

Fonte: ash.atozviews.com

Compacto de alguns dos melhores momentos

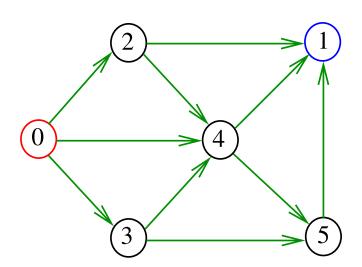
AULA 20

Busca ou varredura

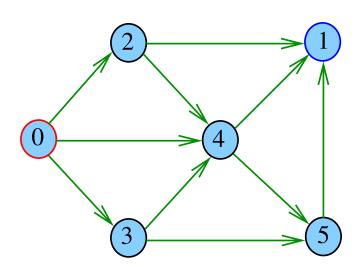
Um algoritimo de **busca** (ou **varredura**) examina, sistematicamente, todos os vértices e todos os arcos de um digrafo.

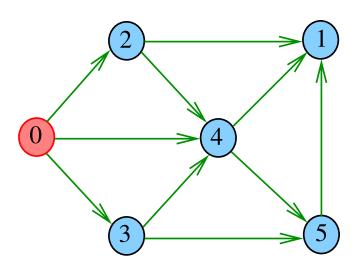
Cada arco é examinado **uma só vez**. Despois de visitar sua ponta inicial o algoritmo percorre o arco e visita sua ponta final.

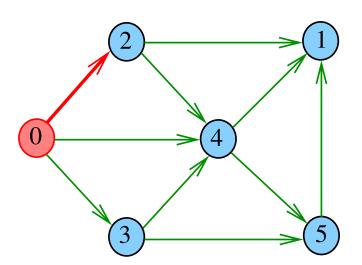
DFSpaths(G, 0)

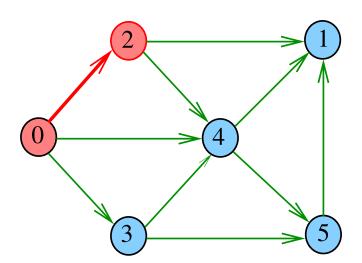


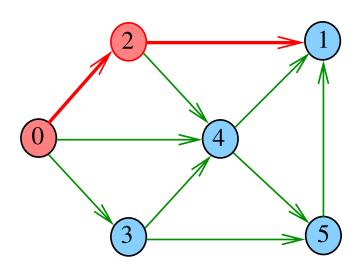
DFSpaths(G, 0)



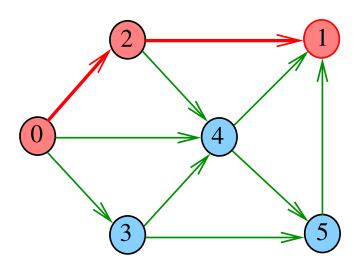


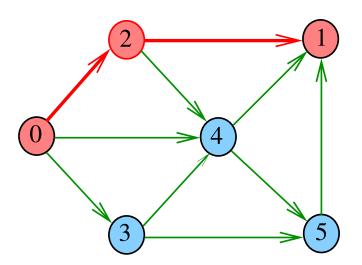


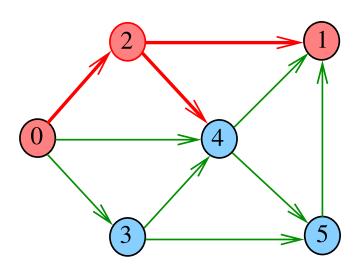


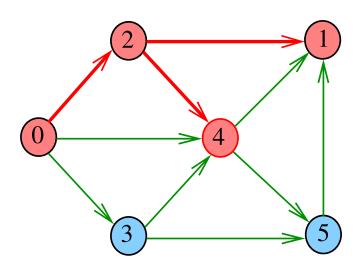


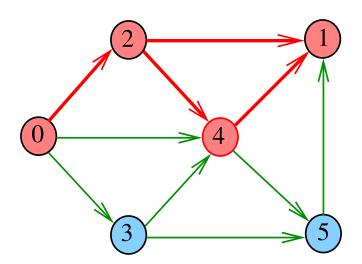
dfs(G, 1)

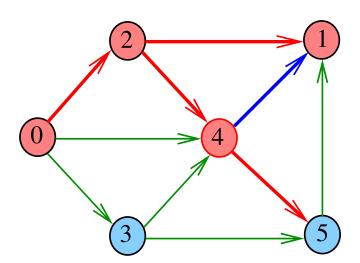




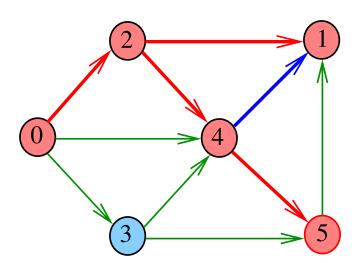




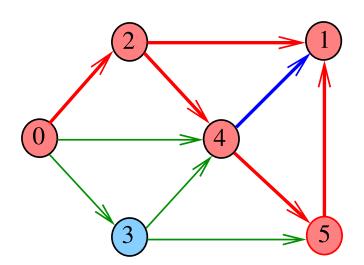




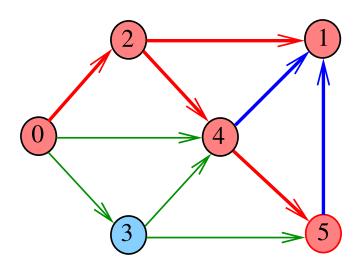
dfs(G, 5)

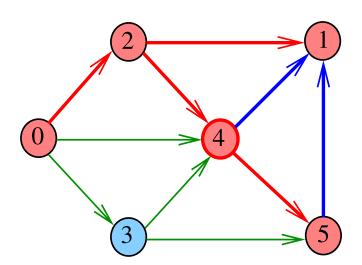


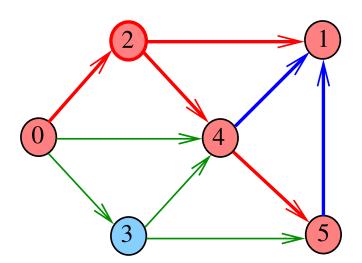
dfs(G, 5)

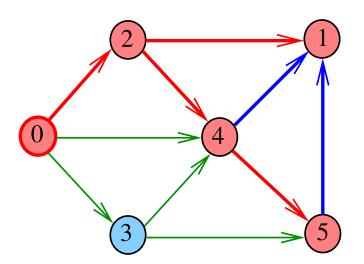


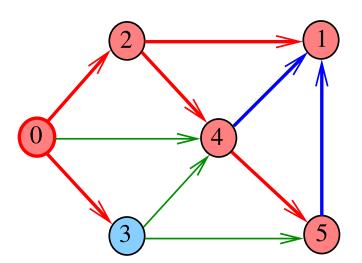
dfs(G, 5)

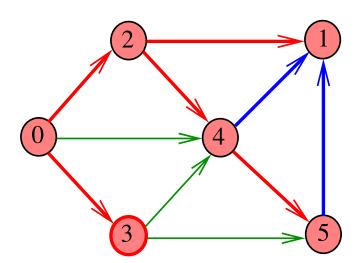


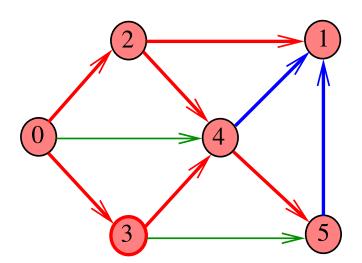


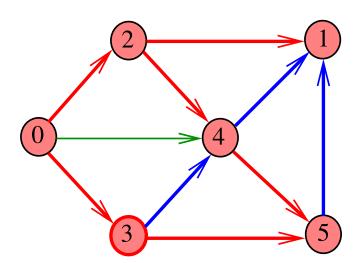


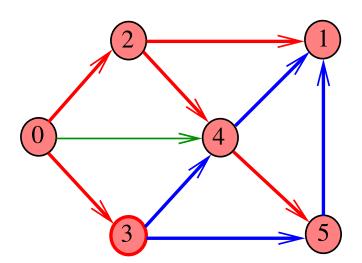


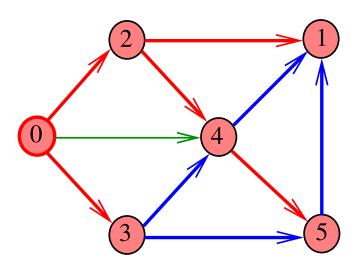


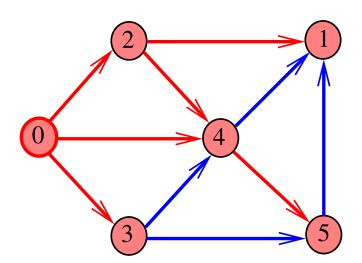


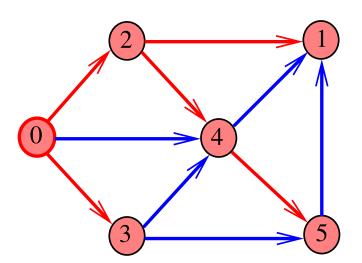




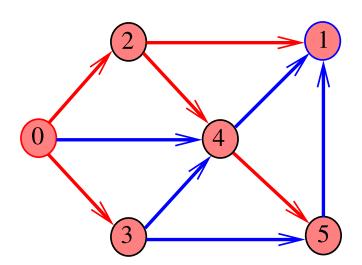




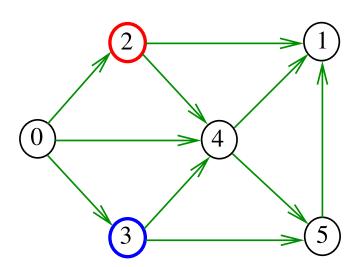




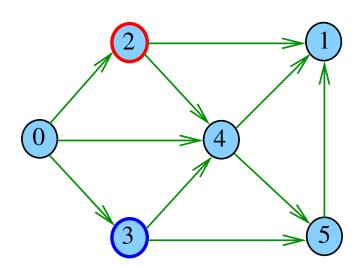
DFSpaths(G, 0)

