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Traditional methods of search are usually based either on the
numerical or alphabetical ordering of keys (e.g. binary search),
or on the keys’ arithmetical properties (e.g. hashing). By com-
bining these two approaches it is possible to obtain methods
which are often superior to the traditional algorithms.

In this paper we shall discuss a new class of search procedures
which use both the idea of ordering and the idea of ‘open’ hash
addressing. A mathematical analysis of the expected running
time is also given.

Definitions
Given a file or table of data containing N distinct keys
K, K,, . . ., Ky, the search problem consists of taking a given

argument K and determining whether or not K = K; for some i.
In practice the key K; is part of a larger record of information,
R;, which is being retrieved via its key; but for the purposes of
our discussion we may concentrate solely on the keys them-
selves, since they are the only things which significantly enter
into the search algorithms. If the search argument K is not in
the table, we sometimes want to put it in; therefore we are
generally interested in two algorithms, one for searching and
one for insertion. The recent book by Knuth (1973) contains
an extensive account of the algorithms which are commonly
used for searching and insertion.

One of the important families of search algorithms is the
so-called method of ‘open addressing with double hashing’,
which works as follows. The table is stored in a larger array of
M positions, numbered 0 through M — 1. If U is the universe
of all possible keys that might ever be sought (e.g. U might be
all n-bit numbers or all n-character identifiers, for some n), we
define two functions for each K in U, namely

h(K) = the ‘hash address’ of K,
i(K) = the ‘hash increment’ of K .

These functions are constrained so that 0 < A(K) < M and
1 <i(K) < M and i(K) is relatively prime to M, for all K.
Thus if M = 2", i(K) is allowed to be any odd positive num-
ber less than M; alternatively if M is prime, i(K) is allowed to
be any positive number less than M. For best results these func-
tions are usually chosen to be efficiently computable, yet with
the property that distinct keys will tend to have different hash
addresses.

Some of the M positions of the hash table are unoccupied,
while N of the positions contain keys. For convenience we shall
assume that all keys have a strictly positive numeric value. The
entries of the hash table will be denoted by Ty, T4, . . ., Tar—1,
where T'; = 0 if that position is empty and T; > 0 if T is the
key stored in position j.

Algorithms
Using these definitions, it is possible to describe the cons
ventional algorithm for open addressing with double hashmg
as follows.

Algorithm A. Let K be the search argument.

Step Al. Set j « h(K).

Step A2. If T; = K, the algorithm terminates ‘successfully’.
Step A3. If T; = 0, the algorithm terminates ‘unsuccessfully’
Step A4. Set j<—_]—1(K) If now j <0, set j«—j+Mm
Return to step A2. []
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The search is said to be ‘successful’ or ‘unsuccessful’ according
as K has been found or not. After a successful search, it 1@
possible to fetch the entire record having the given key.

A new record may be inserted into such a table by firsg
searching for its key K; when the algorithm terminates uni
successfully in step A3, the new record may be placed into th@
Jjth position of the table Subsequent searches for this key w1[E
follow the same path to position j.

The fact that z(K) is relatively prime to M ensures that nc%
part of the table is examined twice, until all M locations have>
been probed. Since we assume that there is at least one empt}@
position, the search must terminate if K is not present. g

The above algorlthm includes several noteworthy speciaki
cases. If i(K) is identically 1 for all K, it is the well—knowﬂ‘\’
method of linear probing. If i(K) = 1 and h(K) = M — 1 fot;
all K, it reduces to the straightforward method of sequenttalﬂ
scanning. If i(K) = fi (h(K)) where f is a more-or-less randomag
function, the algorithm is called double hashing with secondary*’
clustermg On the other hand, if the probability that h(K)
h(K') and z(K) = i(K"), for distinct keys K and K’ in U, 1%
1 /Mqo(M ), i.e. if each of the poss1ble values of the pair (A(K);n
i(K)) is equally likely, the method is called independent double-
hashing. :c

Algorithm A makes decisions only by testing for equality vsm
inequality. By using the numerical order of keys we obtain 3::
new algorithm which is almost identical to the other:

Algorithm B. (Searching in an ordered hash table.)

Step BI. Set j < h(K).

Step B2. If T; = K, the algorithm terminates ‘successfully’.
Step B3. If T; < K, the algorithm terminates ‘unsuccessfully’. -
Step B4. Setj «j—i(K).Ifnowj < 0,setj « j + M. Returq—o\
to step B2. []

Only step B3 has changed, and in a trivial way. Unsuccessful
searches will now be faster.

Of course we cannot use Algorithm B unless the positions of
the hash table have been filled in a suitable way. If the keys
have been inserted in decreasing order by the ordinary method
(i.e. if we start with an empty table, then insert the largest
key, then the second-largest, etc.), it is easy to see that Algorithm
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B will work properly. This proves that there is always an
arrangement of keys such that Algorithm B is valid.

Of course in practice we need to be able to insert keys in
arbitrary order, as they arrive ‘on line’. The following method
can be used:

Algorithm C. (Insertion into an ordered hash table.)
Assume that K # T; for 0 < j < M, and that N < M — 2.
Step Cl1. Set j «— h(K).

Step C2. If T; = 0, set T; « K and terminate.

Step C3. If T; < K, interchange the values of T; < K.

Step C4. Set j « j — i(K). If now j < 0, set j « j + M.
Return to step C2. [

During this algorithm, the variable K takes on a decreasing
sequence of values, and the increments in step C4 will vary (in
general). This is a rather peculiar state of affairs, in spite of the
innocuous appearance of Algorithm C, so it is helpful to look
at an example.

