

Exemplo: b-a e a-b formam uma aresta



Estrutura de dados

Vértices são representados por objetos do tipo Vertex.

Arcos sao representados por por objetos do tipo Arc

```
#define Vertex int

typedef struct {
    Vertex v;
    Vertex w;
} Arc;
```

Grafos no computador

Usaremos duas representações clássicas:

- ▶ matriz de adjacência (agora)
- vetor de listas de adjacência (próximas aulas)

<□ > <□ > <□ > < 필 > 〈필 > 〈필 > 〉 필 · ♡ °

Estrutura digraph

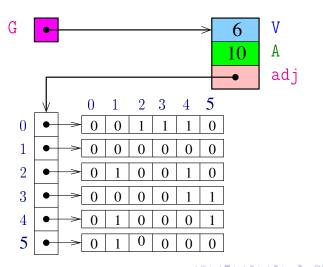
```
V = número de vértices
A = número de arcos
adj = ponteiro para a matriz de adjacência

struct digraph {
   int V;
   int A;
   int **adj:
```

typedef struct digraph *Digraph;

};

Estruturas de dados

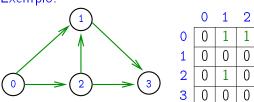


Matriz de adjacência de digrafo

Matriz de adjacência de um digrafo tem linhas e colunas indexadas por vértices:

```
adj[v][w] = 1 se v-w é um arco adj[v][w] = 0 em caso contrário
```

Exemplo:



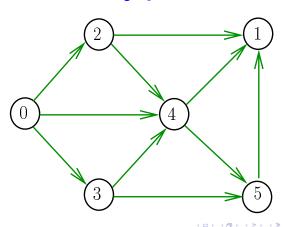
Consumo de espaço: $\Theta(V^2)$

fácil de implementar

1

Digrafo

Digraph G



MATRIXint

Aloca uma matriz com linhas 0..r-1 e colunas 0..c-1, cada elemento da matriz recebe valor val

```
int **MATRIXint (int r, int c, int val) {
0
        Vertex i, j;
        int **m = malloc(r * sizeof(int *));
1
2
        for (i = 0; i < r; i++)
            m[i] = malloc(c * sizeof(int));
3
4
        for (i = 0; i < r; i++)
5
            for (j = 0; j < c; j++)
6
                m[i][j] = val;
7
        return m;
```

Consumo de tempo

linha número de execuções da linha

```
\begin{array}{lll} 1 & = 1 & = \Theta(1) \\ 2 & = r + 1 & = \Theta(r) \\ 3 & = r & = \Theta(r) \\ 4 & = r + 1 & = \Theta(r) \\ 5 & = r \times (c + 1) & = \Theta(r c) \\ 6 & = r \times c & = \Theta(r c) \end{array}
```

total
$$\Theta(1) + 3\Theta(r) + 2\Theta(rc)$$

= $\Theta(rc)$

DIGRAPHinit

4D> 4B> 4E> 4E> E 990

Devolve (o endereço de) um novo digrafo com vértices 0,..,V-1 e nenhum arco.

```
Digraph DIGRAPHinit (int V) {
0         Digraph G = malloc(sizeof *G);
1         G->V = V;
2         G->A = 0;
3         G->adj = MATRIXint(V,V,0);
4         return G;
}
```

Funções básicas (continuação)

Conclusão

Supondo que o consumo de tempo da função malloc é constante

O consumo de tempo da função MATRIXint é $\Theta(r c)$.

4 D > 4 B > 4 E > 4 E > E 990

AULA 2

DIGRAPHinsertA

Insere um arco v-w no digrafo G. Se v == w ou o digrafo já tem arco v-w, não faz nada

void

DIGRAPHinsertA(Digraph G, Vertex v, Vertex w)

S 17.3

DIGRAPHinsertA

Insere um arco v-w no digrafo G. Se v==w ou o digrafo já tem arco v-w, não faz nada

void

```
DIGRAPHinsertA(Digraph G, Vertex v, Vertex w)
{
   if (v != w && G->adj[v][w] == 0) {
      G->adj[v][w] = 1;
      G->A++;
   }
}
```

DIGRAPHremoveA

Remove do digrafo G o arco v-w Se não existe tal arco, a função nada faz.

void

```
DIGRAPHremoveA(Digraph G, Vertex v, Vertex w)
{
   if (G->adj[v][w] == 1) {
      G->adj[v][w] = 0;
      G->A--;
   }
}
```

