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ABSTRACT: Limit theorems (including a Berry–Esseen bound) are derived for the number of com-
parisons taken by the Boyer–Moore algorithm for finding the occurrences of a given pattern in a
random text. Previously, only special variants of this algorithm have been analyzed. We also propose
a means of computing the limiting constants for the mean and the variance. © 2005 Wiley Periodicals,
Inc. Random Struct. Alg., 28, 481–498, 2006

1. INTRODUCTION

String matching is a huge area with a wide literature and a large number of applications. The
basic problem is to identify all occurrences of a given pattern in a large text. We study in this
paper the most widely used string-matching algorithms, the Boyer–Moore (BM) algorithm
and its simplified version, the Boyer–Moore–Horspool (BMH) algorithm. We are concerned
with the probabilistic behavior of the algorithms, as well as the evaluation of the constants
in the limit theorems.

Applications of string matching are found in many communicative media, including
language processing, graphics, videos, and sound. Typical applications include key-word
searches (or replacement) in any text editing software, the use of search engines, phone
number lookup, searches in databases like Gen-Bank, etc. Although the use of exact string
matching in computational biology may be limited, exact string matching is the prototype,
both in algorithms and in analysis, of more useful approximate string matching and hidden
string search algorithms; see Flajolet, Szpankowski, and Vallée [9].

© 2005 Wiley Periodicals, Inc.
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Throughout the paper, A is a set of q characters, T is a text of n characters from A, and
S is a pattern of m characters from A. We assume that q ≥ 2 and n � m. Although several
factors determine the running time of a program, we deal in this paper only with the number
of character comparisons; other cost measures may be similarly analyzed. We denote by
Cn = Cn(A) the number of comparisons used by algorithm A.

The most naive algorithm for finding all occurrences of a pattern in a text consists of
comparing consecutively the characters of the pattern to each m-length substring of the text.
The procedure moves to the next m-length substring as soon as a mismatch occurs. This
simple algorithm has Cn = m(n − m + 1) in the worst case (when all pairwise comparisons
have been executed).

The Knuth–Morris–Pratt (1977) algorithm, which is based on building up an automaton
from the pattern, avoids comparing the match part in the text to the pattern more than once
and improves the worst case to Cn ≤ 2n − m (see Cole [8]), the average case of Cn/n being
close to 1 + 1/q (see Régnier [13]).

However, it has been observed that in many applications, the average value of Cn/n
for several algorithms is less than 1 (see [12] for recent experiments). Among them, the
BM algorithm is considered the most efficient algorithm (see Lecrocq’s Handbook of Exact
String-Matching Algorithms [6]).

Despite its popularity in diverse applications, probabilistic analysis of the BM algorithms
has not received much attention in the literature. Most known probabilistic results are
for the BMH algorithm. We first summarize some related results and then present our new
ones.

Baeza-Yates and colleagues [1, 2] applied an analytic approach to the average-case
analysis of the BMH algorithm. Under the assumption that the text is independent and
identically distributed (iid), they derived an exact expression for the linearity constant
µ = limn→∞ E(Cn/n). For earlier results, see Barth [3] and Régnier [13].

The first distributional result for string-matching algorithms was derived by Mahmoud,
Smythe and Régnier [11]. They proved the asymptotic normality of Cn via analytic methods
(the text being iid) for the BMH algorithm,

Cn − µn√
Bn

D→ N (0, 1),

where
D→ denotes convergence in distribution and N (0, 1) denotes standard normal random

variable with zero mean and unit variance. However, the value of B is difficult to compute.
Smythe [14] extended the asymptotic normality result for Markovian input by a com-

pletely probabilistic approach (via theory of Markov chains). A simple expression for the
linearity constant µ was also derived, but the state space of his Markov chain seems difficult
to further simplify and the evaluation of B still remains unclear.

We propose a similar but simpler Markov-chain approach; we consider the windows
together with a distance counter as a Markov chain and derive a Berry–Esseen bound,
the law of the iterated logarithm, and a better estimate for the mean for Cn with explicit
determination of µ and B under the assumption that the text is iid and the pattern is
fixed.

One major drawback of the usual Markovian approach is that the computational com-
plexity grows exponentially when the pattern length increases. Our main contribution is
to construct a state space with a growth rate of order m2. We thus are able to compute the
linearity constant µ for the BM algorithm when the pattern length is of reasonable size.
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With the construction of the state space, we can also compute the exact value of B for both
the BM and the BMH algorithms. All computations can be efficiently done by mathematical
softwares (such as Maple); numeric results are presented in Section 5.

2. DESCRIPTION OF THE ALGORITHMS

For completeness, we describe the BM algorithm in this section; see Boyer and Moore [5]
or Charras and Lecroq [6] for more details.

Denote the text by T = t1t2 · · · tn and the pattern by S = smsm−1 · · · s1; note that in the
paper we index the pattern from right to left because BM-type algorithms scan in that
direction inside each comparing window.

The BM Algorithm

We begin by aligning S under the first window t1 · · · tm. Start with s1 and compare each
pattern character to the corresponding character in the window from right to left, until a
mismatch is detected or when the left end of the window is reached (an occurrence is found
if all m characters match). Then, S is shifted to the right and a new window in the text is
opened.