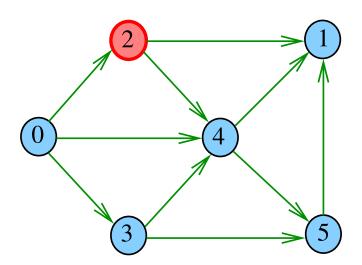


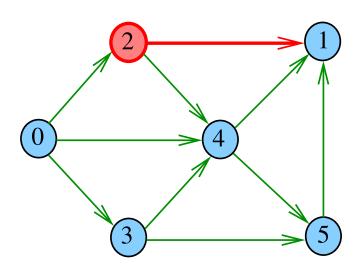
DFSpaths(G, 2)



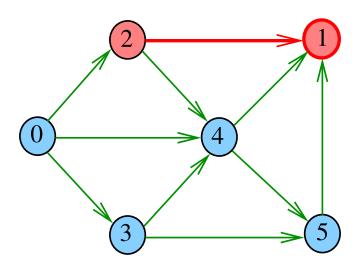
DFSpaths(G, 2)



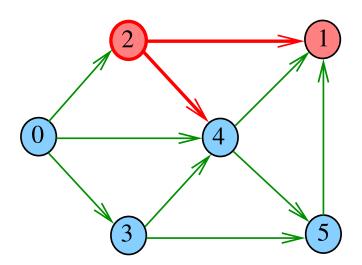


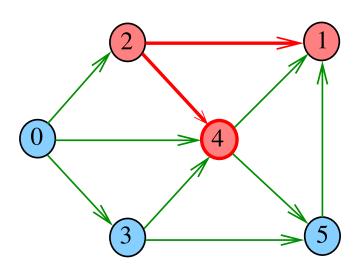


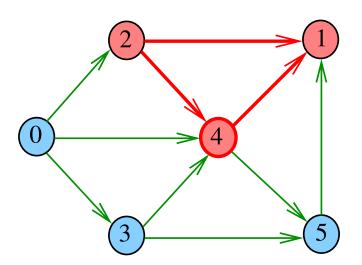
dfs(G, 1)

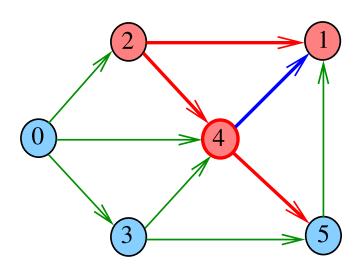








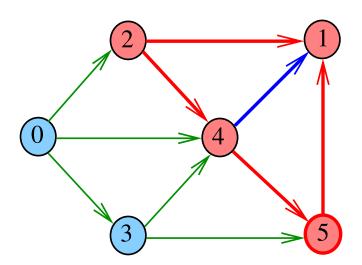




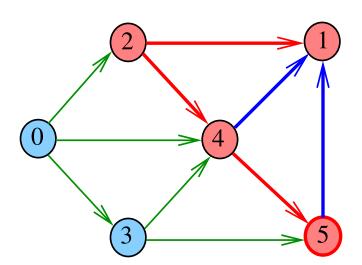
dfs(G, 5)

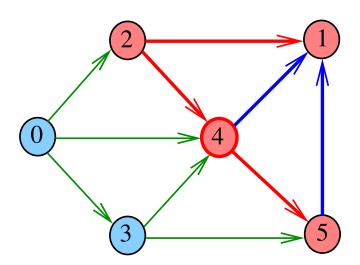


dfs(G, 5)

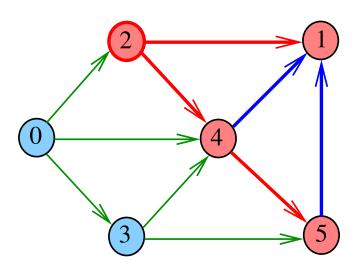


dfs(G, 5)

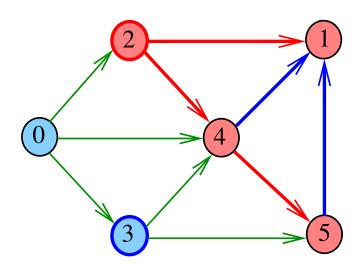




dfs(G, 2)



DFSpaths(G, 2)



Consumo de tempo

O consumo de tempo da função dfs() para vetor de listas de adjacência é O(V + E).

O consumo de tempo de DFSpaths para vetor de listas de adjacência é O(V + E).

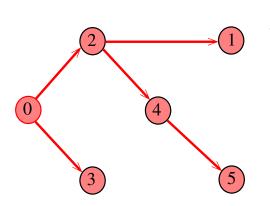
Consumo de tempo

O consumo de tempo da função dfs() para matriz de adjacências é $O(V^2)$.

O consumo de tempo de DFSpaths para matriz de adjacências é $O(V^2)$.

Caminhos no computador

Um arborescência pode ser representada através de um **vetor de pais**: edgeTo[w] é o pai de w Se r é a raiz, então edgeTo[r]=r



vértice	edgeTo
0	0
1	2
2	0
3	0
4	2
5	4

AULA 21

Certificados

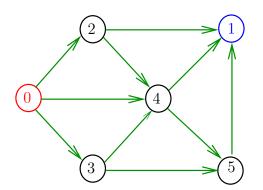
Achievem	ent Certif	ícate
Computer Ac	resented with the	Award
On the Day of	In the Year	Signed,
Cartificate Provided by wave honoverwithdesign.com		ogacu,

Fonte: Free Printable Computer Achievement Award
Certificates

Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 0 e t = 1 a resposta é SIM



Certificados

Como é possível 'verificar' a resposta?

Como é possível 'verificar' que existe caminho?

Como é possível 'verificar' que não existe caminho?

Certificados

Como é possível 'verificar' a resposta?

Como é possível 'verificar' que existe caminho?

Como é possível 'verificar' que não existe caminho?

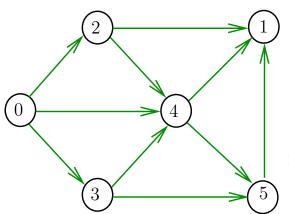
Veremos questões deste tipo frequentemente

Elas terão um papel **suuupeeer** importante no final de MAC0338 Análise de Algoritmos e em MAC0414 Autômatos, Computabilidade e Complexidade

Elas estão relacionadas com o Teorema da Dualidade visto em MAC0315 Otimização Linear

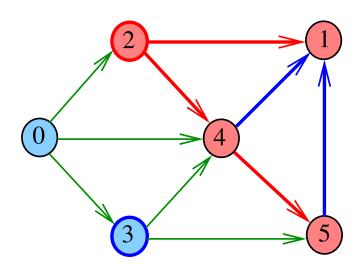
Certificado de inexistência

Como é possível demonstrar que o problema não tem solução?



dfs(G,2)
2-1 dfs(G,1)
2-4 dfs(G,4)
4-1
4-5 dfs(G,5)
5-1
nao existe caminho

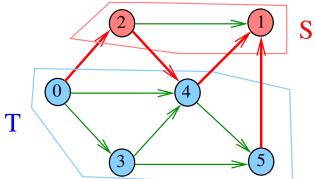
DFSpath(G,2,3)



Cortes
$$(= cuts)$$

Um corte é uma bipartição do conjunto de vértices Um arco pertence ou atravessa um corte (S,T) se tiver uma ponta em S e outra em T

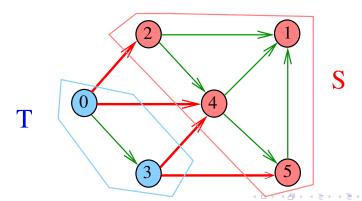
Exemplo 1: arcos em vermelho estão no corte (S, T)



Cortes
$$(= cuts)$$

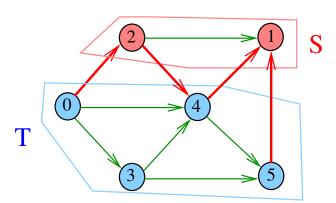
Um corte é uma bipartição do conjunto de vértices Um arco pertence ou atravessa um corte (S,T) se tiver uma ponta em S e outra em T

Exemplo 2: arcos em vermelho estão no corte (S, T)



Um corte (S,T) é um **st-corte** se s está em S e t está em T

Exemplo: (S,T) é um 1-3-corte um 2-5-corte . . .

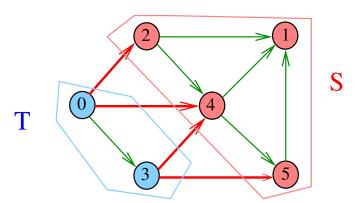


Certificado de inexistência

Para demonstrarmos que $n\~{ao}$ existe um caminho de s a t basta exibirmos um st-corte (S,T) em que todo arco no corte tem ponta inicial em T e ponta final em S

Certificado de inexistência

Exemplo: certificado de que não há caminho de 2 a 3



Conclusão

Para quaisquer vértices s e t de um digrafo, vale uma e apenas umas das seguintes afirmações:

- existe um caminho de s a t
- existe st-corte (S, T) em que todo arco no corte tem ponta inicial em T e ponta final em S.