DIGRAPHshow

Para cada vértice v de G, imprime, em uma linha, os vértices adjacentes a v

```
void DIGRAPHshow (Digraph G) {
```

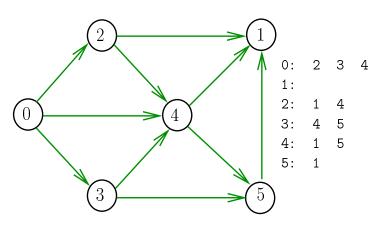
DIGRAPHremoveA

Remove do digrafo G o arco v-w Se não existe tal arco, a função nada faz.

void

```
DIGRAPHremoveA(Digraph G, Vertex v, Vertex w)
```

DIGRAPHshow



DIGRAPHshow

Para cada vértice v de G, imprime, em uma linha, os vértices adjacentes a v

Consumo de tempo

linha número de execuções da linha

total
$$3\Theta(V) + O(V^2) + 3\Theta(V^2)$$

= $\Theta(V^2)$

Funções básicas para grafos

4 D > 4 D > 4 E > 4 E > E 9 Q C

Conclusão

O consumo de tempo da função DIGRAPHShow é $\Theta(V^2)$.

Funções básicas para grafos

```
#define GRAPHinit DIGRAPHinit
#define GRAPHshow DIGRAPHshow

Função que insere uma aresta v-w no grafo G

void

GRAPHinsertE (Graph G, Vertex v, Vertex w)
```

Funções básicas para grafos

```
#define GRAPHinit DIGRAPHinit
#define GRAPHshow DIGRAPHshow

Função que insere uma aresta v-w no grafo G

void

GRAPHinsertE (Graph G, Vertex v, Vertex w)

{
    DIGRAPHinsertA(G, v, w);
    DIGRAPHinsertA(G, w, v);
}

Exercício. Escrever a função GRAPHremoveE
```

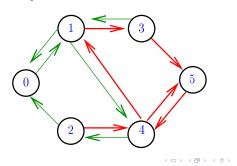
Caminhos em digrafos

S 17.1

Caminhos

Um **caminho** num digrafo é qualquer seqüência da forma $\mathbf{v}_0 - \mathbf{v}_1 - \mathbf{v}_2 - \dots - \mathbf{v}_{k-1} - \mathbf{v}_p$, onde $\mathbf{v}_{k-1} - \mathbf{v}_k$ é um arco para $k = 1, \dots, p$.

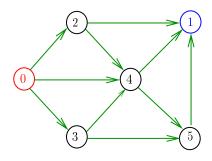
Exemplo: 2-4-1-3-5-4-5 é um caminho com **origem** 2 é **término** 5



Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

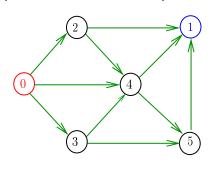
Exemplo: para s = 0 e t = 1 a resposta é SIM



Procurando um caminho

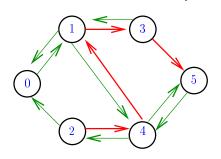
Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 5 e t = 4 a resposta é NÃO



Caminhos simples

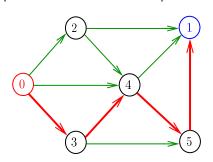
Um caminho é **simples** se não tem vértices repetidos Exemplo: 2-4-1-3-5 é um caminho simples de 2 a 5



Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 0 e t = 1 a resposta é SIM



DIGRAPHpath

Recebe um digrafo G e vértices s e t e devolve 1 se existe um caminho de s a t ou devolve 0 em caso contrário

Supõe que o digrafo tem no máximo maxV vértices.

int DIGRAPHpath (Digraph G, Vertex s, Vertex t)

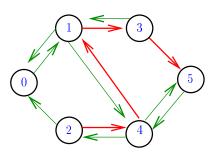
Caminhos em digrafos

S 17.1

Caminhos simples

Um caminho é **simples** se não tem vértices repetidos

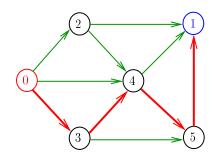
Exemplo: 2-4-1-3-5 é um caminho simples de 2 a 5



Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

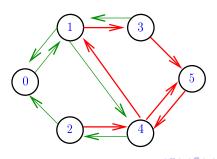
Exemplo: para s = 0 e t = 1 a resposta é SIM



Caminhos

Um **caminho** num digrafo é qualquer seqüência da forma $\mathbf{v}_0 - \mathbf{v}_1 - \mathbf{v}_2 - \dots - \mathbf{v}_{k-1} - \mathbf{v}_p$, onde $\mathbf{v}_{k-1} - \mathbf{v}_k$ é um arco para $k = 1, \dots, p$.