Suppose that M = 11 and that there are N = 8 keys

145, 293, 397, 458, 553, 626, 841, 931,

where the middle digit is the A-value and the rightmost digit
is the i-value; thus, £(293) = 9 and i(293) = 3. Then the keys
may be distributed in the T table as follows:

I, I, T, Ty T, TIs Te T; Ty To Ty
0 0 626 931 841 553 293 0 458 397 145

The reader may verify that Algorithm B will indeed retrieve
each of these keys properly. Now if we wish to insert the new
key 759, Algorithm C first replaces T's by 759 and sets K « 553;
after examining 7, = 626, it sets T,, « 553, K « 145; and
eventually T,, « 145. The table for all nine keys is therefore

To T, T, Ty T, Ts Te¢ T, Ts T, Ty
145 0 626 931 841 759 293 O 458 397 553

To verify that Algorithm C is correct, consider the path
corresponding to key K, namely the sequence of table position
numbers

KK), h(K) — i(K), h(K) — 2i(K), . . ., h(K) — (M — 1) i(K)

mod M. Since i(K) is relatively prime to M, this sequence
consists of the numbers 0,1,...,M — 1 in some order.
Algorithm B works properly if and only if, for every key
K = T in the table, we do not have K > T;. for some j* which
appears earlier than j in the path corresponding to K. (This is
the essential ‘invariant’ which is relevant to formal proofs of
Algorithm B.) Since Algorithm C never decreases the value of
any table position, it preserves this condition.

Analyses

Now let us attempt to determine how much faster (if at all)
the new algorithms will go. The following uniqueness theorem
is very helpful in this regard.

Theorem:

Asetof NkeysK,, ..., KycanbearrangedinatableT,, T, . . .,
Ty -1 of M > N positions in one and only one way such that
Algorithm B is valid.

Proof:

We have observed that at least one arrangement is possible.
Suppose that there are at least two, and let K be the largest key
which appears in different positions in two d1ﬁ‘erent arrange-
ments. Thus, all keys larger than K; occupy fixed positions in
all possible arrangements. If we look at the path corresponding
to K, as defined above, the positions of keys larger than K;
are predetermined; and all keys smaller than K; must occur
later than K;. Therefore K; must occupy the first vacant place
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in its path, after the larger keys, contradicting the assumption
that K; can appear in different places. []

To know the behaviour of these search algorithms, we want to
know the corresponding average number of iterations or
probes in the table, i.e. the average number of times steps A2,
B2, or C2 are performed respectively. (Only the average
number is generally considered in discussions of hashing, since
the worst case is too horrible to contemplate.)

The classical Algorithm A has been extensively investigated
(see Knuth, 1973 for a review of the literature), and the results
can be summarised as follows. Let « = N/M be the ‘load
factor’ of the hash table. Let A be the average number of times
step A2 is performed in a random successful search, and let 4,
be the corresponding number in a random unsuccessful search.
By ‘random’ and ‘average’ we mean that the hash addresses
of the keys are assumed to be independent and uniformly
distributed in the range 0 through M — 1, and that each of th&
N keys of the table is equally likely in a successful search. Thers
the following approximate formulas have been derived, as M

and N approach infinity: 8
Increment §
method Ay Ay =
linear @
probing 31+ (1 -7 31+ 1 -0 2
secondary &
clustering.  1-In(l-0)—3¢ (1-&)~'=In(l-)—a 2
independent 2
double §
hashing —¢'ln(l-a) (- 3

Q

(o]

Since the number of probes needed to retrieve an item witlg_
Algorithm A is the same as the number needed to insert 1t§
the average number of probes needed to find the kth 1tem—
inserted is 4, _,. It follows that ,

Ay = (4, .+ A4},_)IN. (¥

Now let us consider the performance of Algorithm B. We shalk
assume that there is no significant correlation between the hashs
addresses and the numerical ordering of the keys. Since the;
position of any fixed set of keys in the table is unique, we maﬂ
as well assume that they have been inserted in decreasing orderm
Then the insertion algorithm is identical to that used w1tlgz
Algorithm A, and the average number of probes needed ta
find the kth largest item is 4, _,. It follows that o

vs]
By = (4, + 47 +.

9|0
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+ A+

]2}

AL DIN = Ay (2)09

In other words, Algorithm B is equivalent to Algorithm A w1tlQ
respect to successful searching, on the average.

In an unsuccessful search with Algorlthm B, the number of@
probes is the same as would be required in a successful searclié
if the keys were {K, K,, . . ., Ky, K} instead of {K;, K,, . .
Ky}. Therefore

6z UG J

Bl - BN+1 - AN+1 (3¥

The above formulas for Ay and A4, show that this is indeed ari%
improvement. For example, when o =090 (i.e. when theo
table is 909 full), the quantities for unsuccessful search are

|14

increment method Ay B,

linear probing 50-5 5-500
secondary clustering 11-4 2-853
independent double hashing 10-0 2-558

As a — 1, the ratio By/A,, approaches 0.

Finally let us investigate the new cost of insertion with
Algorithm C. Let Cy be the average number of times step C2 is
performed when inserting the Nth item. Each time we execute
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step C2, we increase by one the total number of probes needed
to find one of the keys. Thus, if we sum over N insertions, we
must have

Cl +...+ CN=NAN.
This equation together with (1) implies that
Cy=4dAy_,. @

In other words, the average number of probes needed to insert
a new item is exactly the same as it was with Algorithm A.

It is worth noting that the probability distribution of Cy is not
in general the same as that of 4,_,, although the average value
is the same. In fact, a single insertion with Algorithm C might
take up to order N? iterations (although such an event is
extremely rare). Consider again the case of three-digit keys
whose middle digit is the A-value and whose rightmost digit is
theli-value; and let M = 10. Then the insertion of 949 into the
table

Ty Ty, T, Ty T, Ts Ts T, Ts T,
109 319 529 739 841 651 461 271 0 O

is amazingly slow, as the reader may verify. In general, the
table might contain » keys in ‘organ-pipe order’,

O = ]“,l < To < ]‘v’l
and we might have

i(]}): M—-1 forOSj<[n/2],
+1, 1,for [n/2] <j<n;

then the insertion of a new largest key whose hash address is
|n/2] will take maximum time, namely (n + 1)n/2 + 1
iterations of step C2.

