AULA 13

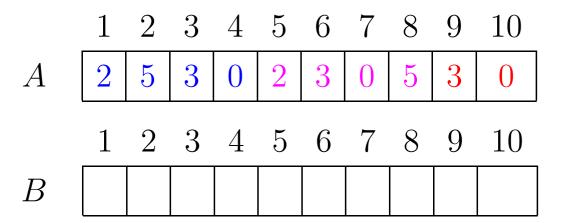
Ordenação em tempo linear

CLRS 8.2-8.3

Recebe vetores A[1..n] e B[1..n] e devolve no vetor B[1..n] os elementos de A[1..n] em ordem crescente.

Cada A[i] está em $\{0,\ldots,k\}$.

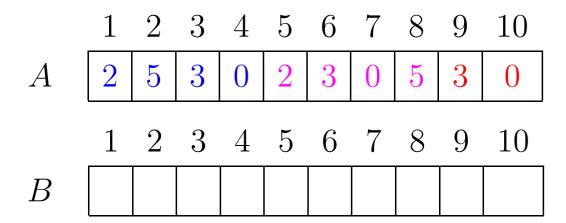
Entra:



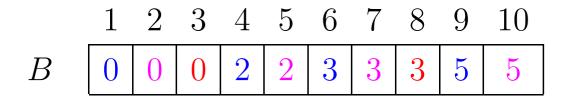
Recebe vetores A[1..n] e B[1..n] e devolve no vetor B[1..n] os elementos de A[1..n] em ordem crescente.

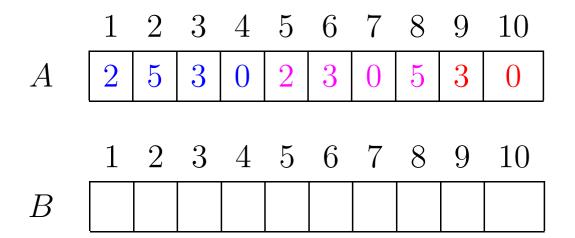
Cada A[i] está em $\{0,\ldots,k\}$.

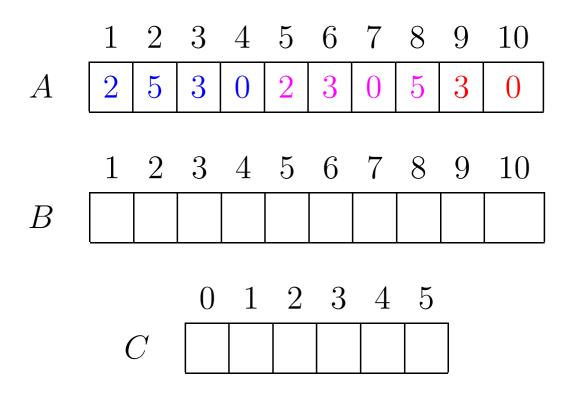
Entra:

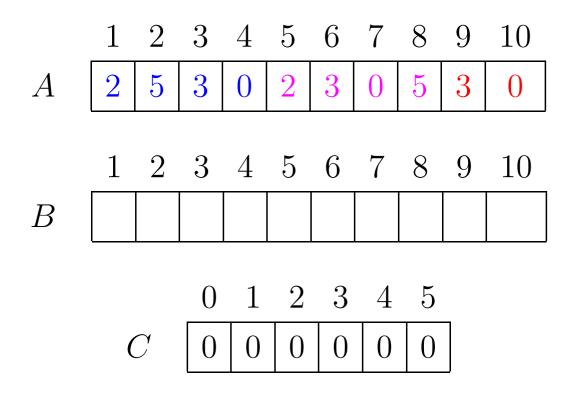


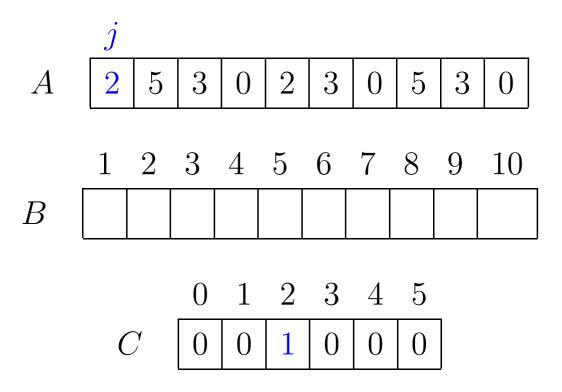
Sai:

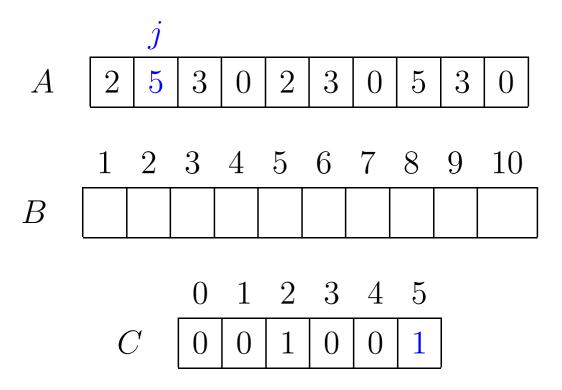


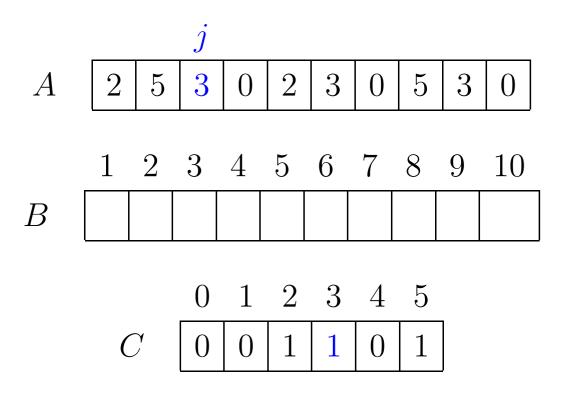


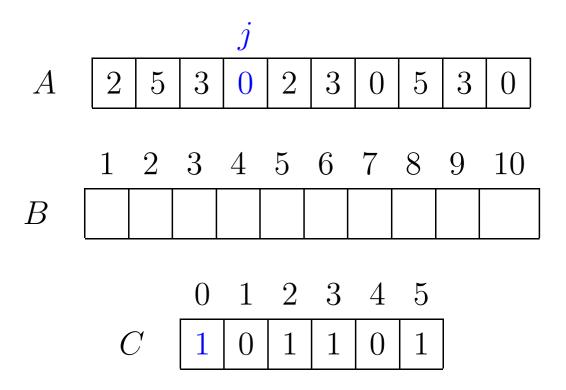


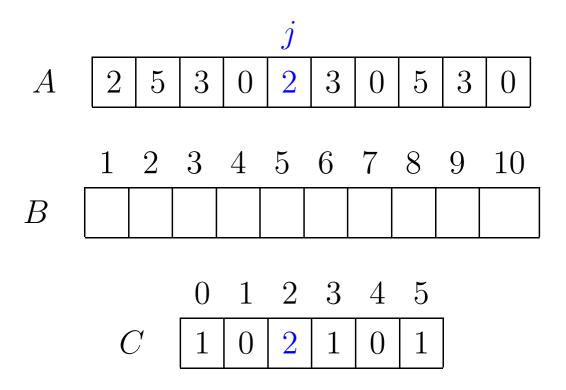


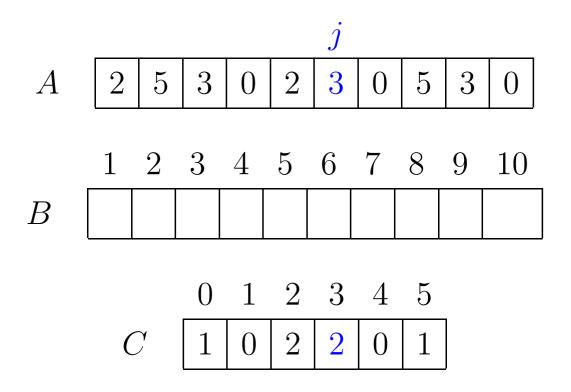


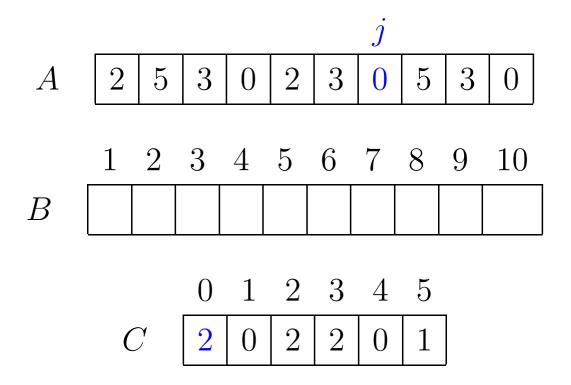


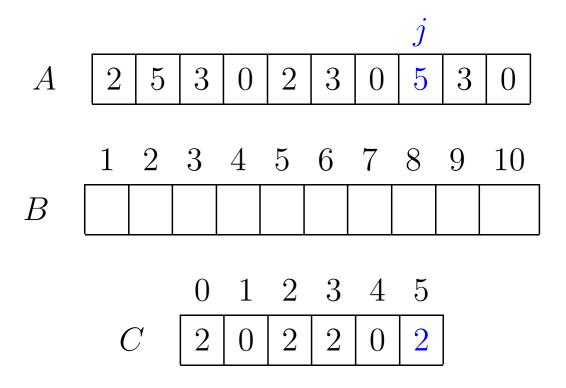


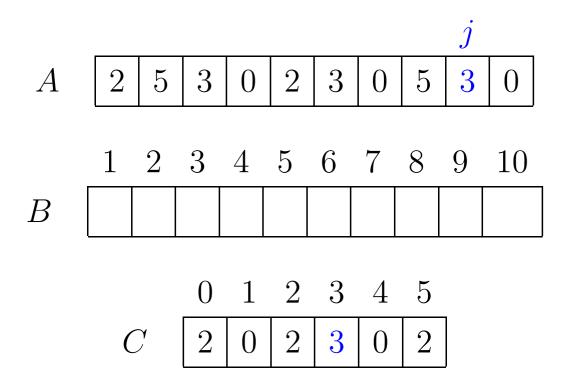


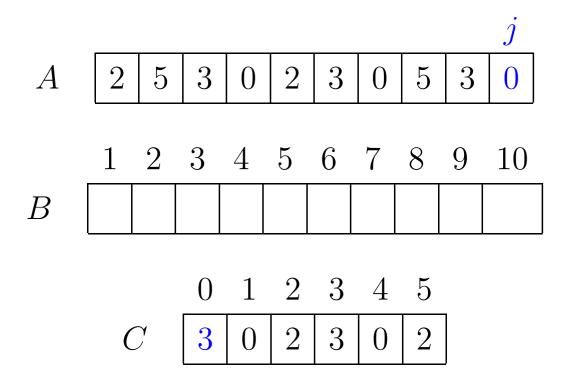


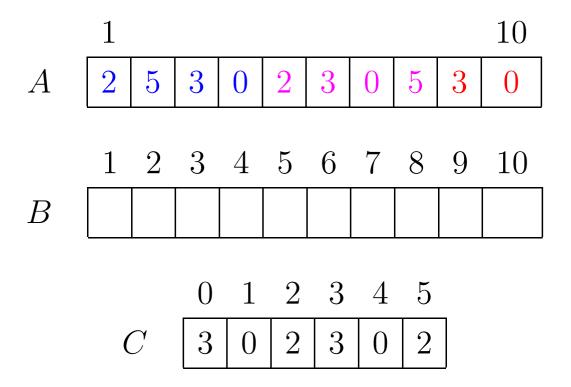


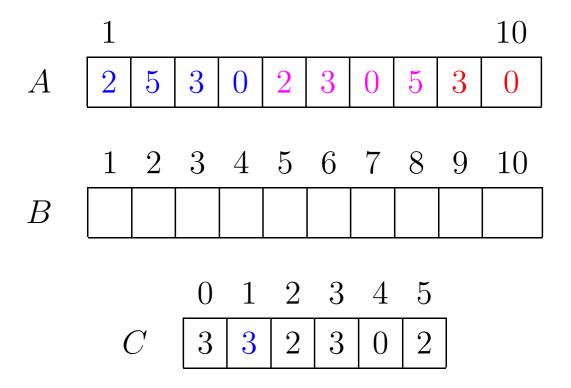


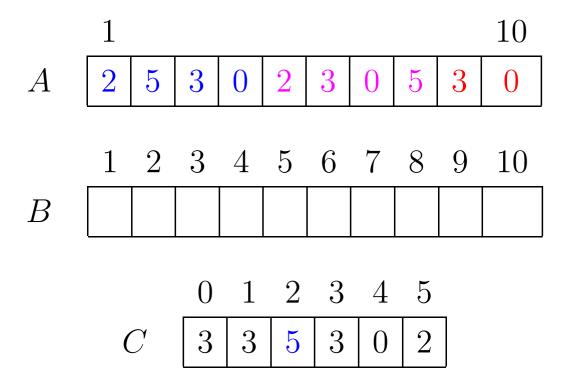


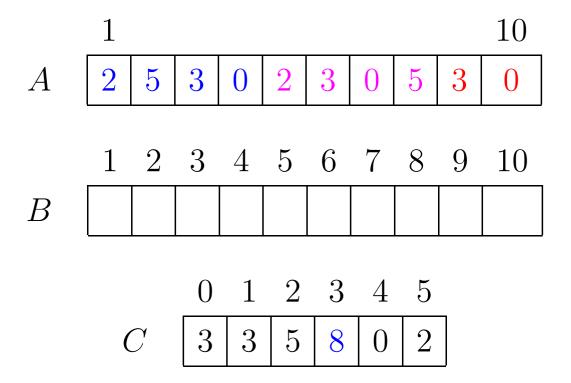