The distance shifted (from the current window to the next) is determined by the following
two rules.

• Bad-character rule. For all a ∈ A, let

B(a) = min{k ≥ 1 : sk+1 = a}.
• Good-suffix rule. For all 1 ≤ i ≤ m, let

G(i) = min

{
k ≥ 1 :

[smin{m,i+k−1}, sk+1] matches exactly with a suffix of
[si−1, s1] if i ≥ 2 and si+k �= si if i + k ≤ m

}
,

where [sj1 , sj2 ], j1 ≥ j2 denotes the sequence sj1sj1−1 · · · sj2 and min{∅} ≡ m.

If there are i − 1 matches, the ith pair is a mismatch, and a is the mismatch character in
the text, then the distance shifted is

max{G(i), B(a) − i + 1},
and we call G(i) the good-suffix shift and B(a) − i + 1 the bad-character shift. If all m
characters match, then the distance shifted is G(m).

The BMH Algorithm

This is a simplification of the BM algorithm using only a bad-character rule. The distance
shifted is B(a), where a is the rightmost character of the current window.

When the first comparison yields a mismatch, i.e., i = 1, the bad-character shift domi-
nates the good-suffix shift, and thus the distances shifted by the BM and BMH algorithm are
identical. When q is large (as in Chinese language), it becomes more likely that a mismatch
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happens right at the first comparison in the current window. In this case, the performance
of BM and BMH algorithms is comparable.

We give an example to demonstrate both algorithms. Suppose A = {a, b, c} and S = abaa.
Then

G(1) = 2, G(2) = 1, G(3) = 3, G(4) = 3,

B(a) = 1, B(b) = 2, B(c) = 4.

Suppose T = acabaacca · · · . The first three shifts of the BM algorithm (left) and the BMH
algorithm (right) are shown separately as follows.

a c a b a a c c a · · ·
a b a a

a b a a
a b a a

a b a a

a c a b a a c c a · · ·
a b a a

a b a a
a b a a

a b a a

In the first window, i = 1 and the mismatch character in text is b, so the distance shifted
is 2 for both BM and BMH algorithms.

In the second window, all four characters match (an occurrence is found), so the distance
shifted is G(4) = 3 for the BM algorithm and is B(a) = 1 for the BMH algorithm.

The next windows for BM and BMH algorithms are different. For BM algorithm, i = 2
and the mismatch character in text is c, so the distance shifted is max{G(2), B(c) − 2 +
1} = 3. For BMH, the rightmost character of the window in text is c, so the distance shifted
is B(c) = 4.

3. A MARKOVIAN APPROACH

Assume that the text is iid and the pattern S is fixed. Let Wj be the jth window in the
processing of the algorithm. Obviously, {Wj} is a Markov chain with the state space Am.
Since the algorithm is designed to find all occurrences of the pattern, each state will lead
to state S. Conversely, let � be the set of states that state S leads to. Then � contains all
recurrent states and is irreducible. There might be a finite number of states outside � that
are transient. However, the chain will stay inside � once the first occurrence of the pattern is
found. The number of character comparisons taken before the first occurrence of the pattern
is asymptotically negligible. Thus, we can assume irreducibility of the Markov chains in
Section 4 without loss of generality.

Let g(Wj) be the distance to shift at Wj and f (Wj) be the number of comparisons taken
inside the window Wj. The transition probability of {Wj} is given by

p(a, b) ≡ P (W2 = b|W1 = a) =
{

P(t = bg(a) · · · b1) if am−g(a) · · · a1 = bm · · · bg(a)+1,

0 otherwise,

where a = am · · · a1, b = bm · · · b1 ∈ Am, and t is a random text of length g(a).
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Let Nk be the total number of windows in the processing of the algorithm for the text
t1t2 · · · tk . If k ≥ m then

m +
Nk−1∑
j=1

g(Wj) ≤ k < m +
Nk∑
j=1

g(Wj). (1)

We also define the pair of random variables

Wk ≡ (
WNk , Zk

)
,

where Zk = k − m − ∑Nk−1
j=1 g(Wj). The window

WNk = ta · · · tb, where a = 1 +
Nk−1∑
j=1

g(Wj) and b = m +
Nk−1∑
j=1

g(Wj)

and the value g(WNk ) is the distance of the next possible shift. The random variable Zk is
the distance from the character tb to the character tk . Thus,

Wk+1 =
{(

WNk , Zk + 1
)

if g
(
WNk

) − Zk > 1,(
WNk+1, 0

)
if g

(
WNk

) − Zk = 1.

Therefore, {Wk}k≥m is a Markov chain with the state space Am × {0, 1, . . . , m − 1} and the
transition probability is given by

p((a, i), (b, j)) =




1 if a = b, 0 ≤ i ≤ g(a) − 2 and j = i + 1,

p(a, b) if i = g(a) − 1 and j = 0,

0 otherwise,

where a, b ∈ Am and 0 ≤ i, j ≤ m − 1. Note that not every state is visited.