Fonte: Yin and yang (Wikipedia)

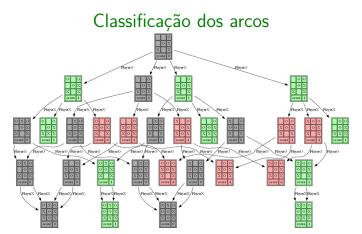
E DFSpaths e BFSpaths com isso?

No código das classes DFSpaths e BFSpaths se existe um caminho de s a t ele esta representado no vetor edgeTo[].

No código da classes DFSpaths e BFSpaths se não existe um caminho de s a t um st-corte separando s de t está representado no vetor marked[].

Em ambos os casos podemos fazer um trecho de código que verifica a resposta em tempo proporcional a V + E.

Anatomia de busca em profundidade



Fonte: Using Minimax (with the full game tree) to implement the machine players ...

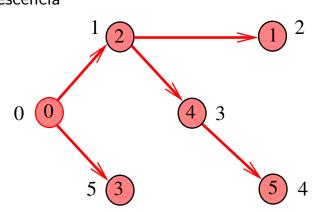
Arcos da arborescência

Arcos da arborescência são os arcos v-w que dfs() percorre para visitar w pela primeira vez Exemplo: arcos em vermelho são arcos da arborescência



Arcos da arborescência

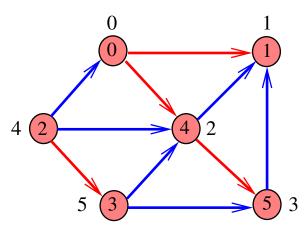
Arcos da arborescência são os arcos v-w que dfs() percorre para visitar w pela primeira vez Exemplo: arcos em vermelho são arcos da arborescência



Floresta DFS

Conjunto de arborescências é a **floresta da busca em profundidade** (= *DFS forest*)

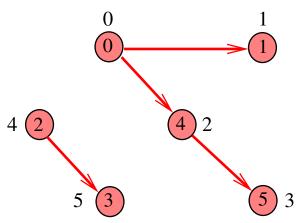
Exemplo: arcos em vermelho formam a floresta DFS



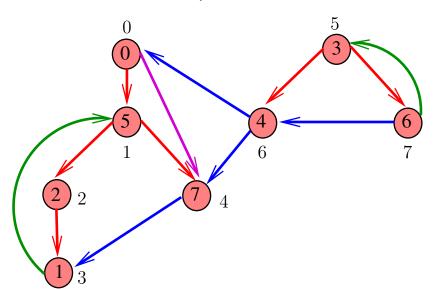
Floresta DFS

Conjunto de arborescências é a **floresta da busca em profundidade** (= *DFS forest*)

Exemplo: arcos em vermelho formam a floresta DFS

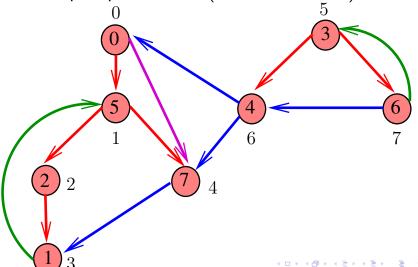


Classificação dos arcos



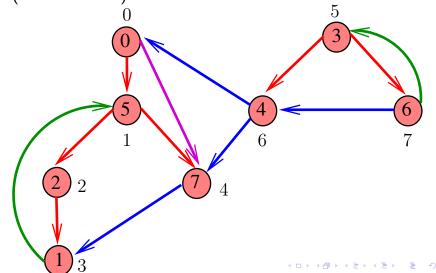
Arcos de arborescência

v-w é arco de arborescência se foi usado para visitar w pela primeira vez (arcos vermelhos)



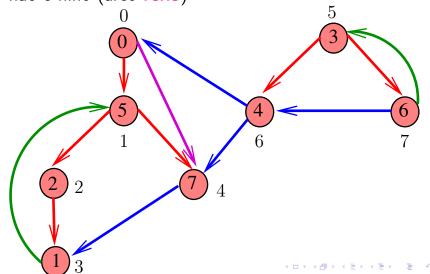
Arcos de retorno

v-w é arco de retorno se w é ancestral de v (arcos verdes)



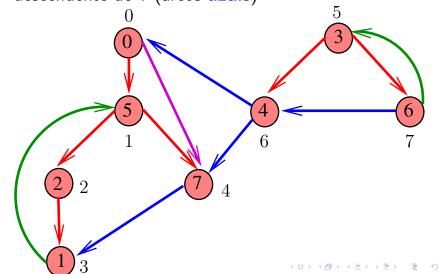
Arcos descendentes

v-w é **descendente** se w é descendente de v, mas não é filho (arco **roxo**)



Arcos cruzados

v-w é **arco cruzado** se w não é ancestral nem descendente de v (arcos **azuis**)



Busca DFSanatomia (CLRS)

O digrafo G têm G.V() vértices

```
private int time;
private int[] d = new int[G.V()];
private int[] f = new int[G.V()];
```

DFSanatomia visita todos os vértices e arcos do digrafo G.

A função registra em d[v] o 'momento' em que v foi descoberto e em f[v] o momento em que ele foi completamente examinado

DFSanatomia: esqueleto

```
public class DFSanatomia {
  private boolean[] marked;
  private int[] edgeTo;
  private int time;
  private int[] d; // discovered
  private int[] f; // finished
  private Queue < Integer > pre; // pré-ordem
  private Queue < Integer > pos; // pós-ordem
  // pós-ordem reversa
  private Stack<Integer> revPos;
```

DFSanatomia: esqueleto

```
// métodos
public DFSanatomia(Graph G) {...}
private void dfs(Digraph G, int v){...}
public Iterable<Integer> pre() {...}
public Iterable<Integer> pos() {...}
public Iterable<Integer> revPos() {...}
```

}

DFSanatomia: construtor

```
public DFSanatomia(Graph G) {
  marked = new boolean[G.V()];
  edgeTo = new int[G.V()];
  d = new int[G.V()];
  f = \text{new int}[G.V()];
  pre = new Queue<Integer>();
  pos = new Queue<Integer>();
  revPos = new Stack<Integer>();
  for (int v = 0; v < G.V(); v++)
      if (!marked(v)) {
         dfs(G,v);
```

```
DFSanatomia: dfs()
private void dfs(Digraph G, int v) {
  marked[v] = true:
  d[v] = time++; // descoberto
  pre.enqueue(v); // pré-ordem
  for (int w : G.adj[v]) {
      if (!marked(w)) {
         edgeTo[w] = v;
         dfs(G, w);
  pos.enqueue(v); // pós-ordem
  revPos.push(v); // pós-ordem reversa
  f[v] = time++; // terminamos
                             4□ > 4個 > 4 = > 4 = > = 900
```

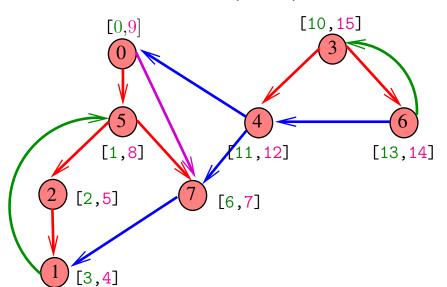
```
DFSanatomia: pre(), pos() e
               revPos()
public Iterable<Integer> pre() {
  return pre;
public Iterable<Integer> pos() {
  return pos;
public Iterable<Integer> revPos() {
  return revPos;
```

Consumo de tempo

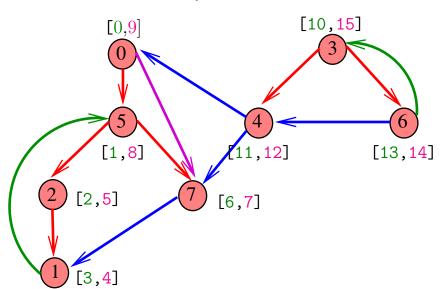
A classe DFSanatomia, para vetor de listas de adjacência, consome tempo O(V + E).

A classe DFSanatomia, para matriz de adjacências, consome tempo $O(V^2)$.