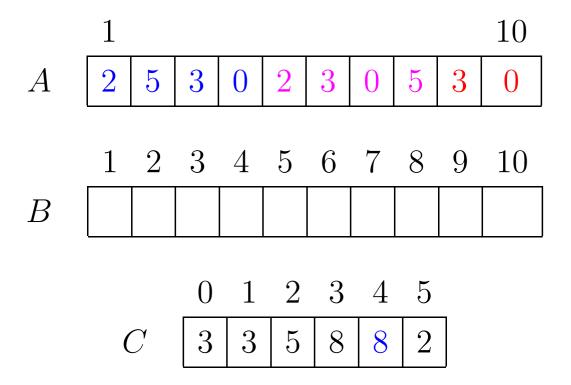


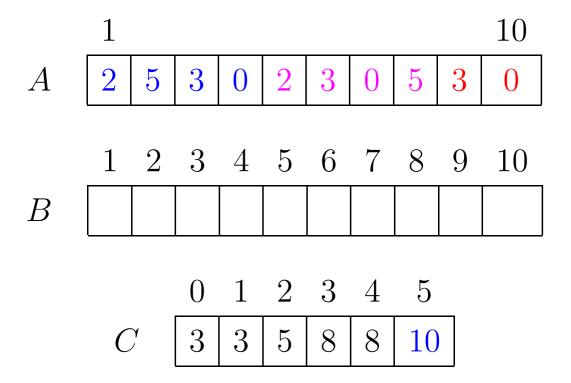


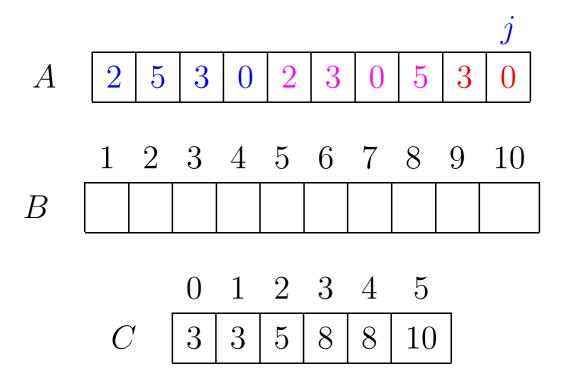


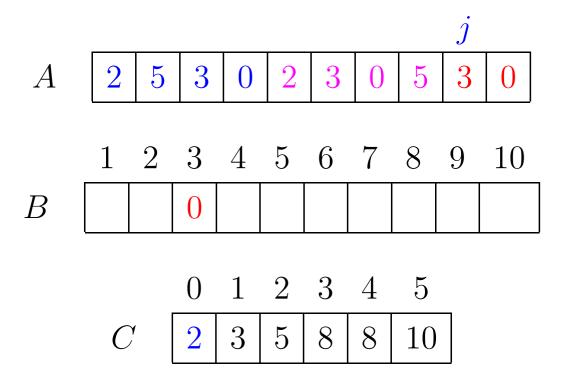


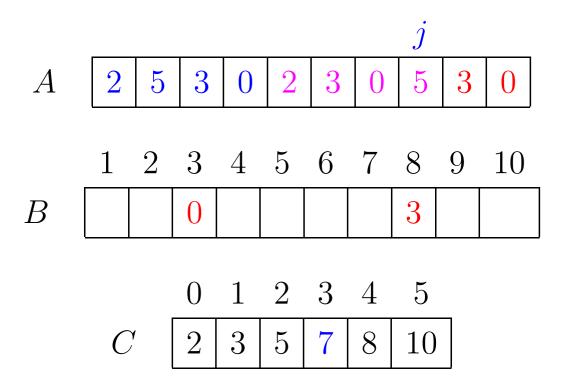


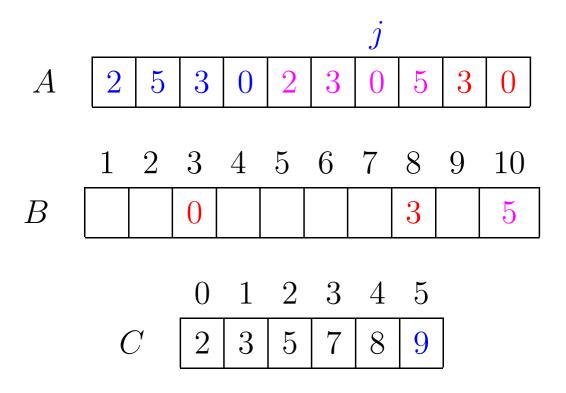


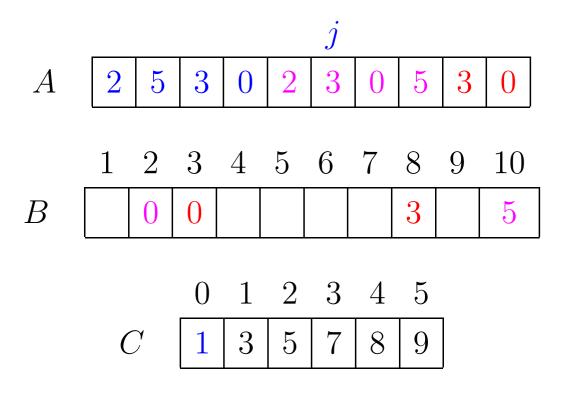


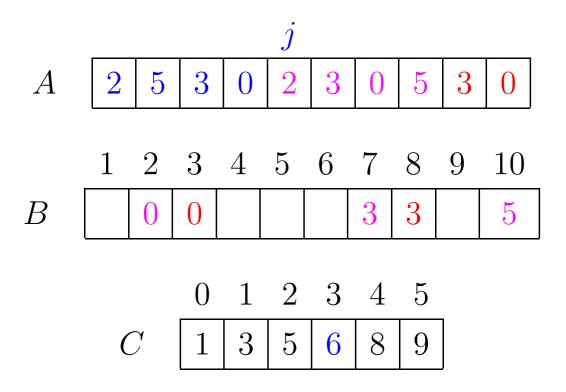


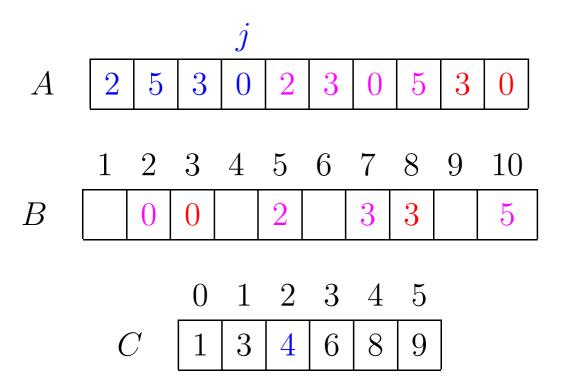


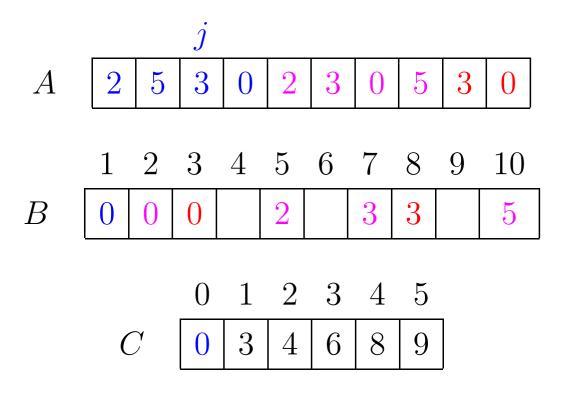


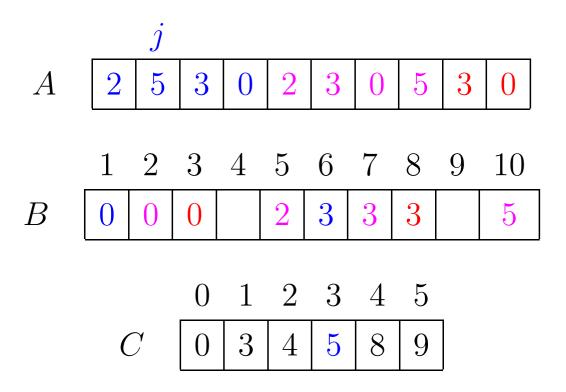


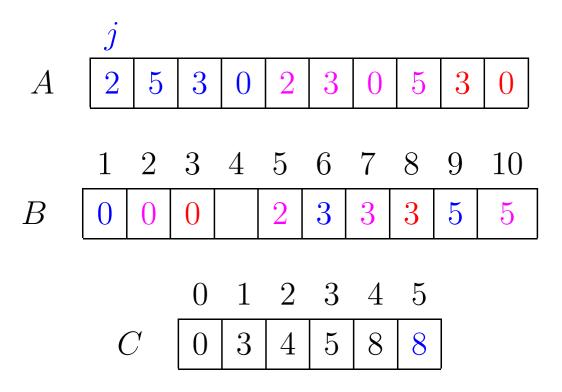


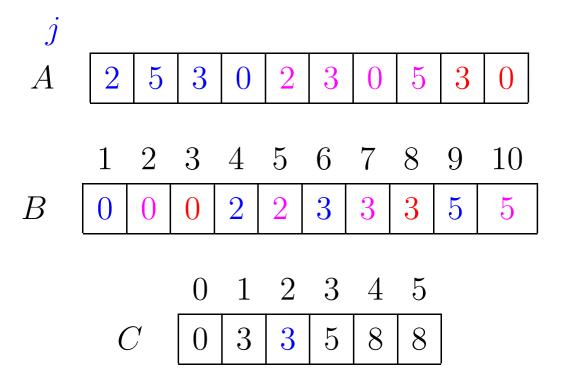












```