Reduce the Size of the State Space

We first propose a means of reducing the size of the state space by properly combining states.
Let � = {D1, . . . , DK} be a partition of Am. To combine the states and also to preserve the
values of g and f , we require that � satisfies the following two conditions.

C1 Every element in the same class gives the same value under f and the same value
under g.

C2 New transition probability is well defined, that is, for all Dα , Dβ ∈ �,

p(a1, Dβ) = p(a2, Dβ) for all a1, a2 ∈ Dα ,

where p(a, D) = ∑
b∈D p(a, b).

Providing conditions C1 and C2, we can regroup the state space Am with respect to the
partition �. We write h(D), where D is a class of strings and h = f or g, when every element
in D gives the same value under h. Define

� = {(D, i) : D ∈ �, 0 ≤ i < g(D)}. (2)
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Then � is a state space for {Wk}. Note that some states in � might be transient.
In the paper, all classes in a partition of Am are of the form

〈Ba�−1 · · · a1〉 ≡ {xm · · · x�+1x�a�−1 · · · a1 : x� ∈ B and x�+1, . . . , xm ∈ A}, (3)

where 1 ≤ � ≤ m, B ⊂ A, and a1, . . . , a�−1 ∈ A. Write 〈Ba�−1 · · · a1〉 = 〈a� · · · a1〉 when
B = {a�}. We call � the length of 〈Ba�−1 · · · a1〉.

Lemma 1. Let Dα = 〈Bαa�α−1 · · · a1〉 and Dβ = 〈Bβb�β−1 · · · b1〉 with �α ≥ �β .

(i) Suppose �α > �β . Then{
Dα ⊂ Dβ if a�β−1 · · · a1 = b�β−1 · · · b1 and a�β

∈ Bβ ,

Dα ∩ Dβ = ∅ otherwise.

(ii) Suppose �α = �β and |Bα| ≤ |Bβ |. Then




Dα ⊂ Dβ if a�β−1 · · · a1 = b�β−1 · · · b1 and Bα ⊂ Bβ ,

Dα � Dβ and Dα ∩ Dβ �= ∅ if a�β−1 · · · a1 = b�β−1 · · · b1,Bα � Bβ

and Bα ∩ Bβ �= ∅,

Dα ∩ Dβ = ∅ otherwise.
(4)

In particular, if |Bα| = 1 then the second case in (4) does not exist.

The proof of Lemma 1 follows directly from the definition of (3).
Before introducing the construction of a partition satisfying conditions C1 and C2, we

give a special example to illustrate the idea.

Example 1. Let A = {a1, a2, a3, a4, a5, a6, a7}, q = 7, m = 5, and S = a5a4a3a2a1

(note that the values under g with respect to BM and BMH coincide in this setting). First,
decompose A5 into the partition

{〈a4a3a2a1〉, 〈B4a3a2a1〉, 〈B3a2a1〉, 〈B2a1〉, 〈B1〉},
where Bk = {a : a �= ak}. Observe that

f (〈a4a3a2a1〉) = 5, f (〈B4a3a2a1〉) = 4, f (〈B3a2a1〉) = 3, f (〈B2a1〉) = 2, f (〈B1〉) = 1,

and

g(〈a4a3a2a1〉) = g(〈B4a3a2a1〉) = g(〈B3a2a1〉) = g(〈B2a1〉) = 5.

However, there are several possible values under g on 〈B1〉. Thus, decompose 〈B1〉 into

〈a2〉, 〈a3〉, 〈a4〉, 〈a5〉 and 〈{a6, a7}〉,
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with

g(〈a2〉) = 1, g(〈a3〉) = 2, g(〈a4〉) = 3, g(〈a5〉) = 4, and g(〈a6, a7〉) = 5.

Now, condition C1 is satisfied.
Further decomposition is needed for condition C2. For instance, 〈a2〉 may move to

〈a2a1〉. But, 〈a2a1〉 overlaps with 〈a4a3a2a1〉, 〈B4a3a2a1〉, and 〈B3a2a1〉. This make p(〈a2〉, ·)
undefined. To remedy such a case, decompose 〈a2〉 into

〈a4a3a2〉, 〈B4a3a2〉, and 〈B3a2〉.
Similarly, decompose 〈a3〉 into 〈a4a3〉 and 〈B4a3〉. The final partition is given by


〈a4a3a2a1〉, 〈B4a3a2a1〉, 〈B3a2a1〉, 〈B2a1〉,

〈a4a3a2〉, 〈B4a3a2〉, 〈B3a2〉,
〈a4a3〉, 〈B4a3〉,

〈a4〉, 〈a5〉, 〈{a6, a7}〉




and satisfies the conditions C1 and C2 for both BM and BMH algorithms.

Construct a Partition Satisfying Conditions C1 and C2

Recall that S = sm · · · s1 and [sj, si], j ≥ i denotes the string sjsj−1 · · · si. The string a� · · · a1

is a substring of [sj, si] if a� · · · a1 = [sj0 , si0 ], j ≥ j0 ≥ i0 ≥ i.
Now, we construct a partition of Am satisfying the conditions C1 and C2 for the BMH

algorithm. First, define a family of classes of strings, �h, which consists of the following
three types of classes.