Busca DFS (CLRS)

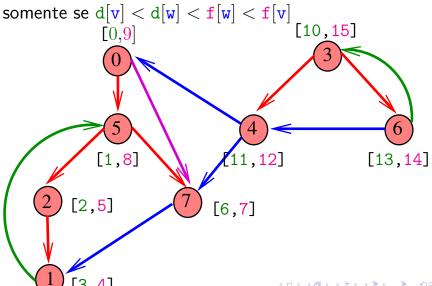


Classificação dos arcos



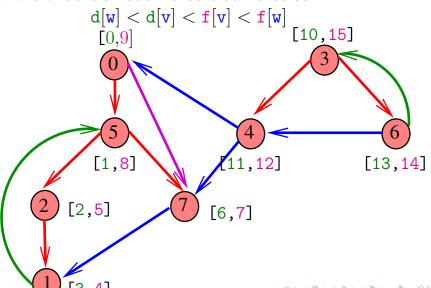
Arcos de arborescência ou descendentes

v-w é arco de arborescência ou descendente se e



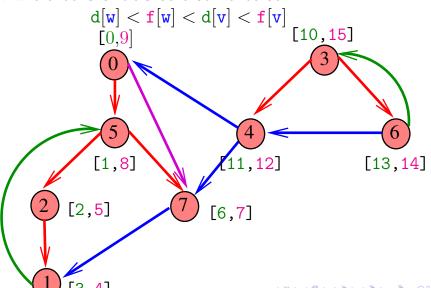
Arcos de retorno

v-w é arco de retorno se e somente se



Arcos cruzados

v-w é arco cruzado se e somente se

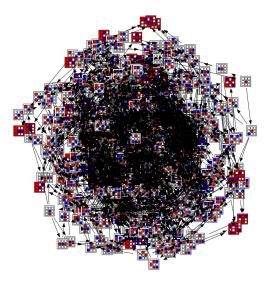


Conclusões

v-w é:

- ▶ arco de arborescência se e somente se d[v] < d[w] < f[w] < f[v] e edgeTo[w] = v;</p>
- ▶ arco descendente se e somente se d[v] < d[w] < f[w] < f[v] e edgeTo[w] ≠ v;</p>
- ▶ arco de retorno se e somente se d[w] < d[v] < f[v] < f[w];</p>
- ▶ arco cruzado se e somente se d[w] < f[w] < d[v] < f[v];</p>

Ciclos em digrafos

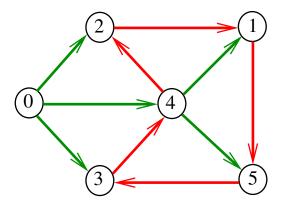


Fonte: laying out a large graph with graphviz

Ciclos

Um **ciclo** num digrafo é qualquer sequência da forma \mathbf{v}_0 - \mathbf{v}_1 - \mathbf{v}_2 -...- \mathbf{v}_{k-1} - \mathbf{v}_p , onde \mathbf{v}_{k-1} - \mathbf{v}_k é um arco para $k=1,\ldots,p$ e $\mathbf{v}_0=\mathbf{v}_p$.

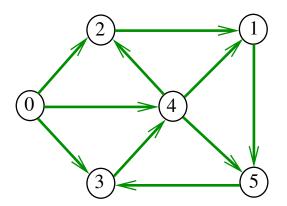
Exemplo: 2-1-5-3-4-2 é um ciclo



Procurando um ciclo

Problema: decidir se dado digrafo G possui um ciclo

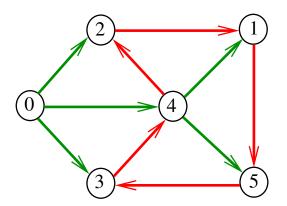
Exemplo: para o grafo a seguir a resposta é SIM



Procurando um ciclo

Problema: decidir se dado digrafo G possui um ciclo

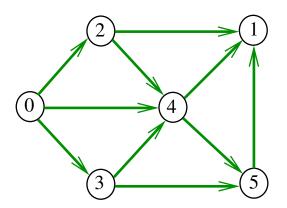
Exemplo: para o grafo a seguir a resposta é SIM



Procurando um ciclo

Problema: decidir se dado digrafo G possui um ciclo

Exemplo: para o grafo a seguir a resposta é NÃO



DirectedCycle café com leite

Recebe um digrafo G e decide se existe um ciclo.

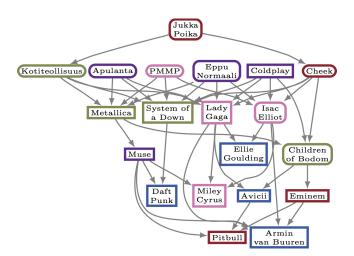
Para cada arco u-v podemos fazer

```
DFSpaths dfs = new DFSpaths(G, v);
```

e verificar se dfs.hasPath(u)

O consumo de tempo para vetor de listas de adjacência é O(E(V+E)).

Digrafos acíclicos (DAGs)

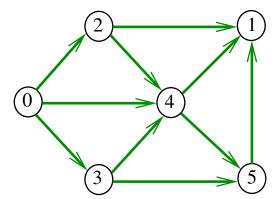


Fonte: Comparing directed acyclic graphs

DAGs

Um digrafo é **acíclico** se não tem ciclos Digrafos acíclicos também são conhecidos como DAGs (= *directed acyclic graphs*)

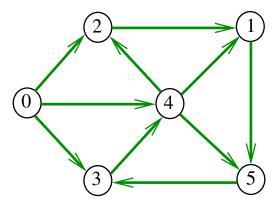
Exemplo: um digrafo acíclico



DAGs

Um digrafo é **acíclico** se não tem ciclos Digrafos acíclicos também são conhecidos como DAGs (= *directed acyclic graphs*)

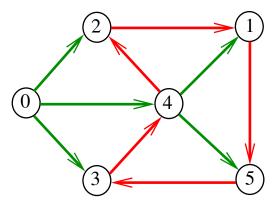
Exemplo: um digrafo que não é acíclico



DAGs

Um digrafo é **acíclico** se não tem ciclos Digrafos acíclicos também são conhecidos como DAGs (= *directed acyclic graphs*)

Exemplo: um digrafo que não é acíclico



Ordenação topológica

Uma **permutação** dos vértices de um digrafo é uma seqüência em que cada vértice aparece uma e uma só vez

Uma **ordenação topológica** (= topological sorting) de um digrafo é uma permutação

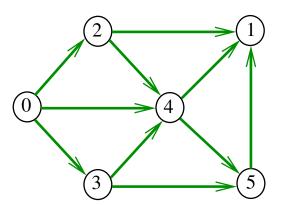
$$ts[0], ts[1], ..., ts[V-1]$$

dos seus vértices tal que todo arco tem a forma

$$ts[i]-ts[j] com i < j$$

ts[0] é necessariamente uma **fonte**ts[V-1] é necessariamente um **sorvedouro**

i	0	1	2	3	4	5
ts[i]	0	3	2	4	5	1



DAGs versus ordenação topológica

É evidente que digrafos com ciclos **não** admitem ordenação topológica.

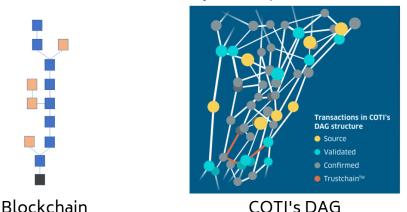
É menos evidente que **todo** DAG admite ordenação topológica.

A prova desse fato é um algoritmo que recebe qualquer digrafo e devolve

- um ciclo;
- uma ordenação topológica do digrafo.

Algoritmos de ordenação topológica

Blockchain vs Directed Acyclic Graph (DAG)



Fonte: Our Exciting Partnership With COTI

Algoritmo de eliminação de fontes

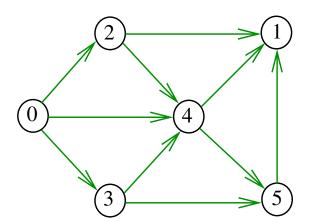
Armazena em ts [0 . . i-1] uma permutação de um subconjunto do conjunto de vértices de G e devolve o valor de i

Se $\mathbf{i} = G.V()$ então ts[0..i-1] é uma ordenação topológica de G.

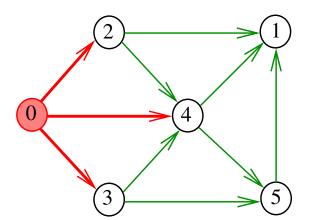
Caso contrário, G não é um DAG

```
int DAGts1 (Digraph G, Vertex ts[]);
```

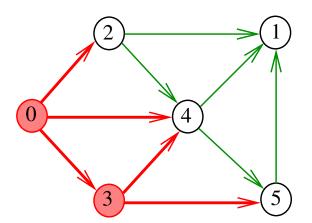

i	0	1	2	3	4	5
ts[i]						



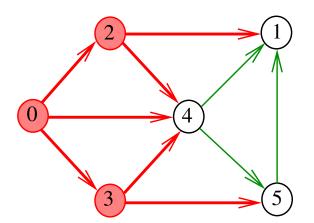
i	0	1	2	3	4	5
ts[i]	0					



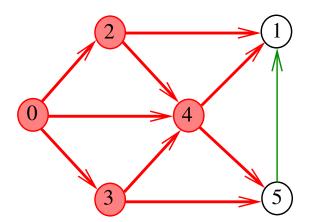
i	0	1	2	3	4	5
ts[i]	0	3				



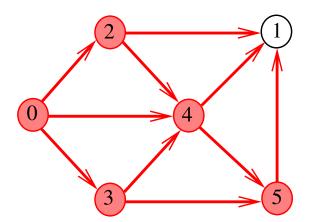
i	0	1	2	3	4	5
ts[i]	0	3	2			



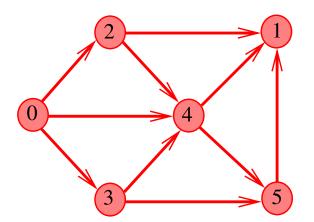
i	0	1	2	3	4	5
ts[i]	0	3	2	4		



i	0	1	2	3	4	5
ts[i]	0	3	2	4	5	



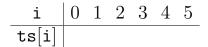
i	0	1	2	3	4	5
ts[i]	0	3	2	4	5	1

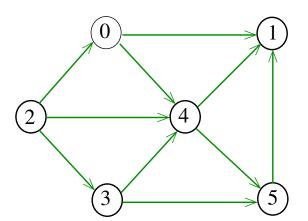


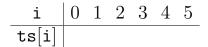
Consumo de tempo

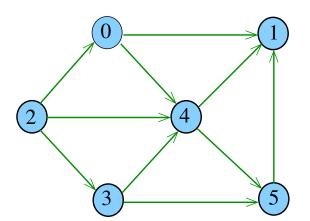
O consumo de tempo desse algoritmo para vetor de listas de adjacência é O(V + E).