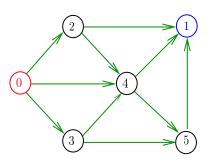
Exemplo: 2-4-1-3-5-4-5 é um caminho com **origem** 2 é **término** 5



Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

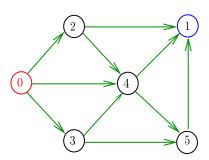
Exemplo: para s = 0 e t = 1 a resposta é SIM



Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 5 e t = 4 a resposta é NÃO



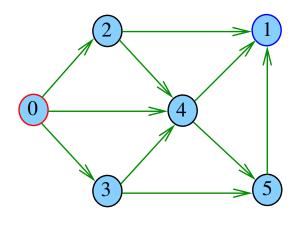
DIGRAPHpath

Recebe um digrafo G e vértices S e t e devolve S se existe um caminho de S a t ou devolve S0 em caso contrário

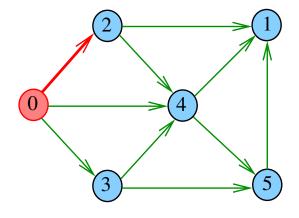
Supõe que o digrafo tem no máximo maxV vértices.

int DIGRAPHpath (Digraph G, Vertex s, Vertex t)

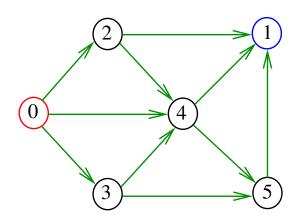
DIGRAPHpath(G,0,1)



pathR(G,0)



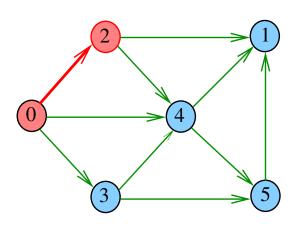
DIGRAPHpath(G,0,1)

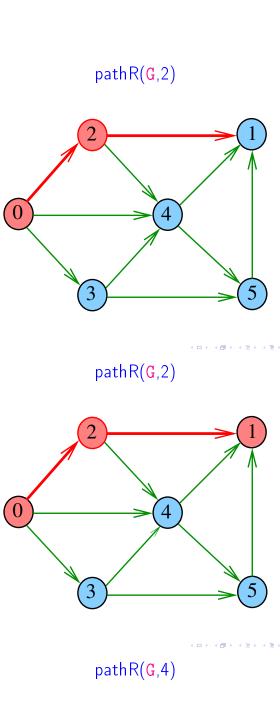


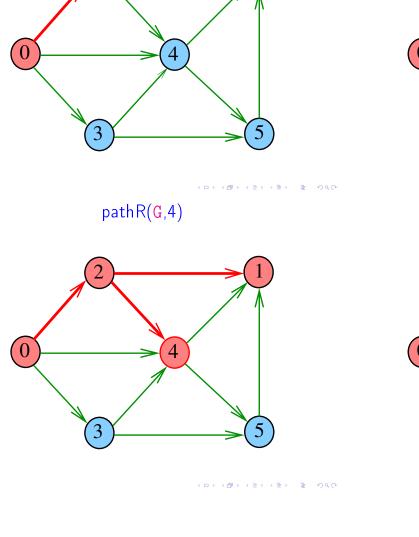
pathR(G,0)

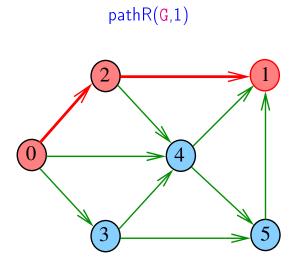


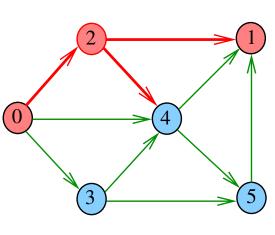
pathR(G,2)