(a) If R= {a : a /∈ {s1, . . . , sm}} �= ∅ then 〈R〉 ∈ �h. If sm /∈ {s1, . . . , sm−1} then 〈sm〉 ∈ �h.
(b) If [sm−1, si] is not a substring of [sm−2, s1] then

〈sm−1 · · · si〉 ∈ �h.

(c) Let

B(j, i) = {a : a = sk , [sk−1, sk−(j−i)−1] = [sj, si] and k ≤ m − 1}, (5)

for m − 2 ≥ j ≥ i ≥ 1. If B(j, i) �= A then

〈Bc( j, i)sj · · · si〉 ∈ �h,

where Bc( j, i) is the complement of B( j, i).

From the definition of (5), 〈Bc(j, i)sj · · · si〉 = 〈Bc(�, k)s� · · · sk〉 when [sj, si] = [s�, sk].
We choose one of them as a representative in �h. The size of �h is at most

2 + (m − 1) + (m − 1)(m − 2)/2 = m2/2 − m/2 + 2.

Lemma 2. The family �h is a partition of Am.
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Proof. First, we prove the completeness. Given a string xm · · · x1, we show that xm · · · x1 ∈
D for some D ∈ �h. Choose the largest k such that xk · · · x1 is a substring of [sm−1, s1].

(i) If there is no such k then x1 = sm or x1 ∈ R. Thus, xm · · · x1 ∈ 〈sm〉 or 〈R〉.
(ii) If xk · · · x1 = [sj, si] for some i ≤ j ≤ m − 2 then xk+1 �= sj+1. Thus, xk+1 ∈ Bc(j, i)

and so xm · · · x1 ∈ 〈Bc(j, i)sj · · · si〉.
(iii) Suppose xk · · · x1 �= [sj, si] for all i ≤ j ≤ m − 2. Then xk · · · x1 = [sm−1, si] for

some i ≤ m − 1 and 〈sm−1 · · · si〉 ∈ �h. Thus, xm · · · x1 ∈ 〈sm−1 · · · si〉.

This proves the completeness of the partition.
We next prove the disjointness. Let Dα , Dβ ∈ �h with length �α and �β , respectively.

Assume a contrario that Dα �= Dβ and Dα ∩ Dβ �= ∅. Since the classes 〈R〉 and 〈sm〉 are
clearly disjoint with classes of other types, we only have to exam the following three kinds
of intersections. We will apply repeatedly Lemma 1 in all the following cases.

(i) Dα = 〈sm−1 · · · si1〉 and Dβ = 〈sm−1 · · · si2〉, i1 < i2. Then �α > �β . Thus, Dα ⊂ Dβ

and [sm−1−(i2−i1), si1 ] = [sm−1, si2 ], violating the condition in (b).
(ii) Dα = 〈sm−1 · · · si1〉 and Dβ = 〈Bc(j2, i2)sj2 · · · si2〉. If �α < �β then Dβ ⊂ Dα and

[sm−1, si1 ] = [sj2−(�β−�α)+1, si2 ], again violating the condition in (b). If �α ≥ �β then
Dα ⊂ Dβ , [sm−2−(�α−�β ), si1 ] = [sj2 , si2 ] and sm−1−(�α−�β ) ∈ Bc(j2, i2), a contradiction
by the definition of B(j2, i2).

(iii) Dα = 〈Bc(j1, i1)sj1 · · · si1〉 and Dβ = 〈Bc(j2, i2)sj2 · · · si2〉. Assume �α ≥ �β . If �α > �β

then Dα ⊂ Dβ , [sj1−(�α−�β ), si1 ] = [sj2 , si2 ] and sj1−(�α−�β )+1 ∈ Bc(j2, i2), a contra-
diction by the definition of B(j2, i2). If �1 = �2 then [sj1 , si1 ] = [sj2 , si2 ]. Thus,
Dα = Dβ . This is contradictory to the assumption.

Lemma 3. The partition �h satisfies the conditions C1 and C2 with respect to the BMH
algorithm.

Proof. The rightmost character of a string determines the value of g. Every string in a
class, except class 〈R〉, has the same rightmost character. Clearly, g(〈R〉) = m. Thus, each
class of �h has only one value under g.

To show that each class of �h has also only one value under f , let D ∈ �h.

Type (a). It is trivial that f (D) = 1.
Type (b). If D = 〈sm−1 · · · s1〉 then f (D) = m. If D = 〈sm−1 · · · si〉 for i > 1 then

[sm−1, si] �= [sm−i, s1]. Thus, there is at least one mismatch between [sm−1, si]
and [sm−i, s1], and f (D) is equal to the number of comparisons till the first
mismatch.

Type (c). Suppose D = 〈Bc(j, i)sj · · · si〉. If [sj, si] = [sj−i+1, s1] then sj−i+2 ∈ B(j, i) and
a mismatch occurs there. Thus, f (D) = j − i + 2. If [sj, si] �= [sj−i+1, s1] then
there is at least one mismatch between [sj, si] and [sj−i+1, s1], and f (D) is equal
to the number of comparisons till the first mismatch. This completes the proof
of condition C1.