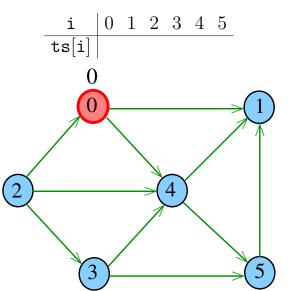
O consumo de tempo desse algoritmo para matriz de adjacências é $O(V^2)$.

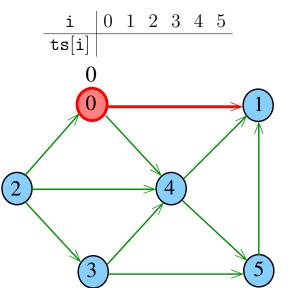


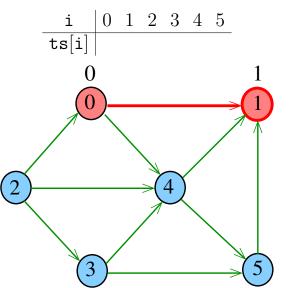


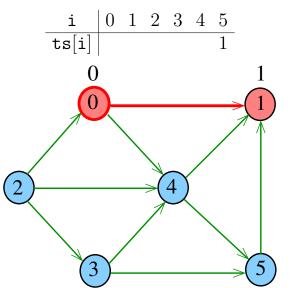


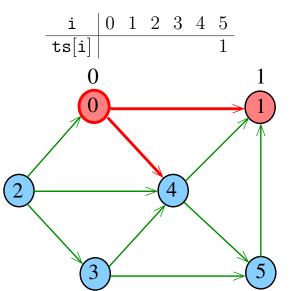


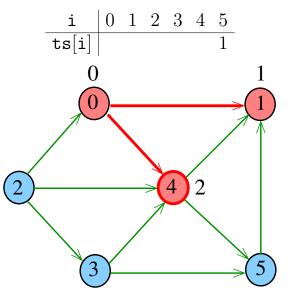


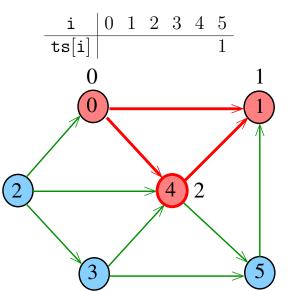


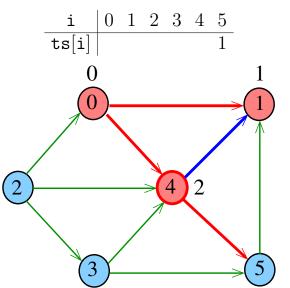


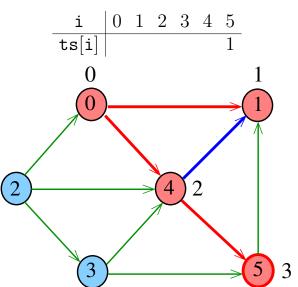


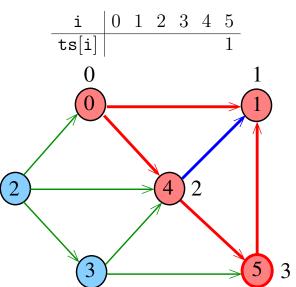


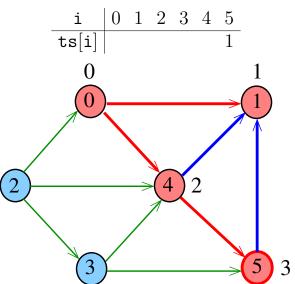


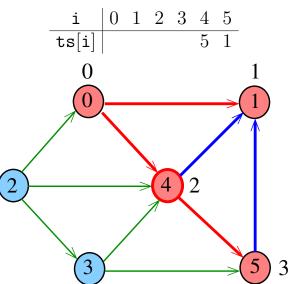


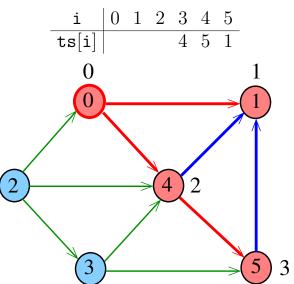


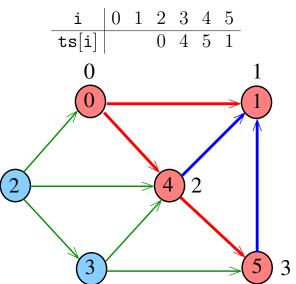


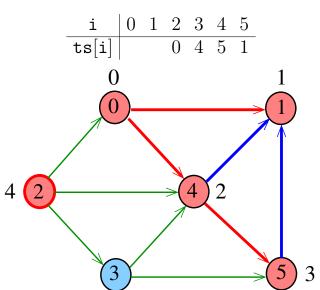


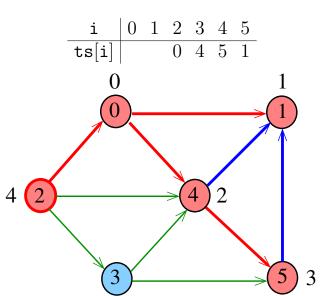


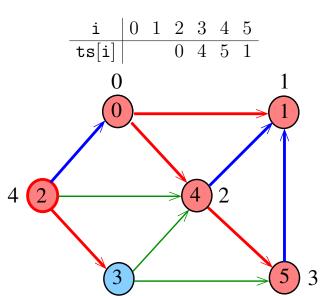


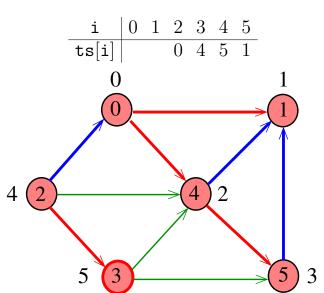


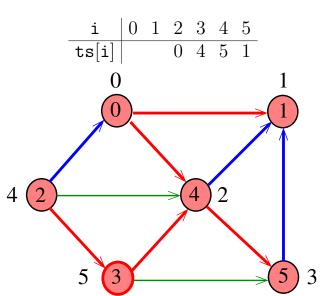


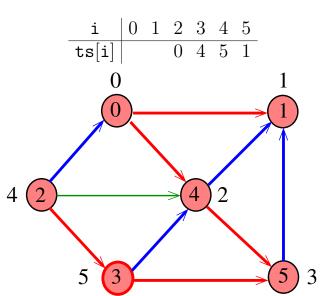


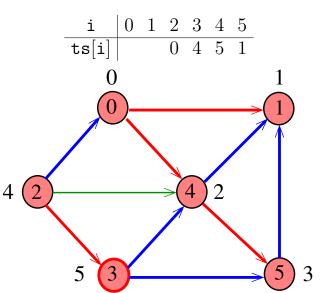


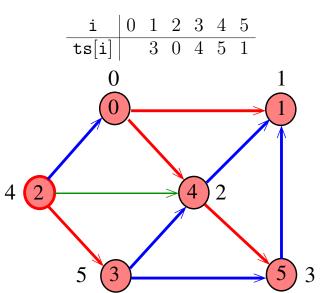


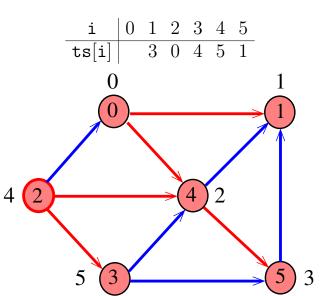


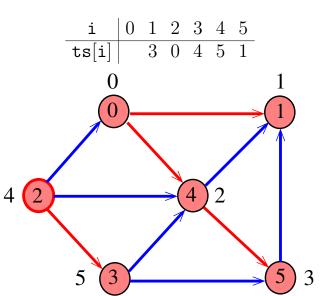


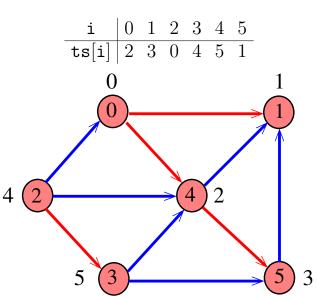












Classe DFStopological

A classe DFStopological decide se um dado digrafo G é um DAG.

```
private Stack<Integer> ts
private Stack<Integer> cycle;
private boolean[] onPath;
```

Se G é um DAG uma ordenação topológica de seus vértices é armazenada em ts.