We have now analysed the average number of iterations in
both Algorithms B and C. The analysis isn’t complete, however,
because we have not determined the average number of inter-
changes performed in step C3. This is an important consider-
ation, since it is the number of times we need to compute an
increment i(K); with Algorithm A, the increment needs to be
computed only once. Therefore let Dy be the average number
of times the operation T; <> K is performed in step C3 while
inserting the Nth item.

Unfortunately the analysis of Dy is complicated, and we must
defer the calculations to Appendix 1. It turns out that Dy is
approximately (1 — «) ' + « ' In (1 — ) for linear probing,
and approximately equal to Ay — 1 for independent double
hashing.

a<T, < . < T2y

Further development
The above algorithms can be extended in various ways, to gain

searching, where each of the M table positions is a ‘bucket’
containing b or less keys for some given b.

Another type of extension will make unsuccessful searching
still faster, at the expense of M more bits of memory. Let
By, By, . .., Byy_, be a vector of bits with all B; initially 0.
Suppose that we set B; « 1in step C3 of the insertion algorithm,
so that B; = 1 if and only if some successful search ‘passes
through’ position j. Then if the search algorithm ever gets to
step B3 and finds B; = 0, the search must be unsuccessful.

This extra-bit approach applies, of course, to unordered hash
tables as well as ordered ones, but it is especially attractive in
the ordered case because the extra testing can be done with
almost no cost. We can combine the bit test with the ordinary
test if we assume that each bit B; appears at the left of 7; as a
new significant bit. Then Algorithm B can be rewritten as
follows.

Step Bl. Set j « h(K).

Step B2. If (B, T;) < (1, K), then the algorithm terminates
successfully or unsuccessfully according as T; = K or not.

Step B3. If (B;, T;) = (1, K), then the algorithm terminates
successfully.

Step B4. Set j«j— i(K). If now j <O, set j«j+ M.
Return to step B2. [

Only steps B2 and B3 have changed and the change is such that
the computer time per iteration is the same as before; there is 3
just a little more calculation at the end of a successful search, o o
plus the cost of attaching a 1 at the left of the input argument K S
when the search begins.

The average number of probes per unsuccessful search w1th g
this modified algorithm appears to be difficult to analyse, but 3
the empirical data in Table 1 shows that the idea can be worth- =
while. Of course the number of probes per successful search i is =
unaffected by the extra bits.

So far none of the ideas mentioned have been of any use in the & g
case of successful search. One possibility which suggests itself 5
is to start searching one place ahead (i.e. to start at position %
h(K) — i(K)), because this will save one probe if K is not at its 3
hash address, and because we will be able to test whether Kis in =
position A(K) if the first search is unsuccessful. Since we have g
greatly improved the ability to detect unsuccessful searches, 1 >
we can perhaps use some of this capability in connection with &
successful searches. 2

Unfortunately, a more careful analysis shows that such an”<
idea is unsound; it actually increases the average number of 5 2
probes for both successful and unsuccessful searching (see q
Appendix 2). There is, however, a case in which it does work,
namely if we force A(K) to be correlated with the magnitude of T
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further improvements. For example, it is easy to see that the  the table entry for K. Suppose we have a hash function such &
ideas can immediately be generalised to the case of external  that

Table 1 Average number of probes required by the algorithms, as a function of the load factor « = N/M

METHOD SUCCESSFUL SEARCH UNSUCCESSFUL SEARCH

100a (%, full) 25 50 75 8 85 90 95 25 50 75 80 85 9 95

Alg. A, linear probing

Alg. A, secondary clustering
Alg. A, indep. double hashing
Alg. B, linear probing

Alg. B, secondary clustering
Alg. B, indep. double hashing
Alg. B, linear, with pass bits
Alg. B, indep., with pass bits

Alg. X, bidirectional linear 1 13

1-167 1-500 2-500 3-000 3-833 5-500 10-500
1-163 1443 2-:011 2-209 2-472 2-853 3-521
1-151 1-386 1-:848 2-012 2-232 2-:558 3-153
1-167 1-500 2:500 3-000 3-833 5-:500 10-500
1-163 1-443 2-:011 2-209 2-472 2-853 3-521
1-1511-386 1-848 2-012 2-:2322:558 3-153
1-167 1-:500 2-500 3-000 3-833 5:500 10-:500 10 12 20 24 36 54 103
1-151 1-386 1-848 2-:012 2-2322-558 3-153 10 11 13 14 16 17 22
Alg. B, linear, correlated, one ahead 1-8711-797 2-2452-613 3:306 4-825 9-667

1 1.7 20 23 29 42 1-3

1-389 2-500 8-500 13-000 22-722 50-500 200-500
1-3712-1934-636 5-810 7-71511-402 22-045
1-3332-000 4-000 5-000 6-667 10-000 20-000
1-167 1-500 2-500 3-000 3-833 5-500 10-500
1-163 1-4432-011 2-209 2-472 2-853 3-521
1-1511-3861-848 2-012 2-232 2-558 3-153

20 22 29 33 40 58 110
-5 21 23 26 31 4-4
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K < K’ implies h(K) < h(K’),

and suppose further that we are using linear probing (i.e. that
i(K) is identically 1). Then it is not hard to see that the correl-
ation causes the number of probes for successful search in an
ordered hash table to have a much smaller variance; there will
be fewer keys requiring very small or very large numbers of
probes, although the average number will remain unchanged.
Appendix 2 shows that this ‘start one ahead’ approach will
lead to less probes per successful search when the table is more
than about 64-38% full. (The limiting value « = 0-643797758,
where the one-ahead method begins to excel, is the root of
2(1 —a)e* — 1) = o)

An obvious problem arises, however, if we want the hash
function to correlate with the keys in this way. Our options for
the choice of hash function will be so drastically reduced that it
will probably be impossible to find an efficiently computable
h(K) that works well with typical sets of keys. A solution to this
dilemma is achieved if we store transformed keys in the T table,
instead of the keys themselves. Thus, let #(K) be any function
which scrambles keys without loss of information:

t(K) = t(K') implies that K = K’ .