Let Dα , Dβ ∈ �h with length �α and �β , respectively. We claim that the transition prob-
ability p(Dα , Dβ) is well defined. The distance of shift is g(Dα). Obviously, p(Dα , Dβ) is
well defined if �β ≤ g(Dα).
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�α︷ ︸︸ ︷
Dα

g(Dα)︷ ︸︸ ︷
t

�2︷ ︸︸ ︷
A2

g(Dα)︷ ︸︸ ︷
A1

Scheme 1.

Suppose �β > g(Dα). Let Dβ = 〈Bsj2 · · · si2〉. Define

A1 = si2+g(Dα)−1 · · · si2 and A2 = 〈Bsj2 · · · si2+g(Dα)〉, (6)

where j2 = i2 + �β − 2. Note that A2 may not be in �h. The length of A2 is �β − g(Dα),
denoted by �2. See the alignment in Scheme 1, where t is a random text of length g(Dα).
To prove the well-definedness of p(Dα , Dβ), we claim that Dα is either completely inside
A2 or disjoint from A2. That is, we assume Dα ∩ A2 �= ∅ and then show Dα ⊂ A2. We will
again apply repeatedly Lemma 1 in all the following cases.

If �2 < �α , then Dα ⊂ A2.
If �2 > �α , then A2 ⊂ Dα . If Dα = 〈sm−1 · · · si1〉 then [sm−1, si1 ] = [sj2−(�2−�α)+1, si2+g(Dα)],

contradictory to the condition in (b). On the other hand, if Dα = 〈Bc(j1, i1)sj1 · · · si1〉 then
[sj1 , si1 ] = [sj2−(�2−�α), si2+g(Dα)] and sj2−(�2−�α)+1 ∈ Bc(j1, i1), contradictory to the definition
of B(j1, i1).

If �2 = �α , we examine the following three cases.

(i) If Dα = 〈sm−1 · · · si1〉 then Dα ⊂ A2.
(ii) If Dα = 〈Bc(j1, i1)sj1 · · · si1〉 and A2 = 〈sm−1 · · · si2+g(Dα)〉 then A2 ⊂ Dα , [sj1 , si1 ] =

[sm−2, si2+g(Dα)] and sm−1 ∈ Bc(j1, i1), contradictory to the definition of B(j1, i1).
(iii) If Dα = 〈Bc(j1, i1)sj1 · · · si1〉 and A2 = 〈Bc(j2, i2)sj2 · · · si2+g(Dα)〉 then [sj1 , si1 ] =

[sj2 , si2+g(Dα)]. By the definition of (5), B(j2, i2) ⊂ B(j2, i2 + g(Dα)) = B(j1, i1).
Thus, Bc(j1, i1) ⊂ Bc(j2, i2) and so Dα ⊂ A2.

This completes the proof of condition C2.

The partition �h also satisfies the conditions C1 and C2 with respect to a modified
BM algorithm that combines the good-suffix rule and the bad-character rule of the BMH
algorithm. However, finer partition is needed for the BM algorithm, since there are possibly
more than one value of g for some classes in �h (whenever the bad-character shift is larger
than the good-suffix shift). We have then to decompose those classes according to the values
of g and trace back those leading to the splitting classes and further decompose them. Such
a “traced-back” decomposition is continued until the length of the splitting classes is equal
to 2. The detail of a formulation of the partition and the proof of condition C2 are more
complex. We only give examples here.
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Example 2. Assume A = {a1, a2, a3, a4, a5}, q = 5, m = 6, and S = a4a3a2a1a2a1. Then

�h =




〈a5〉, 〈a4〉,
〈a3a2a1a2a1〉, 〈a3a2a1a2〉, 〈a3a2a1〉, 〈a3a2〉, 〈a3〉,

〈B3a2a1a2a1〉, 〈B2a1a2a1〉, 〈B3a2a1a2〉, 〈B2a1a2〉, 〈B2a1〉,
〈B1,3a2a1〉, 〈B1,3a2〉


 ,

where Bk1,k2,... = {a : a �= ak1 , ak2 , . . .}. Here g is the shift function for BM algorithm.
Observe that

g(〈a5〉) = g(〈a3a2a1a2a1〉) = g(〈B3a2a1a2a1〉) = g(〈B2a1a2a1〉) = 6,

g(〈a4〉) = 5, g(〈a3〉) = 4, g(〈a3a2a1〉) = 2,

and

g(〈a3a2a1a2〉) = g(〈a3a2〉) = g(〈B3a2a1a2〉) = g(〈B2a1a2〉) = g(〈B1,3a2〉) = 1.

However, the class 〈B1,3a2a1〉 gives three values under g,

g(〈a2a2a1〉) = 2, g(〈a4a2a1〉) = 3, g(〈a5a2a1〉) = 4

and the class 〈B2a1〉 gives four values under g,

g(〈a1a1〉) = 2, g(〈a3a1〉) = 3, g(〈a4a1〉) = 4, g(〈a5a1〉) = 5.