COUNTING-SORT (A, B, n, k)
      para i \leftarrow 0 até k faça
            C[i] \leftarrow 0
      para j \leftarrow 1 até n faça
            C[A[j]] \leftarrow C[A[j]] + 1
    \triangleright C[i] é o número de js tais que A[j] = i
      para i \leftarrow 1 até k faça
            C[i] \leftarrow C[i] + C[i-1]
    \triangleright C[i] é o número de js tais que A[j] \leq i
      para j \leftarrow n decrescendo até 1 faça
            B[C[A[j]]] \leftarrow A[j]
            C[A[j]] \leftarrow C[A[j]] - 1
```

Consumo de tempo

linha consumo na linha

$$1-2 \qquad \Theta(k)$$

$$3-4 \qquad \Theta(n)$$

$$5-6 \quad \Theta(k)$$

$$7-9 \quad \Theta(n)$$

Consumo total: $\Theta(n+k)$

Conclusões

O consumo de tempo do COUNTING-SORT é $\Theta(n+k)$.

- se $k \leq n$ então consumo é $\Theta(n)$
- se $k \leq 10n$ então consumo é $\Theta(n)$
- se k = O(n) então consumo é $\Theta(n)$
- se $k \ge n^2$ então consumo é $\Theta(k)$

A propósito: COUNTING-SORT é estável

Ordenação digital (=radix sort)

Exemplo:

32 <mark>9</mark>	720	7 20	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
35 <mark>5</mark>	839	657	839

Cada A[j] têm d dígitos decimais:

$$A[j] = a_d \, 10^{d-1} + \dots + a_2 \, 10^1 + a_1 \, 10^0$$

Exemplo com d = 3: $3 \cdot 10^2 + 2 \cdot 10 + 9$

Ordenação digital

```
RADIX-SORT (A, n, d)

1 para i \leftarrow 1 até d faça

2 \triangleright 1 até d e não o contrário!

3 ordene A[1..n] pelo dígito i
```

Linha 3:

• faz ordenação $A[j_1 ... j_n]$ de A[1...n] tal que

$$A[j_1]_{\mathbf{i}} \le \dots \le A[j_n]_{\mathbf{i}};$$

- ordenação deve ser estável; e
- use COUNTING-SORT.

Conclusões

- dígitos decimais: $\Theta(dn)$
- dígitos em 0 ... k: $\Theta(d(n+k))$.