Then we can store #(K,), t(K3), . . . in the table, and search for
t(K) instead of K. We can now achieve the desired correlation
between A(K) and #(K) by letting A(K) be the leading bits of
t(K).

For example, if M is a prime number and if #A(K) = K mod M,
we can let #(K) be a packed binary number whose leftmost bits
are A(K) and whose rightmost bits represent the quotient
LK/M |. This transformed key #(K) is one bit larger than the
original key. Alternatively if M = 2™ is a power of 2, we may
let ¢(K) = (aK) mod 2*, where w is the key length and a is any
o(dd number; then A(K) may be chosen as the leading m bits of
t(K).

The reader may justifiably feel at this point that the method is
getting ‘baroque’. The last few paragraphs have discussed
detailed refinements which are mildly interesting, but they can
obviously never save more than one probe per search. Therefore
the reader may wonder why we are going on and on, ‘beating
a dead horse’. The answer is that it was precisely the above train
of thought, together with hand simulations on random numbers,
which led us to consider another algorithm which does offer a
substantial improvement. We shall now discuss this improved
algorithm, which uses the correlation between hash addresses
and table entries in a somewhat different fashion.

Bidirectional linear probing
Let #(K) be any one-to-one transformation of keys:

(K) = t(K') implies K = K'.
Furthermore let #(K) be a hash function such that
K) < t(K’) implies A(K) < h(K") .
We have already discussed practical ways of finding such
functions; and it is natural to assume that a hash method using

such transformations would keep the nonempty positions of the
hash table in sorted order:

T;#0and T; # 0 and i < j implies T; < T;.

Consider now the following straightforward search procedure:

Algorithm X. (Bidirectional linear probing.)

Step X1. Set j «— h(K), and set K « t(K).

Step X2. If T; = K, the algorithm terminates ‘successfully’. If
T; > K, go to step X5 (downward search). If T; = 0, the
algorlthm terminates ‘unsuccessfully’. Otherwise go to step
X3 (upward search).

Step X3. (At this point, 0 < T; < K.) Setj « j + 1.

138

Step X4. If T; = K, the algorithm terminates ‘scucessfully’. If
T; = 0 or T; > K, the algorithm terminates ‘unsuccessfully’.
Otherwise return to step X3.

Step X5. (At this point, T; > K.) Set j « j — 1.

Step X6. If T; = K, the algorithm terminates ‘successfully’.
If T; < K, the algorithm terminates ‘unsuccessfully’. Otherwise
return to step X5.

This algorithm searches either up or down depending on the
result of the first comparison. Its validity depends on having
a table T; whose nonempty entries are ordered as stated above,
having the additional property that no empty space occurs
between the location of any transformed key and its hash
address. Furthermore there must be empty positions at the ends
of the table; we can take care of this by extending the bound-
ariessothat 7_, = T, = 0.

In this case there are, in general, many configurations of the
T’s which will guarantee correct retrieval. For example, supposeo
that M = 10 and consider the transformed keys 614, 621, 637,35
641, 647, 698, 841, where h(K) is the leading digit. (It is notS
typlcal to have so many keys with the same hash address, but
our intent is to give a small example which exhibits some of theﬂ
more interesting things that can happen.) If we use the ordmary3
method of linear probing (Algorithm B), the table is filled thus:=

j= 01 2 3 4 5 6 7 8 9
T,= 0 614 621 637 641 647 698 0 841 0

J

probes 6 5 4 3 2 1 1

olwapeoe//:sdy

The bottom line shows how many table entries are examined2
when searching for Tj; i.e. it takes four probes to find ‘637’,2
since we start at T. Algorlthm X allows us to rearrange the3

T;’s so that many of the keys will be found sooner: %
j=0 1 2 3 4 5 6 7 8 9 =
T;= 0 0 O 614 621 637 641 647 698 841 2
probes 4 3 2 1 2 3 2 &

[V

The search for ‘841’ goes upwards now, but we save two@

probes when searching for ‘614’. The average number of probeso
per successful search is reduced from

6+5+4+3+2+1+1)7=227
to
G+3+2+1+2+3+2)7=171.

Appendix 3 shows how to characterise the optimum arrange-c
ments of the T’s, for any given set of keys, i.e. those arrange-f<
ments which mmlmlse the average number of probes perm
successful search by Algorithm X. As a consequence of the
theory developed there, we may use the following algorithm to""
insert into a bidirectional hash table, maintaining optlmumI
arrangements at all times.

€9€G2S/SELIC/LLY
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Algorithm Y. (Optimum insertion for bidirectional linearg
probmg) In this algorithm, let 4'(T;) be h(t~'(T})); thus xf“
T; = t(K;) then h'(T;) = h(K}).

Step Y1. Set j « h(K), K « t(K).

Step Y2. If T; = 0, set T; « K and terminate the algorithm.
Step Y3. Set p to the largest index <j such that T, = 0. Set<
g to the smallest index > such that T, = 0.

Step Y4.Setj « q. Thenif T;_, > K, repeatedly set T; « T;_,
and j «j — 1, until T;_; < K. Finally set T; « K. (Thus, K
has been sorted into the proper place with respect to the other
transformed keys.)

Step Y5.Setd < 0. Then forj«p + 1,p + 2,...,q (in this
order), repeatedly set

ded+1if K(T) =j,
ded—1if "(T) <j.

If at any time during this process d becomes negative, go
immediately to step Y6 without finishing the loop. But if d

Z udy 6z u
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remains >0 throughout the entxre loop, terminate the
algorithm.

Step Y6.Set T; « T;, forp < j < g, and set T, « 0.

