
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

INSTITUTO DE COMPUTAÇ�O

UNIVERSIDADE ESTADUAL DE CAMPINAS

Heapsort beats Qui
ksort

Jorge Stol�

Te
hni
al Report - IC-04-008 - Relatório Té
ni
o

August - 2004 - Agosto

The
ontents of this report are the sole responsibility of the authors.

O
onteúdo do presente relatório é de úni
a responsabilidade dos autores.

Heapsort beats Qui
ksort

Jorge Stol�

Institute of Computing

University of Campinas

13084-971 Campinas, SP - Brazil.

August 26, 2004

Abstra
t

A simple modi�
ation to the textbook implementation of the heap delete min

algorithm
uts the number of
omparisons by almost 50%. The
hange makes

heapsort about as fast as qui
ksort, and even faster when the number of data

elements ex
eeds 15000 or so.

Heapsort is widely believed to be mu
h slower than qui
ksort. This statement is

found in many popular introdu
tory
omputer s
ien
e textbooks, whi
h generally

laim that, on random (or randomized) inputs, heapsort makes about twi
e as many

omparisons as its
ompetitor [1, 3, 2, 4℄.

Here we observe that the reputed slowness of heapsort is in fa
t due to a seem-

ingly inno
ent
ode simpli�
ation tri
k used in the heap's delete min pro
edure. By

omitting this tri
k (whi
h is found in most published versions of the algorithm), the

number of
omparisons is redu
ed to about one half of its \usual" value, and heapsort

be
omes slightly faster than qui
ksort.

Standard heap delete-min. Let the heap stored in a ve
tor h[0:: m�1℄, as usual.

In the textbook implementation of delete min [1, 3℄, the va
an
y at h[0℄
reated by

removing the root is �lled with the last element h[m�1℄, whi
h then must be \bubbled

down" to its proper pla
e. Namely, while the relo
ated element h[i℄ is smaller than

its largest
hild h[j℄, we swap the two elements and set i j.

The average depth of a random element in the heap is log

2

m + O(1), so the

relo
ated element h[m�1℄ is expe
ted to sink again by that many levels | espe
ially

onsidering that it was taken from the lowest tier. Moreover, at ea
h step of its

des
ent two
omparisons are needed: one to identify its largest
hild, and another

one to de
ide whether a swap is needed. So the expe
ted number of
omparisons in

the standard delete min is 2 log

2

m +O(1).

2 J. Stol�

Improved delete-min. This analysis justi�es the following
hange in the heap re-

moval algorithm. Instead of �lling h[0℄ with the last element right away, we �rst

propagate the va
an
y down the heap until it rea
hes a leaf node. That is, we repeat-

edly �nd the greatest
hild h[j℄ of the va
an
y h[i℄, and set h[i℄ h[j℄, i j, until

h[i℄ has no more
hildren. Only then we �ll the va
an
y h[i℄ with the last element

h[m� 1℄. Finally, we \bubble up" the new h[i℄ to its proper pla
e. That is, while the

new element h[i℄ is greater than its parent h[j℄, we ex
hange the two elements and

set i j. See �gure 1

int delete_min(int *h, int *n, int
mp(int a, int b), int sgn)

/* Deletes the root element from the heap h[0..*n-1℄, returns it. */

{ if ((*n) <= 0)

{ error("empty heap"); }

else

{ int m = (*n);

/* Save
urrent root: */

int w = h[0℄;

int i = 0; /* h[i℄ is a va
ant slot. */

/* Promote
hild into va
an
y h[i℄ until it rea
hes the base: */

int ja = 1; /* h[ja℄ is the first
hild of h[i℄. */

while (ja < m)

{ /* Find largest
hild h[j℄ of h[i℄: */

int jb = ja + 1; /* h[jb℄ is the se
ond
hild of h[i℄. */

int j = ((jb < m) && (sgn*
mp(h[ja℄, h[jb℄) > 0) ? jb : ja);

/* Promote largest
hild into hole: */

h[i℄ = h[j℄; i = j; ja = 2*i + 1;

}

/* One less element in heap: */

m--;

if (i < m)

{ /* Fill h[i℄ with h[m℄, bubble it up: */

int v = h[m℄, j;

while ((i > 0) && (sgn*
mp(v, h[j=(i-1)/2℄) < 0))

{ h[i℄ = h[j℄; i = j; }

h[i℄ = v;

}

*n = m;

return w;

}

}

Figure 1: The modi�ed delete min pro
edure.