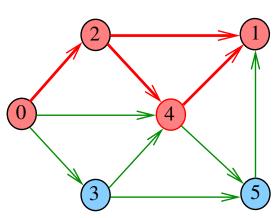




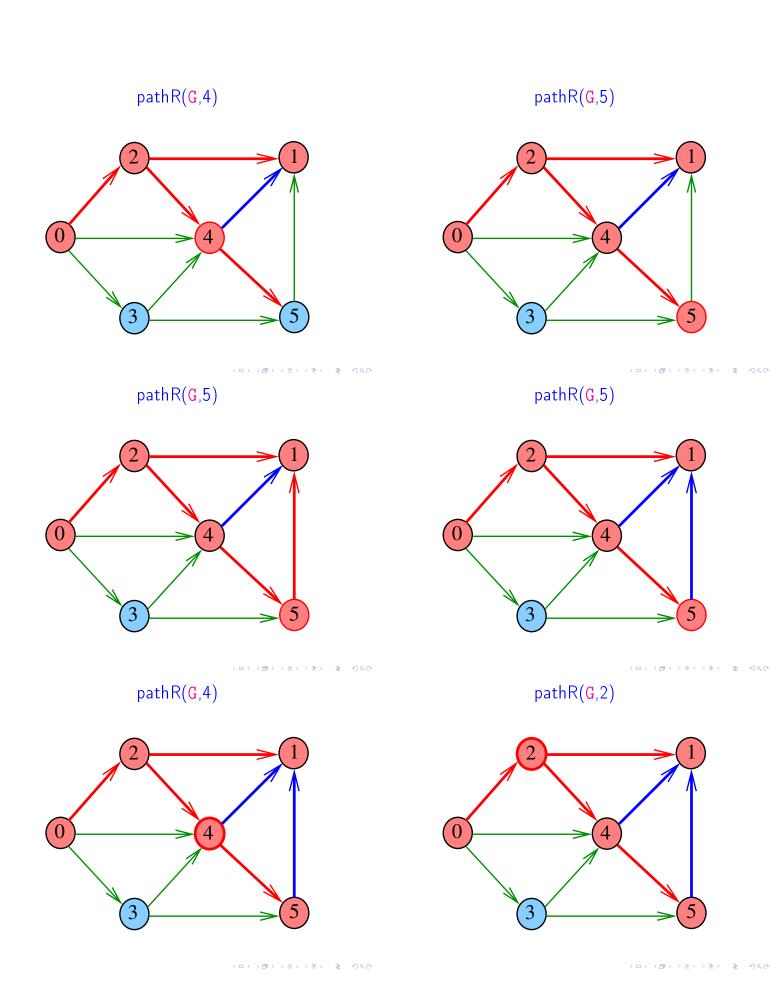


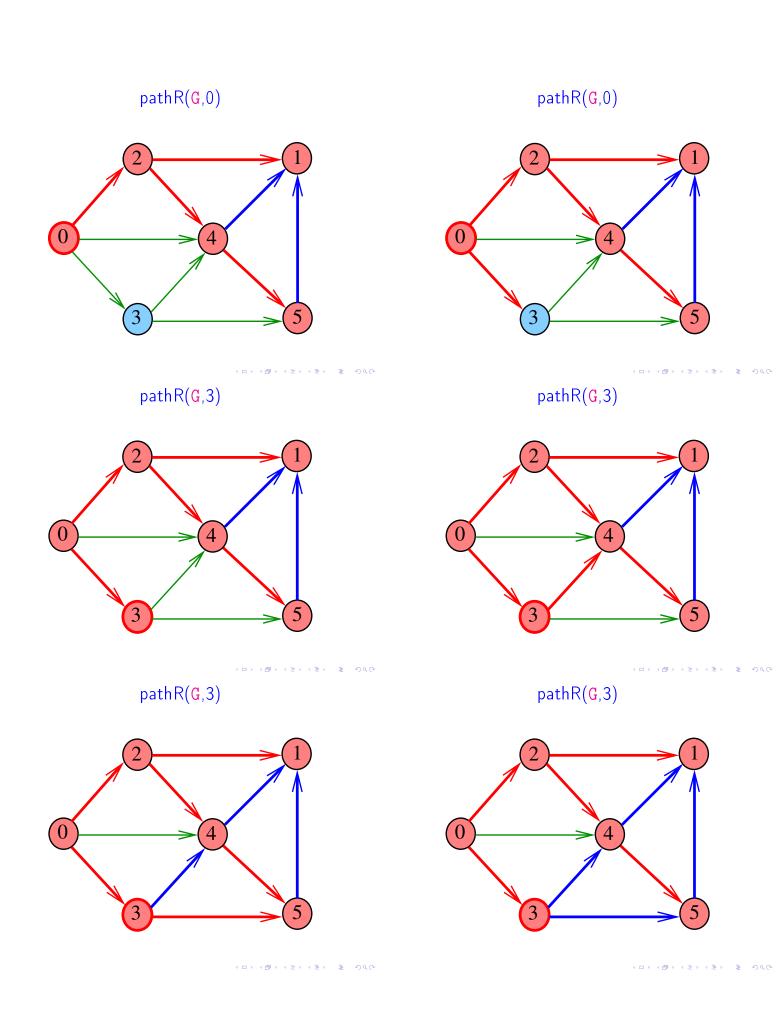


pathR(G,2)