Algorithm Y finds the smallest block of consecutive nonempty
locations containing position A(K), and inserts #(K) into this
block by shifting the transformed keys which are larger. Then
step Y5 is used to decide whether or not it would .have been
better to shift the transformed keys which are smaller; if so,
step Y6 moves the whole block down. (Empirical tests show
that step Y6 is required only about 1/4 as often as step Y5.)

To use this algorithm, a dozen or so extra table positions 7
should be included for j < 0 and for j > M, to avoid end
effects. (There are several ways to make the algorithm cyclically
symmetric modulo M, but these are more complicated and
time-consuming than simply to provide extra ‘breathing space’
at both ends. The optimum arrangement rarely spills over very
far; in our experiments with M = 4096 and tables 95%, full,
no more than five locations were needed at either end.)

The theory of linear probing shows that this insertion method
isn’t extremely slow; the average size g — p of the block of keys
considered when the (N + 1)st key is being inserted will be
24y — 2~ (1 — @)% — 1 when N/M = a. (Cf. Knuth, 1973,
exercise 6.4-47.) When this size is averaged over N insertions,
it reduces to 24y — 2 ~ a/(1 — «). Thus, insertion by
Algorithm Y is only four or five times slower than insertion
by the classical linear probing algorithms. On the other hand,
empirical results (see Table 1) show that retrieval by Algorithm
X is significantly better than classical linear probing.

Conclusions

Traditional hash methods are comparatively slow with respect
to unsuccessful search. By extending them to make use of the
inherent ordering of keys, we have shown that the time for
unsuccessful search can be significantly reduced.

Two main algorithms have been presented in this paper. First
we discussed Algorithm B, and the corresponding Algorithm
C for insertion. This method reduced the time for unsuccessful
search to the time for successful search, without significantly
increasing the cost per insertion. Therefore it is attractive for
dpplications in which unsuccessful searches are common. A
refinement, adding ‘pass bits’, makes unsuccessful search even
faster. However, the method is never useful in typical compiler
or assembler applications, where unsuccessful searches are
almost always followed by insertions.

The second method we have discussed is Algorithm X,
together with the corresponding Algorithm Y for insertion.
Here both successful and unsuccessful search times are reduced,
at the expense of greater insertion time and slightly more
complex programs. (The method may be compared with a
scheme recently published by Brent (1973); his method requires
less probes than ours on successful searches, but it does not
reduce the unsuccessful search time.)

Table 1 presents the behavioural characteristics of the
algorithms discussed here, assuming random hash functions.
Some of the results have been derived by theoretical analyses;
these are shown to three decimal places. The other results, for
which only one decimal place of accuracy appears in the table,
have not yet been verified theoretically. Every entry in Table 1
is the number of probes per search, i.e. the number of Tj
entries examined. This information can be used to predict the
behaviour of each algorithm; but it should be emphasised that
the time per probe and the setup time will vary from one method
to another. For example, linear probing and Algorithm X will
have faster inner loops than independent double hashing, while
the latter (especially with ‘pass bits’) involves fewer probes.
Thus the number of probes is not an absolute measure of good-
ness, the entire algorithm must be considered when making
comparisons.
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Appendix 1

Analysis of step C3

To analyse the quantity Dy defined in the text, let us assume
that the keys are K; < K, < ... < Kj. Let D, be the average
number of times, during N random insertions, that the variable
K is set to the smallest key K, at some time during the insertion
process. In other words, D,, is the average number of times K
is ‘moved’. Then D,_, is the average number of times K, is
moved, since the behaviour of the algorithm on {K,, .. ., Ky}
is essentially independent of K,. Similarly, Dy ,_; is the
average number of times K; is moved. Therefore

Di+...+Dy=(D/,-1D)+...+D/ -1
for all N, and we have
DN:DI’V_I'

U

Consider now the case of independent double hashing. Experl-g
ence shows (but it has not been rigorously proved) that thlSo
case is satisfactorily approximated by uniform hashxng, wherea
each key’s path is a random permutation of {0, 1, - 1}H
independent of all other keys. Under this assumpnon, whlchC>
has been tacitly made in the text, the analysis of hashmgg
algorithms usually becomes quite easy. However, the ‘organ3
pipe’ example of the text indicates some of the complexities of5
Algorithm C, and a rather indirect approach to the analysis ofgQ

Dy, (or D) seems to be necessary. g
Let D}, be the probability that the smallest key Kj is movedg'
during the insertion of the Nth key. It follows that 5
Q

o

D,=D,’+2D2'+...+ND,(, 2

N N 3

since the probability that K, is moved on the jth insertion sgz
D;, times j/N, the probability that K, appears among the first j(%
keys inserted. S

Consider the entire sequence of actions which occur when the:
keys {K,,..., Ky} are inserted into the table in decreasmg
order. This sequence of actions states for example that, when~
K; was inserted, a certain sequence of larger keys were en=
countered before an empty place was found. We shall call the
elements of the latter sequence the dominators of K;. Knowmgi‘)
all the sequences of dominators, in the decreasmg-order casew
we can deduce what actions will occur when the keys are‘*’
inserted in any other specified order. Define the function p<
on the indices {2, . . ., N} such that, if K is the last of {K3, . . .5
Ky} to be inserted, then ¢y Will be the last of {K, .. KN}n
to be moved. Now the very last insertion moves K if and only”
if either (a) K; was the last element inserted, or (b) K; was ther
last element inserted, for some j > 2, and K,;, is one of the%
dominators of X,.