Se G não é um DAG, cycle armazenará um ciclo de G.

onPath[v] é true se o vértice v está no *caminho* ativo.


```
DFStopological: esqueleto
public class DFStopological {
  private boolean[] marked;
  private int[] edgeTo;
  private boolean[] onPath;
  private Stack<Integer> ts;
  private Stack<Integer> cycle;
  private int onCycle= -1;
  public DFStopological(Digraph G) {...}
  private void dfs(Digraph G, int v){...}
  public boolean isDag() {...}
  public boolean hasCycle() {...}
  public Iterable<Integer> order() {...}
  public Iterable<Integer> cycle() {...}
```

DFStopological: construtor

Determina se um digrafo G é acíclico, e portanto seu vértices tem uma ordem topológica, ou tem um ciclo.

```
public DFStopological(Digraph G) {
  marked = new boolean[G.V()];
  edgeTo = new int[G.V()];
  ts = new Stack<Integer>();
  onPath = new boolean[G.V()]:
  for (int v = 0; v < G.V(); v++)
     if (!marked[v] && onCycle == -1) {
         dfs(G,v):
```

```
DFStopological: dfs()
private void dfs(Digraph G, int v) {
  marked[v] = true; onPath[v] = true;
  for (int w : G.adj(v)) {
      if (hasCycle()) return;
      if (!marked[w]) {
         edgeTo[w] = v;
         dfs(G, w):
     } else if (onPath[w]) {
         onCycle = v;
         edgeTo[w] = v; // fecha o ciclo
  onPath[v] = false; ts.push(v);
                             4□ > 4個 > 4 = > 4 = > = 900
```

```
DFStopological: hasCycle(),
                isDag()
// G contém um ciclo ?
public boolean hasCycle() {
  return onCycle != -1;
// G é um DAG ?
public boolean isDag() {
  return onCycle == -1;
```

DFStopological: cycle()

Retorna um ciclo como iterável se G possui um ciclo ou null em caso contrário.

```
public Iterable<Integer> cycle() {
  if (!hasCycle()) return null;
  if (cycle != null) return cycle;
  cycle = new Stack<Integer>();
  for (int x=edgeTo[onCycle]; x!=onCycle;
             x = edgeTo[x]) {
      cycle.push(x);
  cycle.push(onCycle);
  return cycle;
                              4□ > 4個 > 4 = > 4 = > = 900
```

DFStopological: order()

Retorna uma ordem topológica dos vértices de G como iterável, se G é um DAG.

```
public Iterable < Integer > order() {
  if (!isDag()) return null;
  return ts;
}
```

Consumo de tempo

O consumo de tempo da função DFStopological para vetor de listas de adjacência é O(V + E).

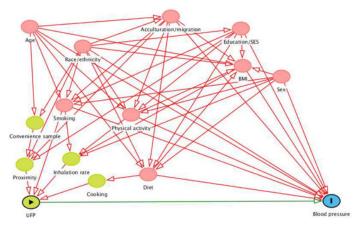
A classe DFStopological, para matriz de adjacências, consome tempo $O(V^2)$.

Conclusão

Para todo digrafo G, vale uma e apenas umas das seguintes afirmações:

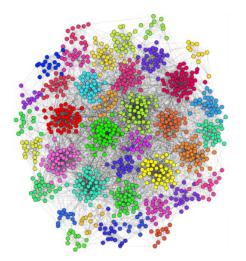
- ▶ G possui um ciclo
- G é um DAG e, portanto, admite uma ordenação topológica

Fonte: Avatar: The Last Airbender



Fonte: Relationship of Time-Activity-Adjusted Particle
Number Concentration with Blood Pressure

Componentes de grafos

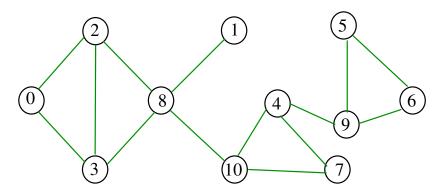


Fonte: Personalized PageRank Clustering: A graph clustering algorithm based on random walks

Grafos conexos

Um grafo é **conexo** se e somente se, para cada par (s,t) de seus vértices, existe um caminho com origem s e término t

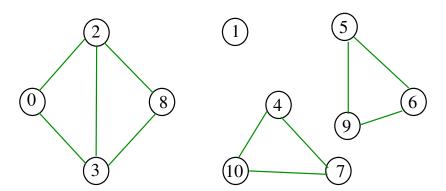
Exemplo: um grafo conexo



Componentes de grafos

Um **componente** (= component) de um grafo é o subgrafo conexo maximal

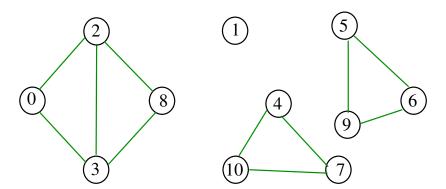
Exemplo: grafo com 4 componentes (conexos)



Contando componentes

Problema: calcular o número de componente

Exemplo: grafo com 4 componentes



Cálculo das componentes de grafos

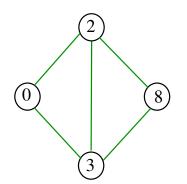
O classe DFScc determina o número de componentes do grafo G.

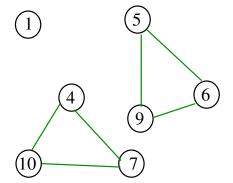
Além disso, ela armazena no vetor id[] o número da componente a que o vértice pertence: se o vértice v pertence a k-ésima componente então id[v] == k-1

A classe Graph é idêntica a classe Digraph onde addEdge(v,w) insere do digrafo os arcos v-w e w-v.

Exemplo

v											
id[v]	0	1	0	0	2	3	3	2	0	3	2





Classe DFScc: esqueleto

```
public class DFScc {
  private boolean[] marked;
  private int[] edgeTo;
  private int count; // CC
  private int[] id; // CC
  public DFScc(Graph G) {...}
  private void dfs(Graph G, int v) {}
  public boolean connected(int v, int w)
  {...}
  public int id(int v) {...}
```

DFScc

Determina as componentes de um dado grafo G.

```
public DFScc(Graph G) {
  marked = new boolean[G.V()];
  edgeTo = new int[G.V()];
  id = new int[G.V()]; // CC
  for (int v = 0; v < G.V(); v++)
      if (!marked[v]) {
         dfs(G, v);
         count++; // CC
```

DFScc: dfs()

```
private void dfs(Graph G, int v) {
  marked[v] = true;
  id[v] = count;
  for (int w : G.adj(v)) {
      if (!marked[w]) {
         edgeTo[w] = v;
         dfs(G, w);
```

DFScc: connected(), id(), count()

```
public int id(int v) { // CC
  return id[v];
public boolean connected(int v, int w) {
  // CC
  return id[v] == id[w]:
public int count(int v) { // CC
  return count;
```

Consumo de tempo

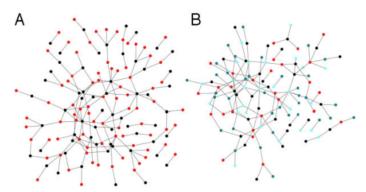
O consumo de tempo de DFScc para vetor de listas de adjacência é O(V + E).

O consumo de tempo de DFScc para matriz de adjacências é $O(V^2)$.

Fonte: ash.atozviews.com

APÊNDICE

grafos bipartidos e ciclos ímpares

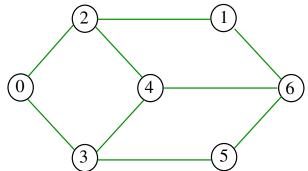


Fonte: Modularity and anti-modularity in networks with arbitrary degree distribution

Bipartição

Um grafo é **bipartido** (= bipartite) se existe uma bipartição do seu conjunto de vértices tal que cada aresta tem uma ponta em uma das partes da bipartição e a outra ponta na outra parte.

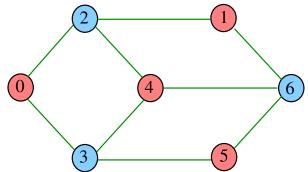
Exemplo:



Bipartição

Um grafo é **bipartido** (= bipartite) se existe uma bipartição do seu conjunto de vértices tal que cada aresta tem uma ponta em uma das partes da bipartição e a outra ponta na outra parte.

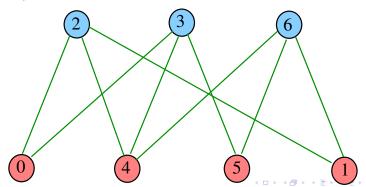
Exemplo:



Bipartição

Um grafo é **bipartido** (= bipartite) se existe uma bipartição do seu conjunto de vértices tal que cada aresta tem uma ponta em uma das partes da bipartição e a outra ponta na outra parte.

Exemplo:



Class DFSbipartite

A classe decide se um dado grafo G é bipartido.

Nossos grafos têm G.V() vértices.

Se G é bipartido, o método dfs() atribui uma "cor" a cada vértice de G de tal forma que toda aresta tenha pontas de cores diferentes

As cores dos vértices, true e false, são registradas no vetor color indexado pelos vértices:

private boolean color=new boolean[G.V()];

DFSbipartite: esqueleto

```
public class DFSbipartite {
  private boolean[] marked;
  private int[] edgeTo;
  private boolean[] color; // TwoColor
  private boolean isTwoColorable= true;
  private Stack<Integer> cycle;
  private int onCycle = -1;
  public DFSbipartite(Graph G) {...}
  private void dfs(Digraph G, int v){...}
  public boolean isBipartite() {...}
  public Iterable<Integer> cycle() {...}
```

DFSbipartite

```
public DFSbipartite(Graph G) {
  marked = new boolean[G.V()]:
  edgeTo = new int[G.V()];
  color = new boolean[G.V()];
  for (int v = 0; v < G.V(); v++)
      if (!marked(v)) {
         dfs(G,v):
```

```
DFSbipartite: dfs()
private void dfs(Digraph G, int v) {
  marked[v] = true:
  for (int w : G.adj(v)) {
      if (!marked(w)) {
         color[w] = !color[v];
         edgeTo[w] = v;
         dfs(G, w);
         if (hasCycle()) return;
      } else if (color[v] == color[w]) {
         isTwoColorable= false;
         onCycle = v;
         edgeTo[v] = w; // fecha o ciclo
                             4 D > 4 B > 4 B > 4 B > 9 Q P
```

DFSbipartite

```
public boolean isBipartite() {
  return isTwoColorable;
public Iterable<Integer> cycle() {
  if (isTwoColorable) return null;
  if (cycle != null) return cycle;
  cycle = new Stack<Integer>();
  for (int x=edgeTo[onCycle]; x!=onCycle;
             x = edgeTo[x]
      cycle.push(x);
  cycle.push(onCycle);
  return cycle;
                              4 D > 4 B > 4 B > 4 B > 9 Q P
```

Consumo de tempo

A classe DFSbipartite, para vetor de listas de adjacência, consome tempo O(V + E) para decidir se um grafo é bipartido.