So we decompose the class 〈B1,3a2a1〉 into

〈a2a2a1〉, 〈a4a2a1〉, 〈a5a2a1〉
and the class 〈B2a1〉 into

〈a1a1〉, 〈a3a1〉, 〈a4a1〉, 〈a5a1〉.
As a side effect, the decomposition of 〈B1,3a2a1〉 causes p(〈B1,3a2〉, ·) not well defined. We
then decompose 〈B1,3a2〉 into

〈a2a2〉, 〈a4a2〉, 〈a5a2〉.
The final resulting partition is then

�BM =




〈a5〉, 〈a4〉,
〈a3a2a1a2a1〉, 〈a3a2a1a2〉, 〈a3a2a1〉, 〈a3a2〉, 〈a3〉,
〈B3a2a1a2a1〉, 〈B2a1a2a1〉, 〈B3a2a1a2〉, 〈B2a1a2〉,

〈a1a1〉, 〈a3a1〉, 〈a4a1〉, 〈a5a1〉,
〈a2a2a1〉, 〈a4a2a1〉, 〈a5a2a1〉,

〈a2a2〉, 〈a4a2〉, 〈a5a2〉




and satisfies the conditions C1 and C2 for the BM algorithm.

Remark. If we decompose all classes of type (c) into

〈asj · · · si〉 for all a ∈ Bc(j, i),

then this finer partition satisfies the conditions C1 and C2 for both BM and BMH algorithms.
However, the size of the partition is larger than |�b| but is still bounded above by

2 + (m − 1) + (q − 1)(m − 1)(m − 2)/2 = (q − 1)m2/2 − (3q − 5)m/2 + q.
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The New Transition Probability

Let � be a state space constructed as above for {Wj} and � is the state space for {Wk}
defined in (2). Let θ denote the distribution of W1. With the same notations as in (6), the
new transition probability for {Wj} is given by

p(Dα , Dβ) =




θ(Dβ) if g(Dα) ≥ �β ,

θ(A1) if g(Dα) < �β and Dα ⊂ A2,

0 if g(Dα) < �β and Dα ∩ A2 = ∅,

(7)

and the new transition probability for {Wk} is given by

p((Dα , i), (Dβ , j)) =




1 if Dα = Dβ , 0 ≤ i ≤ g(Dα) − 2 and j = i + 1,

p(Dα , Dβ) if i = g(Dα) − 1 and j = 0,

0 otherwise.

(8)

where Dα , Dβ ∈ �, 0 ≤ i < g(Dα), and 0 ≤ j < g(Dβ).

4. ASYMPTOTIC BEHAVIOR OF THE NUMBER OF COMPARISONS

Recall that Cn is the number of character comparisons taken by the algorithms. Observe
that Cn = ∑Nn

j=1 f (Wj). By applying the strong law of large number for the Markov chain
{Wj} (see Chung [7, p. 92]), there exist two constants µf and µg, specified in (14), such that

1

N

N∑
j=1

f (Wj) → µf a.s. and
1

N

N∑
j=1

g(Wj) → µg a.s. (9)

as N → ∞, where a.s. denotes “almost surely.” Clearly, Nn → ∞ a.s. as n → ∞. From (9)
it follows that

Cn

n
=

∑Nn
j=1 f (Wj)∑Nn−1

j=1 g(Wj) + (
n − ∑Nn−1

j=1 g(Wj)
) → µf

µg
≡ µ(S) a.s.

as n → ∞. Thus, the limiting mean of Cn/n is µ(S) by the bounded convergence theorem.
Define the weight function

h(Wk) = f (WNk )1{Zk=0}.

Then Cn = ∑n
k=1 h(Wk). We apply the limit theorems in Chung [7, pp. 102 and 106] to the

Markov chains {Wk} and obtain the following theorems.

Theorem 1. The mean and the variance of Cn satisfy

E[Cn] = µ(S)n + o(
√

n), (10)

V[Cn] = B(S)n + o(n), (11)

where B(S) ≥ 0 is a constant specified in (15) below.
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Theorem 2. If B(S) > 0 then

lim sup
n→∞

Cn − µ(S)n√
2B(S)n ln ln n

= 1 a.s. (12)

and the corresponding lim inf is equal to −1 almost surely.

Note that the constants µ(S) and B(S) will have different values for different algorithms.
The results from the application of the limit theorems in Chung include a central limit

theorem. Here, we can obtain a stronger result by applying the Berry–Esseen theorem in
Bolthausen [4] to the Markov chains {Wk}. The conditions of the theorem in Bolthausen,
the third moment of a return time and the first moment of an entrance time, hold clearly if
we choose ([sm−1, s1], 0) as a fixed state to define the entrance time and the return time.

Theorem 3. If B(S) > 0 then

sup
−∞<x<∞

∣∣∣∣∣P
(

Cn − µ(S)n√
B(S)n

< x

)
− �(x)

∣∣∣∣∣ = O(n−1/2), (13)

where �(x) is the standard normal distribution.

Explicit Determination of the Quantities µ(S) and B(S)

Recall that � is the class of recurrent states. Let P be the transition matrix for {Wj} and π

be the invariant probability measure with respect to P (i.e., πP = π ). Then

µf =
∑
D∈�

f (D)π(D) and µg =
∑
D∈�

g(D)π(D). (14)

Let � be the class of recurrent states and P be the transition matrix for {Wk}. Let π

be the invariant probability measure with respect to P. It follows from (8) that π(D, 0) =
π(D, 1) = · · · = π(D, g(D) − 1) and

π(Dβ , 0) =
∑

Dα∈�

π(Dα , g(Dα) − 1)p((Dα , g(Dα) − 1), (Dβ , 0)) =
∑

Dα∈�

π(Dα , 0)p(Dα , Dβ).