For example, suppose N = 3, so that K; > K, > K;. If K,D
is a dominator of K,, we have p(3) = p(2) = 2, and K, 190
moved on the third insertion if and only if it is the last to be\>
inserted or it is dominated by K,. On the other hand if K, does>
not dominate K,, then p(3) = 3 and p(2) = 2; hence K, is
moved on the third insertion if and only if it is elther the lastS
to be inserted, or it is dominated by the last to be inserted. ©

For any fixed choice of dominator sequences on {Kj, . . ., Ky},
and for fixed j > 2, the probability that K, ;, dominates K| is a
function only of M and N, independent of j and the given
actions, because of the assumptions of uniform hashing. This
probability may be expressed as

N—‘jrgl(r DP,,

where P, is the probability that K; has r — 1 dominators, since
exactly



(],":22)/(1,"_ 1) r = DIV - 1)

of the possible choices of » — 1 dominators include the given
key K, ;. Since P, is also the probability that r probes are
needed to insert the Nth item by Algorithm A, we have

1 .
= — -1 — 1.
Fo15 - D P = g Ui = )

The probability that K; is inserted last is 1/N; summing for
2 <j < N, and adding 1/N for the case that K; comes last,
gives

. N-1 1 , 1 .
Dy = T(ﬁ (AN—1_1)>+_=NAN—1

The above formulas now yield the desired answer,
DN = AN - 1 .

Such a simple result deserves a simpler proof; however, it is
surprisingly easy to derive this formula by plausible but fal-
lacious arguments, and the above approach is the only reliable
one for this analysis that is known to the authors.

We come finally to the case of linear probing. This is much
more complicated, and the derivation will only be sketched
here. Consider the M " ‘hash sequences’ a, ... a,to be equally
likely, where the kth key inserted has A(K) = a,. Then the
probability that the (n + 1)st key inserted moves K, and is not
itself K, is

1

5 ka(M, n, k, )M ™, *)

k<n
i<n

AYA

1
1
where a(M, n, k, i) denotes the number of hash sequences
ai, . . ., a, which cause T, through T, _, to be occupied, T to
be empty, and T, = K, if the smallest key K, is the ith to be
inserted. Let g(M, n, k) be the number of hash sequences
which cause T, through T;_, to be occupied and T)_,; =
T, =0, and let f(M, n) be the number of hash sequences
which cause T,_; = 0. Then the formulas

Sfm,n) = (m — n)ym" 1,
g(m, n, k) = (Z)f(k + LK fm—k—1,n—k

can be derived by simple arguments (see Knuth, 1973, p. 529).
Also let b, be the number of hash sequences a; ... a, which
cause Ty, . . ., T,_, to be occupied, and for which the ‘pass bit’
B;issetto 1 for 0 < j < n — 1. From the relation

fh+1L,n)y= Y (Z)f(k + 1,k)b,_,

0<k<n

and Abel’s binomial formula, we deduce that b, = (n — 1)" 1.
Now the value of (*) may be expressed as

1 , , , , n
=2 (") T G+DeM —j+ 1L,n—jh M (**)
N 1<j<n \J =0

because we obtain each sequence enumerated by a(M, n, k, i)

by piecing together, in ('Jl) ways, a sequence enumerated by b;

and a sequence enumerated by g(M — j + 1,n — j, I), where
l <i<jand k =j + I. The sum (**) can be evaluated as
described in Knuth (1973), page 691, exercise 27; the result is

l(l+2n(n—l)+3n(n D=2 )

N\M M? M3

essentially an incomplete gamma function. Summing for
0 <n < N, and adding 1 for when K, is inserted, yields the
desired result
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Appendix 2
Starting one place ahead
Consider the case of linear probing in an ordered hash table,
when A(K) is uncorrelated with the magnitude of K. Let P, be
the probability that exactly r probes are needed to find the
(n + 1)st largest key, for some fixed value of n. Then P, is the
probability that the positions occupied by the » largest keys
include A — 1,h — 2,...,h — r + 1, but not position & — r,
given any h; and P,,, is the probability that A, h — 1, .. -
h —r + 1 (but not & — r) are included. Hence P, — P, is
the probability that A — 1,...,h — r + 1 are occupled butg
neither A nor 2 — r, for any glven h. It follows that the expected:
number of probes needed to locate the (n + 1)st largest key K,m
if we begin searching at location A(K) — 1 instead of A(K), 1sCL
Zz(r—l)P+Z(r+1)(P ,+1)—P1+Zr1’
r>
This always exceeds Y r P,, which is the correspondmg average;
if we begin searching at h(K)

Essentially the same argument applies to uniform hashing.
So we may conclude that it is not a good idea to start probing at3
location A(K) — i(K).

However, the situation is considerably different when A(K) i ISC
correlated with K, so that A(K) < h(K') whenever K < K ’,o
since then T},_, is almost always less than T},. To analyse th1s3
situation, let us look first at the case that j never goes from Oo
to M — 1 during a successful search. (In other words, the pa535
bit’ B, is 0.) Then the nonzero T}’s are sorted ; hence 1f we starty
a search at A(K) — 1, we will Iose only one probe when K is in&
its ‘home position’ h(K) while we save one probe whenever
is not. It follows that the one-ahead method is favourable, forw
successful searching, whenever the number of keys in homeo
position is less than {N.

An assumptlon which greatly simplifies the analysis whenm
B, # 0 is to restore cyclic symmetry, by assuming that keySw
which passed from position 0 to position M — 1 behaveo:
subsequently as if they are larger than keys which haven’t.2!
Under this assumptlon we shall prove below that the averagew
number of keys in home position is exactly

(-3 ") (4]

For N/M = o as M — oo, this number is approximately
(R iy
o

curiously as N - M it drops to approximately e.
Without the above symmetry assumption, the number of
keys in home position might be drastically different. For>
example, when M =10 and N = 8, the hash sequence3
98765111 leaves only one element in home position underm
cycllc symmetry, but there will be six keys in home posmonm
in the true ordered hash table. However, the average effect of
this correction is bounded by the length of search 4, for the
smallest element, and for N/M = o < 1 the correction is
asymptotically negligible. Similarly we may ignore the fact that
the search for a key in home position T, might be adversely
affected by the presence of larger keys in Ty,_, Ty, _,, €tc.