A classe DFSbipartite, para matriz de adjacências, consome tempo $O(\mathbb{V}^2)$ para decidir se um grafo é bipartido.

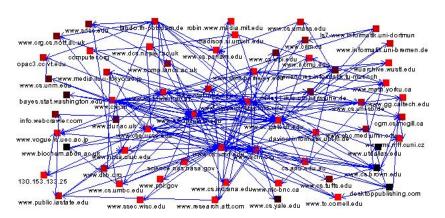
Certificado

Para todo grafo G, vale uma e apenas umas das seguintes afirmações:

- ▶ G possui um ciclo ímpar
- ▶ G é bipartido

Fonte: Yin and Yang Yoga Workshop

Componentes fortemente conexos

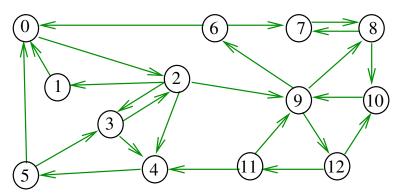


Fonte: A System for Collecting and Analyzing
Topic-Specific Web Information

Digrafos fortemente conexos

Um digrafo é **fortemente conexo** se e somente se para cada par {s,t} de seus vértices, existem caminhos de s a t e de t a s

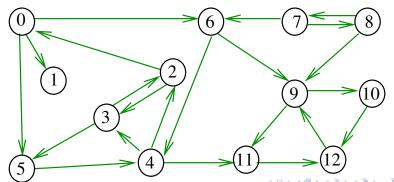
Exemplo: um digrafo fortemente conexo



Componentes fortemente conexos

Um componente **fortemente conexo** (= strongly connected component (SCC)) é um conjunto maximal de vértices W tal que o digrafo induzido por W é fortemente conexo

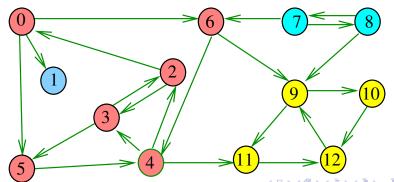
Exemplo: 4 componentes fortemente conexos



Componentes fortemente conexos

Um componente **fortemente conexo** (= strongly connected component (SCC)) é um conjunto maximal de vértices W tal que o digrafo induzido por W é fortemente conexo

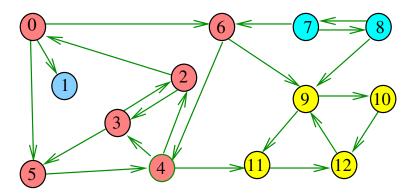
Exemplo: 4 componentes fortemente conexos



Determinando componentes f.c.

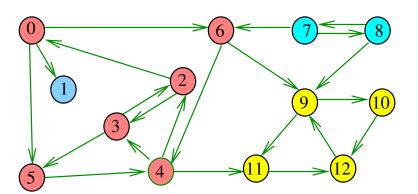
Problema: determinar os componentes fortemente conexos

Exemplo: 4 componentes fortemente conexos



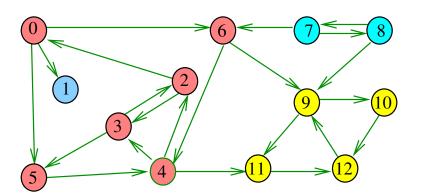
Exemplo

V	l .												
id[v]	2	1	2	2	2	2	2	3	3	0	0	0	0



Exemplo

v													
id[v]	2	1	2	2	2	2	2	3	3	0	0	0	0



Força Bruta: esqueleto

```
public class SCCforcaBruta {
  private DFScc cc;
  public SCCforcaBruta(Digraph G) {...}
  public boolean sConnected(int v, int w)
  {...}
  public int id(int v) {...}
  public int count(int v) {...}
```

Força Bruta

```
public SCCforcaBruta(Digraph G) {
  Graph H = new Graph(G.V());
  for (int v = 0; v < G.V(); v++) {
     DFSpaths dfsV = new DFSpaths(G, v);
     for(int w=v+1; w < G.V(); w++) {
         DFSpaths dfsW=new DFSpaths(G,w);
         if (dfsV.hasPath(w) &&
             dfsW.hasPath(v))
             H.addEdge(v, w);
  cc = new DFScc(H);
```

stronglyConnected

```
public int id(int v) { // SCC
  return cc.id(v);
public boolean sConnected(int v,int w) {
  return cc.connected(v, w);
public int count(int v) { // SCC
  return cc.count;
```

Consumo de tempo

O consumo de tempo de SCCforcaBruta para vetor de listas de adjacência é $O(V^2(V + E))$.

O consumo de tempo de SCCforcaBruta para matriz de adjacência é $O(V^4)$.

Algoritmos Tarjan, Kosaraju e Sharir

Robert Endre Tarjan (1972), Sambasiva Rao Kosaraju (1978) e Micha Sharir (1981) desenvolveram algoritmos que consomem tempo $\mathrm{O}(\mathtt{V}+\mathtt{E})$ para calcular os componentes f.c. de um digrafo G

Esses algoritmos utilizam DFS de uma maneira fundamental.

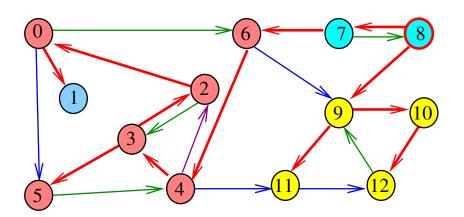
Tarjan realiza apenas um passo DFS sobre o digrafo.

Kosaraju e Sharir fazem duas passadas DFS.

Discutiremos o algoritmo de Kosaraju e Sharir.

Propriedade

Vértices de um componente fortemente conexo são uma **subarborescência** em uma floresta DFS



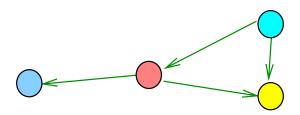
Digrafos dos componentes

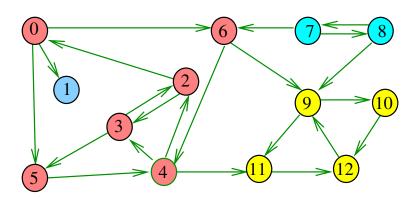
O digrafo dos componentes de G tem um vértice para cada componente fortemente conexo e um arco U-W se G possui um arco com ponta inicial em U e ponta final em W

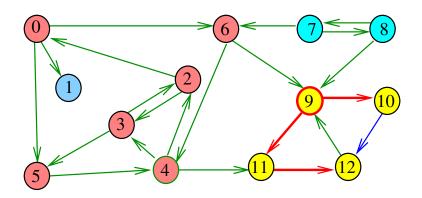
Digrafos dos componentes

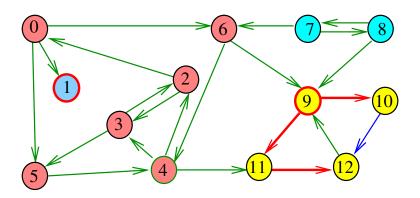
O digrafo dos componentes de G tem um vértice para cada componente fortemente conexo e um arco U-W se G possui um arco com ponta inicial em U e ponta final em W

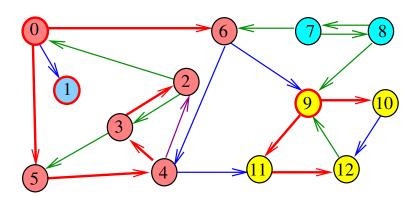
Digrafo dos componente é um DAG

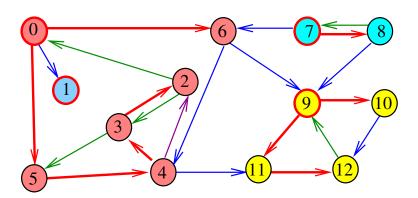






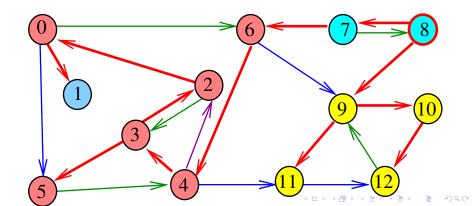






Numeração pós-ordem

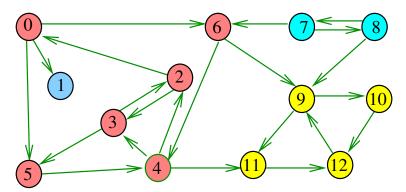
```
\begin{array}{l} \texttt{p\'os}[\texttt{v}] = \texttt{numera\'c\~ao} \ \texttt{p\'os-ordem} \ \texttt{de} \ \texttt{v} \\ \texttt{s\'op}[\texttt{i}] = \texttt{v\'ertice} \ \texttt{de} \ \texttt{numera\'c\~ao} \ \texttt{p\'os-ordem} \ \texttt{i} \\ \texttt{p\'os}[\texttt{W}] = \texttt{maior} \ \texttt{numera\'c\~ao} \ \texttt{p\'os-ordem} \ \texttt{de} \ \texttt{um} \ \texttt{v\'ertice} \\ \texttt{em} \ \texttt{W} \end{array}
```



Propriedade

Um digrafo G e seu digrafo reverso R têm os mesmos componente fortemente conexos

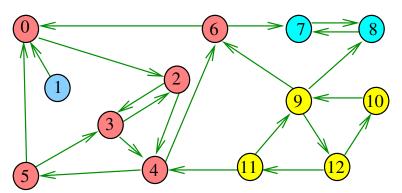
Exemplo: Digrafo G



Propriedade

Um digrafo G e seu digrafo reverso R têm os mesmos componente fortemente conexos

Exemplo: Digrafo reverso R de G



G, G reverso, DFS e pós []

Fato. Se pós[v] > pós[w] e existem um caminho de w a v, então existe um caminho de v a w.