The above equation is π(·, 0)P = π(·, 0). Thus, π(·, 0) = λπ(·) for some constant λ. We
have λ = 1/µg since

1 =
∑

D∈�,0≤i<g(D)

π(D, i) = λ
∑
D∈�

g(D)π(D) = λµg.

The constant B(S) can be obtained by applying the formulation of the second moment in
Chung to the centered function hc(·) = h(·) − µ(S) (see Chung [7, pp. 88 and 95–99]),

B(S) =
∑

Dα∈�

h2
c(Dα)π(Dα) + 2

∑
Dα∈�

hc(Dα)π(Dα)
∑

Dβ �=D0

hc(Dβ)π(Dβ)(mα,0 + m0,β − mα,β),

(15)
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m q = 2 q = 4 q = 8
2 1.00000 1.00000 1.00000 0.71428 0.71428 0.71428 0.60000 0.60000 0.60000
3 1.25000 0.97269 0.84615 0.60416 0.57150 0.49640 0.43973 0.43422 0.39984
4 1.16964 0.92250 0.67883 0.55781 0.48451 0.36608 0.35674 0.34575 0.29645
5 1.13750 0.85767 0.53997 0.56171 0.42900 0.28706 0.30939 0.29234 0.23533
6 1.01800 0.79928 0.43479 0.53898 0.39202 0.23580 0.28129 0.25711 0.19512
7 0.96205 0.74457 0.35759 0.53923 0.36632 0.20016 0.26522 0.23237 0.16666
8 0.96986 0.69863 0.30113 0.52512 0.34765 0.17396 0.25785 0.21418 0.14545
9 0.97377 0.65919 0.25930 0.52513 0.33353 0.15386 0.25785 0.20037 0.12903

10 0.93591 0.62553 0.22765 0.52513 0.32246 0.13793 0.25618 0.18960 0.11594

Fig. 1. The maximum, average, and minimum values of µ(S) for the BM algorithm.

where D0 is a fixed state (the value of B(S) is independent of the choice of D0) and mα,β

is the expected time of the first entrance of state Dβ starting from state Dα . The matrix
M ≡ {mα,β} can be obtained from P by

M = (I − Z + EZdg)D,

where I is the identity matrix, Z is the fundamental matrix for P, E is a matrix with all
entries 1, Zdg results from Z by setting all off-diagonal entries equal to 0, and D is diagonal
matrix with ith entry 1/π(i) (see Kemeny and Snell [10, p. 79]).

5. EVALUATION OF THE CONSTANTS OF THE LIMITING
MEAN AND VARIANCE

In this section, we assume that each ti is uniformly distributed in A = {1, . . . , q}. The
“average” is taken for all patterns with the same length.

First, we compute the constant µ(S) for the BM algorithm. In Fig. 1, we have the
maximum, average, and minimum values of µ(S) for m = 2 to 10 and q = 2, 4, 8.

Patterns reaching the minimum constant are of the form S = 11 · · · 1; patterns reaching
the maximum constant are shown in Table 1.

The range of µ(S) is narrowing down as q increases. In addition, we compute in Fig. 2
the standard deviation of µ(S), by considering S a random pattern with length m,

σ =
√

1

qm

∑
S

(µ(S) − µ)2.
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TABLE 1. The Patterns that Reach the Maximum
Constant for the BM Algorithm

m q = 2 q = 4 q = 8

2 11 11 11
3 121 121 121
4 2121 1321 1321
5 21221 14321 14321
6 221221 114321 154321
7 1221121 2114321 1654321
8 21221121 12114321 17654321
9 121122121 212114321 187654321

10 1211221211 3212114321 1187654321

Here q and m are fixed, the sum is taken over all patterns with length m, and µ is the average
of µ(S).

We compare our theoretical result with a recent experimental result [12] (see Fig. 3). In
their experiments, the text consists of 150,000 characters built randomly and 50 patterns
randomly generated for each length are searched.

The experimental result is very close to our theoretical result when m ≤ 10 and q = 8.
The consistency can be explained by the fact that the values of σ and B(S) are relatively
small (see the graphs in Figs. 2 and 4).

An Estimate for Long Patterns

Note that our approach becomes less efficient when computing the exact constant for longer
patterns since the size of state space is close to m2/2. Nevertheless, a good estimate of the
constant for most long patterns can be obtained by the procedure below.