To prove the formula for keys in home position under cyclic
symmetry we can observe that the number of hash sequences
ay ... ay which leave an element in home position M — 1
is exactly

oo S‘auu

0 49sn dSN-HO144-ags Aq

SM + 1,N) - f(M, N),
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in the notation of Appendix 1. For if we add the f(M, N) hash
sequences which leave T,,_, empty, we obtain all the
S(M + 1, N) hash sequences which would leave T, empty in a
linearly-probed hash table of size M + 1. Therefore the average
total number of elements in home position, under cyclic
symmetry, is

The formula for f, given in Appendix 1, completes the proof.

It is interesting to study the cyclically symmetric algorithm
further, to find the average number of elements displaced
exactly d locations from their home position when A(K)
correlates with K. Let h(M, n, k) be the number of hash
sequences a; ... a, for which <k elements pass from
position 0 to M — 1 when they are inserted. Then, by consider-
ing the number of such sequences containing exactly j zeroes,
we obtain the recurrence

h(m,n,k) =Zh(m - lan_j,k'l' 1 _.])
J

for all m, n, k > 0. Furthermore we have the initial conditions
h(m, n,0) = fim + 1,n) = (m + 1 — n) (m + 1",
from which it is possible to derive the general formula

h(m,n, k) =(m+ 1+ k — n) x
3 (n)(m+k+l—r)"‘1"(r—k—1)’
o<r<k r

for all m, n, k > 0. (Abel’s binomial identity shows that this
sum equals m" whenever k > n.)

The hash sequence a, ... ay produces a key with home
address 0 and displacement d if and only if it is a sequence with
>d keys passing from 0 to M — 1 but <d passing from 1 to 0.
The number of such hash sequences, when d > 0, is

h(M,N,d) — h(M,N,d — 1),

because A(M, N, d) is the number of hash sequences with <d
keys passing from 1 to 0, while #(M, N, d — 1) is the number
with <d passing from 0 to M — 1 and (consequently) <d from
1 to 0. It follows that the average total number of keys with
displacement d > 0 is

M((M, N,d) — h(M, N,d — 1))|M" .

It would be interesting to obtain asymptotic data about this
probability distribution. When M = N, the same formulas
arise in connection with the classical Kolmogorov—-Smirnov
tests for random numbers: the quantity A(n, n, k — 1)/n" is
the probability that the so-called statistic K} is <k/\n.
According to a theorem of N. V. Smirnov in 1939, we have

lim h(n, n,nan)
n—>o0 n

¢f. Knuth (1969), p. 51.

—-2s2 ,
=1—-e7;

Appendix 3

Optimum bidirectional linear probing

Given N keys K; < ... < Ky and corresponding hash addres-
ses0 < A(K,) < ... < h(Ky) < M, we wish to place them into

table positions so that K; appears in T, for 1 < j < N, where

p(1) < ... < p(N). Writing h; = h(K;), we wish to find a
placement which is optimum, in the sense that the sum
> |h = p(DI
1<j<N

is minimised. We shall call this sum the ‘cost’ of the placement.
For convenience in exposition, we shall allow the positions p(j)
to be negative or greater than M, although the proofs could
easily be extended to characterise the optimum arrangements
subject to p(1) = x and p(N) < y, for any desired bounds
x <0andy > M — 1. Algorithm X requires a placement such
that all positions between /; and p(j) are occupied, for each j;
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however, we may ignore this condition, because all optimum
placements automatically satisfy it.

Given any placement p(1) < ... < p(N), we shall say that a
block [a, b] is a set of consecutive positions which are occupied
by K, through K, (i.e. p(j + 1) = p(j) + 1fora < j < b). An
up-block is a block followed by an empty position, which
would lead to less cost if it were shifted one place higher; in
other words, it is a block [a, b] such that the shifted placement
P’ has less cost, where

wa— )p()+ 1ifa <j < b;
PQ) {p(j), otherwise.
By the definition of cost, we find that [a, 5] is an up-block if and
only if
(a) either b = Nor p(b + 1) > p(b) + 1; and
(b) the number of jin therangea < j < b, for which 4; > p(j),
exceeds the number for which 4; < p(j). g

Thus it is easy to test a glven placement for the presence OE
up-blocks. A down-block is defined similarly.

An optimum placement will, of course, contain neither upg
blocks nor down-blocks. Conversely, this condition of locag
optimality is sufficient for global optimality:

//:sdny w

Theorem:
Given N hash addresses hy <...<hy, a placemen?i
p(l) < ... < p(N) is optimum if and only if it contains mg
up-blocks and no down-blocks.

Proof:
Let p be an arbitrary placement; we want to prove that p e1the§
contains an up-block, or a down-block, or is optimum. Let p5
be an optimum placement. If p(j) = p’(j) for all j, we are doncﬁ
Otherwise suppose that p(j;) # p’'(jo); by symmetry we ma5§
assume that p( Jo)p < (Jo)-
It would be nice if we could prove that p(j,) is part of anD
up-block, under these hypotheses. However, the fo]lowmg
example shows that the argument cannot be quite so trivialg

k=123 456 7 8
h,=4 4 4 4 4
pk)=0 1 2 3 4
pPk)=2 3 4 5 6

If j, = 6, we have p(j,) < p'(jo), but p(j,) is actually part oﬁ
a down-block.

We can circumvent such difficulties by argumg as follows. Le%
a’ be minimal so that [a’, j,] is a block in placement p’. Ther
let b be maximal so that [a’, b] is a block in placement p. Thenn
let @ be minimal so that [a, b] is a block in placement p’. (Ith
the above example, when j, = 6, we willhavea’ = 1 and b = %
and a = 1.) In general we will always have p(a’) < p'(a)3

pb) < p'(b), and [a, b] will always be a block in both places
ments; thus, p'(j) — p(j) has a constant value ¢ > 1 fof
a < j < b. Furthermore, p051t10n p) + 1is empty in place:
ment p, while p’(@) — 1 is empty in placement p'.