Em outras palavras:

Fato. Se pós[v] > pós[w] e existem um caminho de w a v, então v e w estão em um mesmo componente fortemente conexo..

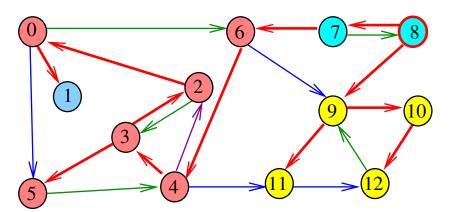
G, G reverso, DFS e pós []

Algoritmo de Kosaraju: aplique DFS no grafo reverso R de G e compute pós []. Em seguida

- pegue o vértice v tal que pós[v] é máximo (= pós[] reversa);
- determine o conjunto
 W = {w : existe caminho de v a w em G}
- para w em W existe em R um caminho de w a v.
- Fato ⇒ W forma um componente f.c. de R, e portanto de G;
- ► remova W de G e pegue o vértice v tal pós[v]...

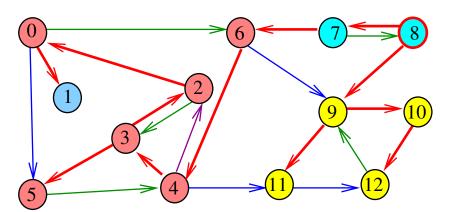
Exemplo

v	0	1	2	3	4	5	6	7	8	9	10	11	12
pós[v]	6	5	7	8	9	4	10	11	12	3	1	2	0



Exemplo

i	0	1	2	3	4	5	6	7	8	9	10	11	12	
sóp[i]	12	10	11	9	5	1	0	2	3	4	6	7	8	



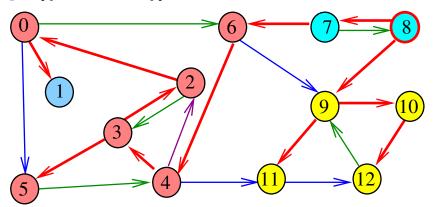
Exemplo

```
pós[{7,8}] = 12

pós[{0,2,3,4,5,6}] = 10

pós[{1}] = 5

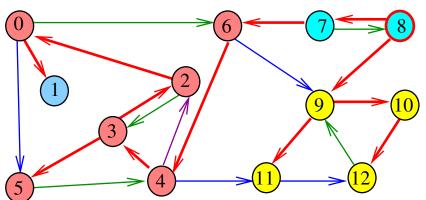
pós[{9,10,11,12}] = 3
```



Numeração pós-ordem e componentes f.c.

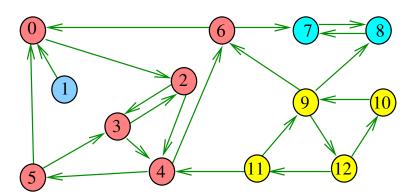
Se U e W são componentes f.c. e existe arco com ponta inicial em U e ponta final em W, então

$$\mathsf{p\acute{o}s}[\mathtt{U}] > \mathsf{p\acute{o}s}[\mathtt{W}]$$



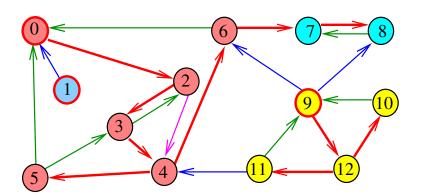
Digrafo reverso R

V													
id[v]	2	1	2	2	2	2	2	3	3	0	0	0	0



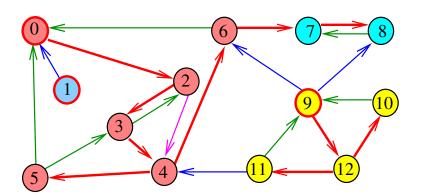
Digrafo reverso R e DFS

v	0	1	2	3	4	5	6	7	8	9	10	11	12
pós[v]	7	8	6	5	4	3	2	1	0	12	9	10	11



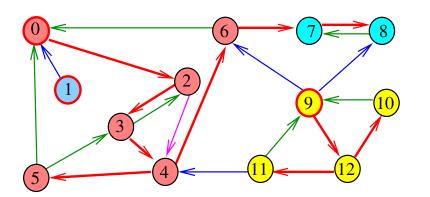
Digrafo reverso R e DFS

i	0	1	2	3	4	5	6	7	8	9	10	11	12
sóp[i]	8	7	6	5	4	3	2	0	1	10	11	12	9

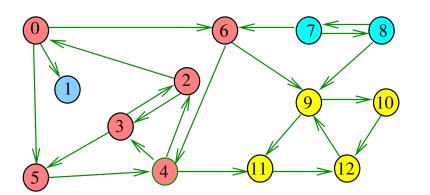


Digrafo reverso R e DFS

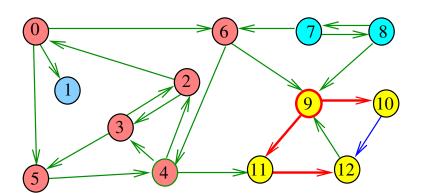
i	0	1	2	3	4	5	6	7	8	9	10	11	12	
sóp[i]	8	7	6	5	4	3	2	0	1	10	11	12	9	



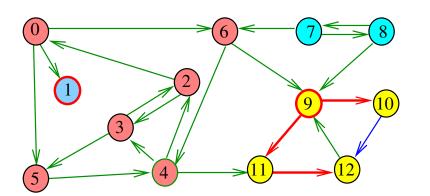
i	1												
sóp[i]	8	7	6	5	4	3	2	0	1	10	11	12	9



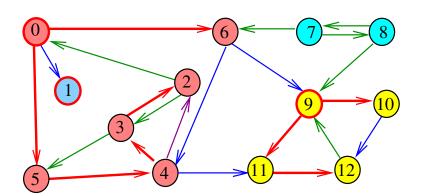
i													
sóp[i]	8	7	6	5	4	3	2	0	1	10	11	12	9



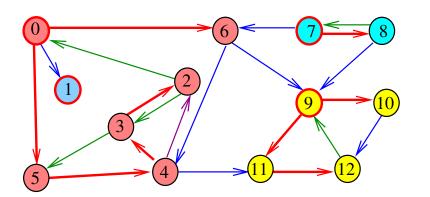
i	0	1	2	3	4	5	6	7	8	9	10	11	12
sóp[i]	8	7	6	5	4	3	2	0	1	10	11	12	9



i														
sóp[i]	8	7	6	5	4	3	2	0	1	10	11	12	9	



i	0	1	2	3	4	5	6	7	8	9	10	11	12	
sóp[i]	8	7	6	5	4	3	2	0	1	10	11	12	9	-



Algoritmo de Kosaraju e Sharir

A classe DFSscc calcula os componentes fortemente conexos do digrafo G

```
private boolean[] marked;
private int[] id;
private int count; // no. de scc
```

Ela armazena no vetor id[] o número do componente a que o vértice pertence: se o vértice v pertence ao k-ésimo componente então id[v] == k-1

Classe DFSscc: esqueleto

```
public class DFSscc {
  private boolean[] marked;
  private int count; // SCC
  private int[] id; // SCC
  public DFSscc(Graph G) {...}
  private void dfs(Digraph G, int v) {}
  public boolean sConnected(int v, int w)
  {...}
  public int id(int v) {...}
  public int count(int v) {...}
                             4□ > 4□ > 4 = > 4 = > = 900
```

DFSscc

```
public DFSscc(Digraph G) {
  // computa uma pós-ordem reversa
  DFSanatomia dfs;
  dfs = new DFSanatomia(G.reverse());
  // contrói floresta DFS de G
  marked = new boolean[G.V()];
  id = new int[G.V()];
  for (int v: dfs.revPos())
     if (!marked[v]) {
         dfs(G, v);
         count++;
```

DFSscc: dfs()

```
// DFS on graph G
private void dfs(Digraph G, int v) {
   marked[v] = true;
   id[v] = count;
   for (int w: G.adj(v)) {
      if(!marked[w]) dfs(G, w);
   }
}
```

DFSscc

```
// no. de comps fortemente conexos
public int count() {
  return count;
// v e w estão no mesmo comp f.c.?
public boolean sConnected(int v, int w) {
  return id[v] == id[w];
// id do comp fort. conexo de v
public int id(int v) {
  return id[v];
```

Digraph: G.reverse()

```
public Digraph reverse () {
  Digraph reverse = new Digraph(V);
  for (int v = 0; v < V; v++) {
     for (int w: adj(v)) {
         reverse.addEdge(w, v);
  return reverse;
```

Consumo de tempo

O consumo de tempo de DFSscc para listas de adjacência é O(V + E).

O consumo de tempo de DFSscc matriz de adjacências é $O(V^2)$.