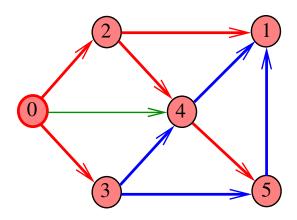


pathR(G,4)

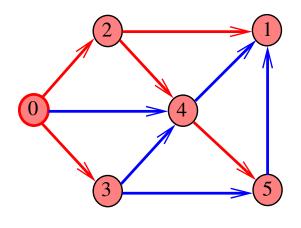




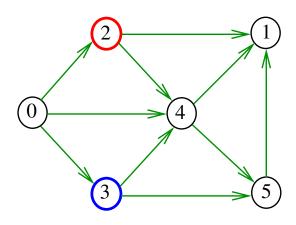
pathR(G,0)



pathR(G,0)



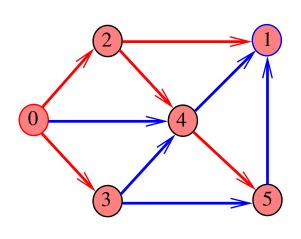
DIGRAPHpath(G,2,3)



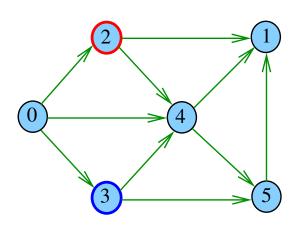
pathR(G,0)



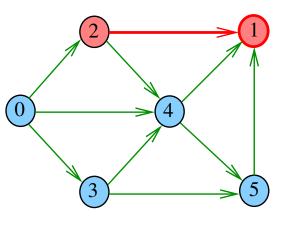
DIGRAPHpath(G,0,1)

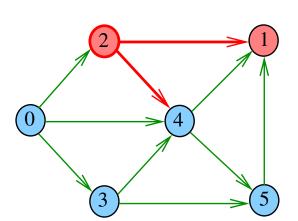


DIGRAPHpath(G,2,3)

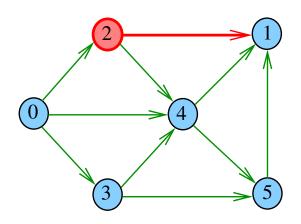


pathR(G,1)

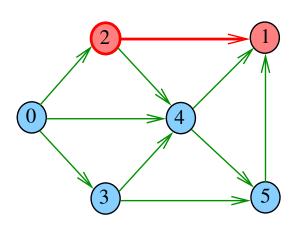




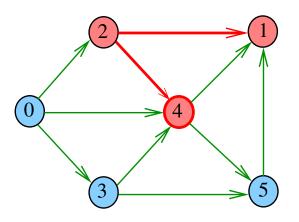
 $\mathsf{pathR}(\textcolor{red}{\textbf{G}},2)$