Let

m0 = min{k : G(k) = G(k + 1) = · · · = G(m)}, (16)

Fig. 2. The standard deviation of the linearity constant for the BM algorithm.
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Fig. 3. The experimental Cn/n vs. the average of the theoretical constant µ(S) for the BM algorithm
in the cases q = 2 and 8.

where G is the function of good-suffix shift. Then m0 is usually small compared to m for
long patterns. For instance, if q = 2, m = 20, and

S = 1 2 1 2 2 1 2 2 2 2 1 2 1 2 2 2 2 1 2 1,

then G(1) = 1, G(2) = 19, G(3) = 2, G(4) = G(5) = · · · = G(20) = 17, and so m0 = 4.
For the BM algorithm, we take m0 − 1 ≤ K ≤ m − 1; for the BMH algorithm, we take

1 ≤ K ≤ m − 1. A partition �0 can be defined similarly to �h as follows.

(a) If R= {a : a /∈ {s1, . . . , sm}} �= ∅ then 〈R〉 ∈ �0. If sk /∈ {s1, . . . , sk−1} for k > K then
〈sk〉 ∈ �0.

(b) If [sK , si] is not a substring of [sK−1, s1] then 〈sK · · · si〉 ∈ �0.
(c) If B(j, i) �= A then 〈Bc(j, i)sj · · · si〉 ∈ �0, where

B(j, i) = {a : a = sk , [sk−1, sk−1−(j−i)] = [sj, si] and k ≤ K}

and K − 1 ≥ j ≥ i ≥ 1.
The partition �0, which is of size bounded above by (K2 + K)/2 + q, is good enough

for the BMH algorithm (but finer partition is needed for the BM algorithm as mentioned
in Section 3). The condition in (16) guarantees that there is only one value under the func-
tion g of the BM algorithm on 〈sK · · · s1〉 ≡ D1. Indeed, the partition satisfies conditions
C1 and C2, except for f on D1. Nevertheless, we can compute the invariant probability
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m q = 2 q = 4 q = 8
2 0.66666 0.33333 0.00000 0.31486 0.16180 0.11078 0.14933 0.07933 0.06933
3 1.67501 0.50879 0.05664 0.37581 0.24226 0.18282 0.14585 0.10016 0.09078
4 2.19151 0.56904 0.05887 0.38728 0.25189 0.14766 0.12702 0.09562 0.07358
5 2.16630 0.54183 0.11848 0.36609 0.23777 0.12555 0.11337 0.08947 0.05199
6 1.84905 0.53762 0.06577 0.37610 0.21902 0.07276 0.10955 0.08529 0.03996
7 1.45500 0.52482 0.09254 0.35569 0.20176 0.05588 0.11285 0.08282 0.03243
8 1.27292 0.50784 0.10871 0.38313 0.18743 0.05080 0.11564 0.08658 0.02726

Fig. 4. The maximum, average, and minimum values of B(S) for the BM algorithm.

π as long as the transition probability is well defined. An estimate of the constant is
given by∣∣∣∣∣µ(S) − (K + 1)π(D1) + ∑

D �=D1
f (D)π(D)∑

D∈�0
g(D)π(D)

∣∣∣∣∣ ≤ (m − K − 1)π(D1)

µg
= (m − K − 1)

qK

since K + 1 ≤ f ≤ m on D1 and π(D1) = µg/qK . We can choose a suitable K to control
the order of the errors.

We compute the constant for each pattern individually. So, the number of patterns cannot
be too large. In the right-hand part of Fig. 3, we use random samples of 2000 patterns for
the estimation of the average of µ(S).

Finally, we compute the value of B(S) for the BM and the BMH algorithm for m = 2 to 8
in the cases q = 2, 4, 8. The results are presented in Figs. 4 and 5.

Note that B(S) = 0 in the special case that q = 2 and S = 1 2.

6. CONCLUSION

In the paper we investigated the original BM and the BMH algorithms. Our approach may be
readily modified for other variants of the BM algorithm. The extension from iid to Markov
also seems straightforward. However, the transition matrix remains complex and thus a
simplification of µ(S) and B(S) seems very difficult.

We conclude by mentioning some interesting extensions for the BM algorithm.

• Random pattern. Evaluate the constant µ and B under the assumption that the pattern
is random with a fixed length. Characterize the asymptotic behavior as the pattern
length m → ∞ (but comparatively small with n).
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m q = 2 q = 4 q = 8
2 0.66666 0.33333 0.00000 0.31486 0.16180 0.11078 0.14933 0.07933 0.06933
3 1.91601 0.96191 0.05664 0.62871 0.33162 0.18282 0.21041 0.11377 0.09078
4 3.32617 1.45803 0.15429 0.73453 0.40518 0.14766 0.20841 0.11620 0.08338
5 4.36665 1.80198 0.28515 0.77859 0.43410 0.12555 0.20264 0.11446 0.07221
6 4.93547 2.02716 0.37890 0.80364 0.44675 0.11890 0.20065 0.11367 0.06277
7 5.31093 2.16853 0.44018 0.81898 0.45336 0.12064 0.20190 0.11409 0.05533
8 5.51516 2.25432 0.47454 0.82757 0.45728 0.11975 0.20535 0.11534 0.04943

Fig. 5. The maximum, average, and minimum values of B(S) for the BMH algorithm.

• Maximum and minimum. Investigate the asymptotic behavior of the maximum and
minimum values of µ(S) and the combinatorial properties of patterns reaching these
values.

• Large deviation. Derive estimates for the probabilities of large deviations via the
constructed Markov chain.
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