Binomial Coefficient Recursion:
The Good, and The Bad and Ugly

Timothy Rolfe
Computer Science Department
Eastern Washington University

Cheney, Washington 99004-2412 USA
<Timothy.Rolfe @ mail.ewu.edu>

Abstract
The binomial coefficient or, alternatively, the number of combinations of # items taken k at a time, provides two defin-
ing recurrences. One of these provides a very useful recursive function a very good way for a program to calculate

this function. The other provides a very wasteful recursive function the balancing bad and ugly way.

1. The Bad and Ugly Recursion

First, let us consider the bad and ugly recursion. We
derive this from the recurrence we get if we define the bino-
mial coefficient in terms of Pascals Triangle. There, each
binomial coefficient that is not on the boundary of the trian-
gle (that is, n > k> 0) is the sum of the two term immediate-
ly above it in the triangle.

i

0
1:
2: 1 21
3
4

'JEJLR’JD

To write the recurrence, though, it is convenient to write the
triangle not as an isosceles triangle, but as a right triangle;
that is, with a flush left margin and ragged right margin.

n=0:
n=1:
n=2:
n=3:
n=4:

Ll e
B W N =
AN W =
Do

—

On this basis, Pascal s Triangle gives the following recurrence.
C(n,0)=1
Cn,n)y=1

Cln ky= Cn—-1L, k) +C(n-1,k-1) Jorn>k>0

As a recursive formula, however, this has the highly unde-
sirable characteristic that it calls itself swice in the recursion.
Another way of seeing how undesirable this is as a recursive
function is to note that it generates the binomial coefficient
by finding the ones on the boundary of Pascal s Triangle and
adding them together. Explicit measurement shows that the

computation of C(n, k) will require 2*C(n, k) —1 function
calls, rather wasteful even for C(15, 8) = 6435 (which would
require 12,869 function calls). [One can indeed prove induc-
tively that the number of function calls is 2*C(n, k) —1, but
to keep this short the proof is left as an exercise.]

2. The Good Recursion
This recursion comes from considering the calculating for-
mula for binomial coefficients:

C(n k) =

k! (nn-.- 3]

It is useful, though, to remember that n!/(n-k)! really repre-
sents the highest k£ terms of n!, which gives us

n¥n—D¥(n —2)¥(n—3¥..¥(n—k+1)

Y
[1]
=
(1]
2
[1°]
(=N
0
2
O
[}
=
w

or k terms in all. Similarly, k! is also & terms long:

k(e —D¥E—2)%k —D¥... ¥l

Hence,

nO(n—l)c(n-z)-(n—B)--O(n—k+l)
ko(k-1)e(k-2)e(k-3)eeel
(n-—l)o (n——2)-(n—3)00 e(n—k+1)

(k—l)O(k~2)0(k—3)ooot

C(n, k) =

n
k

where both numerators and denominators have k entries).
This can be reorganized in terms of recurrences as

C(n,0) =1

Cmk) = C(n—l,k-—l)-% for k>0

Vol 33. No. 2 June 2001

émroads SIGCSE Bulletin

o
S
]
o
©

o

o]
)
2

2
>
)

«c

This recurrence provides a computationally useful formula
for binomial coefficients with # of any size. Even though
C(n,k) may be a fairly small number, the separate calculation
of the numerator and denominator would require extended
precision arithmetic, something not required in the alternat-
ing multiplication and division given through the recurrence
relationship. While there are k+1 function calls, one can
guarantee at most #/2 function calls by taking advantage of
the equality C(n, k) = C(n, n—%)

Dr. Ray Hamel of my department suggests that one may
wish to avoid ever having an intermediate result of magni-
tude larger than the final result. In this case, one can simply

divide before multiplying, though at the computation
expense of finding the greatest common divisor. If we let d
=gcd(n,k),andletg=k/d, where gcd denotes the great-
est common divisor. Then,

C(nk)=(C(n-1,k-1) / q)¥(n/d)

Acknowledgement
I thank Dr. Ray Hamel for insightful comments on this note,
and specifically for the above formulation as a product of
two integer quotients.

ACM
Code of

Ethics

and

Professional Conduct

<www.acm.org/constitution/code.html>

SIGCSE Bulletin inreads

June 2001 Vol 33. No. 2