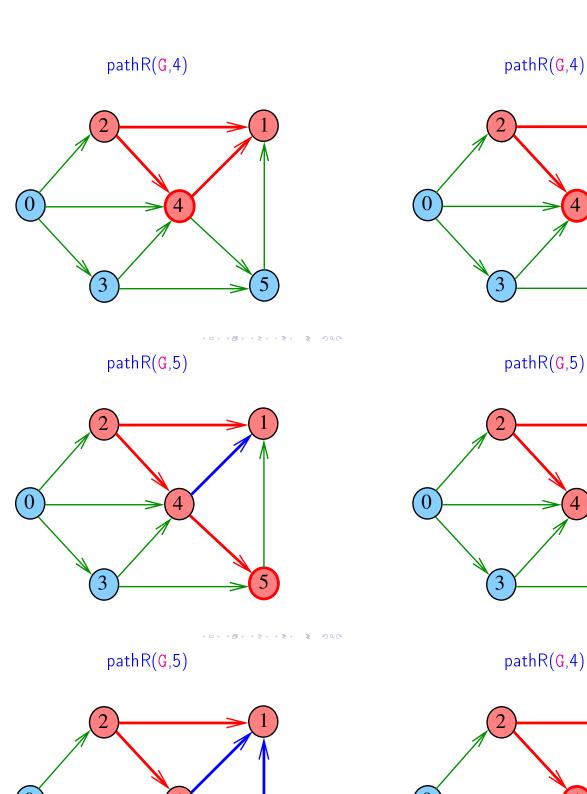


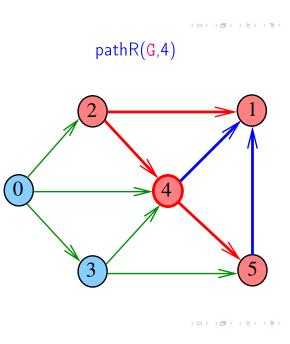
 $\mathsf{pathR}(\textcolor{red}{\textbf{G}},2)$



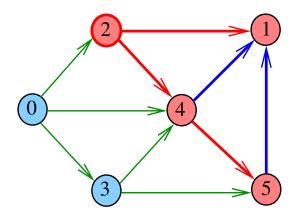
pathR(G,4)







pathR(G,2)



DIGRAPHpath

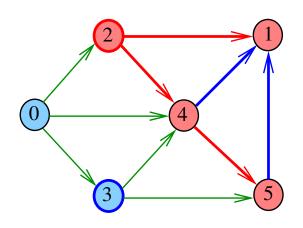
```
static int lbl[maxV];
int DIGRAPHpath (Digraph G, Vertex s, Vertex t)
{
     Vertex v;
1     for (v = 0; v < G->V; v++)
2         lbl[v] = -1;
3     pathR(G,s);
4     if (lbl[t] == -1) return 0;
5     else return 1;
}
```

pathR

Visita todos os vértices que podem ser atingidos a partir de \mathbf{v}

```
void pathR (Digraph G, Vertex v)
{
     Vertex w;
1     lbl[v] = 0;
2     for (w = 0; w < G->V; w++)
3         if (G->adj[v][w] == 1)
4         if (lbl[w] == -1)
5          pathR(G, w);
}
```

DIGRAPHpath(G,2,3)

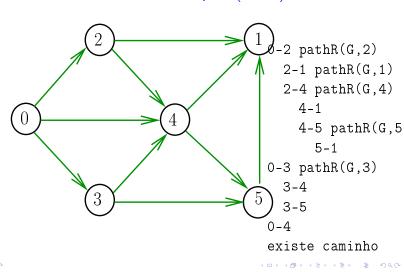


pathR

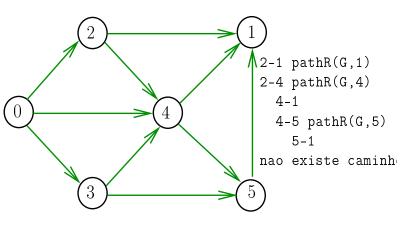
Visita todos os vértices que podem ser atingidos a partir de ${\bf v}$

void pathR (Digraph G, Vertex v)

DIGRAPHpath(G,0,1)



DIGRAPHpath(G,2,3)



Consumo de tempo

Qual é o consumo de tempo da função DIGRAPHpath?

	inha	número de execuções	da	linha
	1	= V + 1	=	$\Theta(V)$
2	2	= V	=	$\Theta(V)$
3	3	=1	=	????
2	4	=1	=	$\Theta(1)$
į	5	= 1	=	$\Theta(1)$
t	total	??	?	

Consumo de tempo

Qual é o consumo de tempo da função PathR?

Consumo de tempo

Qual é o consumo de tempo da função DIGRAPHpath?

Conclusão

O consumo de tempo da função DIGRAPHpath é $\Theta(V)$ mais o consumo de tempo da função PathR.

Consumo de tempo

Qual é o consumo de tempo da função PathR?

1. 1	,		~	1	1. 1
linha	numero	de	execuções	da	linha

$$\begin{array}{lll}
1 & \leq V & = O(V) \\
2 & \leq V \times (V+1) & = O(V^2) \\
3 & \leq V \times V & = O(V^2) \\
4 & \leq V \times V & = O(V^2) \\
5 & \leq V-1 & = O(V)
\end{array}$$

$$\begin{array}{lll}
\text{total} & = 2 O(V) + 3 O(V^2) \\
& = O(V^2)
\end{array}$$

Conclusão

O consumo de tempo da função PathR para matriz de adjacência é $O(V^2)$.

O consumo de tempo da função DIGRAPHpath para matriz de adjacência é $O(V^2)$.