Heapsort beats Qui
ksort 3

This
hange, whi
h in
reases the
ode by only a
ouple of lines, is advantageous

be
ause propgating the va
an
y requires only one element
omparison per level, rather

than two. As in the
reation phase, the relo
ated element h[m�1℄ is expe
ted to rise

O(1) levels on the average. Therefore the overall number of
omparisons of delete min

is expe
ted to be
ut in half | a
on
lusion that is well supported by experiments.

The speedup may seem paradoxal, sin
e the modi�ed version allows the va
an
y

to propagate all the way to the heap's base, whereas the original version begins with

the same sequen
e of swaps but stops earlier, at the level where h[m � 1℄ should be

inserted. However, as dis
ussed above, the
orre
t level is likely to be very
lose to

the base anyway; so all the extra
omparisons needed to identify that level on the

way down are essentially wasted.

Heapsort. This improvement in delete min has a signi�
ant impa
t in the
ost

(number of
omparisons) of heapsort. Re
all that heapsort �rst inserts the n input

elements, one by one, into an inverted heap (with the largest element at the root).

Then the largest element from the heap is repeatedly removed and pla
ed into the

output array, from last to �rst. The heap
an be stored in the �rst m elements of the

same array h[0::n� 1℄ that holds the input and output data, so that only a
onstant

amount of extra storage is needed | a
onvenient feature that has kept heapsort

popular in spite of its per
eived slowness
ompared to qui
ksort.

In the heap
reation phase, the next input element h[m℄ is inserted at very end of

the heap, whi
h is position h[m℄ itself (so this step redu
es to m m+1), and then

it is \bubbled up" to its proper level. By the above reasoning, the new element is

expe
ted to rise only O(1) levels. Therefore the
ost of heapsort is dominated by that

of delete min, and the improvement above is expe
ted to redu
e that
ost by 50%, in

the limit of large n.

Tests. Table 1 shows the observed average and standard deviation of the
omparison

ounts for the two versions of heapsort, standard and modi�ed, as well as for an

implementation of qui
ksort. For ea
h algorithm and input data size n, the three

algorithms were exe
uted on the same set of 50 data ve
tors. The ith data ve
tor

was an array of pseudo-random integers generated by the random fun
tion from the

Linux C library, with seed i. The qui
ksort implementation swit
hes to insertion sort

when n � 5, the threshold whi
h appears to minimize the
omparison
ount.

A Linux C implementation of heap insertion/deletion pro
edures and heapsort,

in
orporating this
hange, and the testing program above
an be found in http:/

/www.i
.uni
amp.br/

~

stolfi/EXPORT/heapsort.tgz.

4 J. Stol�

Referen
es

[1℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdu
tion to

Algorithms. M
Graw-Hill, 1990.

[2℄ Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and

Sear
hing. Addison-Wesley, Reading, Mass., 1973.

[3℄ Robert Sedgewi
k. Algorithms in Modula-3. Addison-Wesley, Reading, Mass.,

1993.

[4℄ Nivio Ziviani. Projeto de Algoritmos. Pioneira Thomson Learning, So Paulo, 2nd

edition, 2004.

Algorithm n min max avg sdv

standard 4 6 7 6.6 0.5

modi�ed 4 5 8 6.6 0.8

qui
ksort 4 3 6 5.0 0.9

standard 16 73 91 83.5 3.6

modi�ed 16 57 75 67.5 4.0

qui
ksort 16 43 69 53.1 6.7

standard 64 568 611 589.1 11.6

modi�ed 64 404 451 425.2 11.7

qui
ksort 64 307 477 363.8 37.4

standard 256 3346 3442 3392.6 21.8

modi�ed 256 2211 2307 2265.0 22.0

qui
ksort 256 1874 2629 2152.0 179.3

standard 1024 17575 17823 17707.7 51.7

modi�ed 1024 11085 11309 11201.5 49.7

qui
ksort 1024 10437 13702 11431.4 634.2

standard 4096 87057 87462 87299.3 113.2

modi�ed 4096 52919 53298 53141.1 95.7

qui
ksort 4096 51579 63633 57035.1 2712.8

standard 16384 414045 415111 414678.2 228.5

modi�ed 16384 244846 245871 245424.0 231.5

qui
ksort 16384 258139 291150 270903.5 7958.1

standard 65536 1919497 1922237 1920931.2 472.9

modi�ed 65536 1111554 1113934 1112846.9 461.2

qui
ksort 65536 1210014 1431337 1286681.8 48848.0

Table 1: Comparison
ounts for standard heapsort, modi�ed heapsort, and

qui
ksort on 50 arrays of n pseudo-random integers.