Let d, be the number of displacements 4; — p(j) in blocl%
[a, b] that are positive for placement D; also let d_ be the;
number of negative displacements in the block, and let d béa
the number of displacements which equal k. Define d_, d.,y
and d, similarly for placement p’. It follows that d, = dp_:
for all k.

Now [a, b] is an up-block for p if and only if d, > d, + d_,
and it is a down-block for p’ if and only if d_ > d; + d. Our
proof would be complete if [a, b] were an up-block for p,
hence we may assume that

d, <dy+d_
The optimality of p’ implies that
d_<dy+d,

9°dno-oiw
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Now the latter inequality is equivalent to
d_+dy+d+...+d_<d, —d,+...+d,_,),
hence we have
d, <dy+d_<d, —2d, +...+4d,_)).

'I'hlscanbetrueon]ylfd+—do+d and d_ =dy + d..
If we shift block [a, b] one posmon down from where it was m
p’, we obtain a new placement p” of cost equal to p’, hence p”
is optimum. Furthermore p” is closer to the given placement, in
an obvious sense, so the proof will eventually terminate.

It is interesting to note that the above proof does not use the
hypothesis #; < ... < hy; it characterises the optimum place-
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Book reviews

The Management of Problem-Solving, Positive Results from Productive
Thinking, by G. Tarr, 1973; 160 pages. (Macmillan, £3-95)

Management today is either self-consciously scientific or nervously
aware that it ought to be: it is inclined to snatch at instant techniques
ready-made for the amateur—the unqualified in pursuit of the
unquantifiable. Or, it may resort to experts, but too rarely enquires
whether the consultancy is itself well managed, or from what source
it draws the experience it proposes to dispense. Of course, rather
than expecting to have to take the advice the client may be buying an
alibi, so that he can support his claim to have left unturned no stone
under which efficiency might have lurked. Their clients as well as
those who manage the management-problem solvers would do well
to read Graham Tarr’s little book. His presentation is easy but not
condescending, and his prose very readable.

The book ‘is intended to be wise rather than learned’; these are the
author’s own words and ever so slightly off-putting, but he makes
good his claim, for while accepting that it is not possible to teach
experience he has most helpfully distilled his own. But, what are the
signs of wisdom? First, there is the author’s practical scepticism
about techniques-mongering, then his advocacy of insight rather
than processing, his emphasis on the need to quit the trees to see the
wood, the value he attaches to common sense and practical men as
touchstones for the reputed jewels discovered by analysis, and his
reminder of the supreme danger of believing that the solution found
is the one best, instead of, at best, one of the best. Again, there is
more than a whiff of experience about his comments on managing a
project team, on conducting a choir of soloists, on the earnest
technical dogmatism that blinkers the young analyst, on the neces-
sity of measuring progress but the impossibility of measuring
output; above all, on the need for project leadership and its impor-
tance for the quality as well as the quantity of the team’s output.

But, this book is not all broad philosophical generalisations, it
contains many shrewd comments on the day-to-day conduct of work
and the crises of life in a group of problem solvers. It would be a
particularly good present for a young man or woman recently, and
rather too rapidly, promoted to team leader. Leadership cannot be
learned from textbooks, it has to be caught rather than taught, but
this book is no textbook, it is a sharing of experience and as such
well worth reading and discussing over a pipe or a pint.

F. J. M. LAVER (Sidmouth)

Information, Computers, Machines and Man, edited by A. E.
Karbowiak and R. M. Huey, 1971; 347 pages. (John Wiley and
Sons, £4-50)

This book consists of a series of papers written by the staff of the
University of New South Wales with the object of illustrating the
methods and concepts that can be applied in the field of systems
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engineering. It is based upon courses run for 1st and 2nd year=
students of Applied Science and Engineering, but has been exten-g
sively broadened and modified to make it pertinent for those with a2
more general interest. 3
The book is structured into three sections which may be referencedo
independently. Initially the elements and concepts of systems engine-5
ering design are covered, with some useful definitions and explan-3
ations of the logic and mathematics involved. References are made3.
to analogous biological systems, and there is a valuable chapter onS
Human Systems, outlining some of the problems in the control of=:
multi-discipline teams and the interaction between professmnalm
non-technical management and specialist teams. 5
The second section covers the more scientific and technical aspects®
of engineering systems, with detailed accounts of some of the moreg
important materials and components used in control systems. It alsoﬂ
includes two chapters on computer architecture and programming®
which—although unduly IBM 360 oriented—give a useful summaryi‘
of these topics to the professional engineer who wishes to use or even™
program a computer, but without the obligation of becoming a%
computer man. 01
The final section consists of a discussion of actual systems, mcludmg a
biological, and endeavours to draw together the concepts and°’
material technology developments previously covered. It outlines thez
likely growth in the application of technology to our way of life,
and emphasises the importance of proper planning for change,o
insisting upon the overwhelming need to consider human factorS'n
when inducing such change. 5
Information, Computers, Machines and Man, despite its over-T
comprehensive and somewhat pretentious title, is in fact a usefulC
introductory text on systems theory, enhanced by comprehensxve'u
examples and an explanation of the fundamentals of systems engine- &
ering. It does however suffer from a lack of co-ordination and %
relevance in many places. This might not be important when it is >
placed within the wider environment of a degree course, but will be S
troublesome to the general reader who might justifiably think, from13
both the fly-leaf and the introduction, that he has acquired a con- =
sistent study text on systems engineering. Nevertheless the approach © S
taken is sufficiently broad that both computer professionals and ©
engineers will find it helpful for the analogies drawn, the future
developments suggested, and the human and organisational
problems outlined.
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J. Woobs (London)

Short notice

Computers and Society, by A. S. Douglas.

This is the text of Professor Douglas’s inaugural lecture to the
London School of Economics and Political Science, on his
appointment to the Chair of Computational Method at the
LSE.
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