Exemplo com d = 5 e k = 128:

$$a_5 128^4 + a_4 128^3 + a_3 128^2 + a_2 128 + a_1$$

sendo $0 \le a_i \le 127$

Dados n números com b bits e um inteiro $r \leq b$, RADIX-SORT ordena esses números em tempo

$$\Theta(\frac{b}{r}(n+2^r)).$$

Mais experimentação

Os programas foram executados na

SunOS rebutosa 5.7 Generic_106541-04 sun4d sparc.

Os códigos foram compilados com o

gcc version 2.95.2 19991024 (release)

e opção de compilação

-Wall -ansi -pedantic -O2.

Algoritmos implementados:

merger MERGE-SORT recursivo

mergei MERGE-SORT iterativo

heap **HEAPSORT**

quick QUICKSORT recursivo.

qCLR QUICKSORT do CLR.

radix RADIX-SORT

Resultados

n	merger	mergei	heap	quick	qCLR	radix
4096	0.02	0.03	0.01	0.01	0.01	0.01
8192	0.05	0.06	0.03	0.02	0.02	0.03
16384	0.12	0.13	0.07	0.06	0.06	0.06
32768	0.24	0.27	0.15	0.11	0.11	0.11
65536	0.52	0.58	0.33	0.25	0.23	0.22
131072	1.10	1.25	0.75	0.58	0.48	0.49
262144	2.37	2.64	1.71	1.39	0.98	0.98
524288	5.10	5.57	5.07	3.91	1.93	2.06
1048576	10.86	11.77	14.07	10.12	4.32	4.44
2097152	22.71	24.45	37.48	26.61	9.05	10.61
4194304	47.63	52.23	90.99	75.76	19.19	23.98
8388608	99.90	108.73	214.78	231.30	39.91	44.70

Código

```
#define BITSWORD
                   32
#define BITSBYTE
#define K
                  256
#define BYTESWORD 4
#define R
                (1 << BITSBYTE)
#define digit(k,d)
     (((k)>>(BITSWORD-(d)*BITSBYTE))&(R-1))
void
radix_sort(int *v, int 1, int r)
  int i; /* digito */
  for (i = BYTEWORD-1; i \geq 0; i--)
      count_sort(v, 1, r+1, i);
```

Exercícios

Exercício 17.A

O seguinte algoritmo promete rearranjar o vetor A[1..n] em ordem crescente supondo que cada A[i] está em $\{0,...,k\}$. O algoritmo está correto?

$$\begin{array}{l} \textbf{C-SORT}\ (A,n,\pmb{k}) \\ \textbf{para}\ \pmb{i} \leftarrow 0\ \textbf{até}\ \pmb{k}\ \textbf{faça} \\ C[\pmb{i}] \leftarrow 0 \\ \textbf{para}\ \pmb{j} \leftarrow 1\ \textbf{até}\ n\ \textbf{faça} \\ C[A[\pmb{j}]] \leftarrow C[A[\pmb{j}]] + 1 \\ \pmb{j} \leftarrow 1 \\ \textbf{para}\ \pmb{i} \leftarrow 0\ \textbf{até}\ \pmb{k}\ \textbf{faça} \\ \textbf{enquanto}\ C[\pmb{i}] > 0\ \textbf{faça} \\ A[\pmb{j}] \leftarrow \pmb{i} \\ \pmb{j} \leftarrow \pmb{j} + 1 \\ C[\pmb{i}] \leftarrow C[\pmb{i}] - 1 \end{array}$$

Qual o consumo de tempo do algoritmo?

Mais exercícios

Exercício 17.B

O seguinte algoritmo promete rearranjar o vetor A[1..n] em ordem crescente supondo que cada A[j] está em $\{1,...,k\}$. O algoritmo está correto? Estime, em notação O, o consumo de tempo do algoritmo.

```
VITO-SORT (A, n, k)

1 i \leftarrow 1

2 para a \leftarrow 1 até k - 1 faça

3 para j \leftarrow i até n faça

4 se A[j] = a

5 então A[j] \leftrightarrow A[i] >  troca

6
```

Exercício 17.C

Suponha que os components do vetor A[1..n] estão todos em $\{0,1\}$. Prove que n-1 comparações são su£cientes para rearranjar o vetor em ordem crescente.

Exercício 17.D

Qual a principal invariante do algoritmo RADIX-SORT?

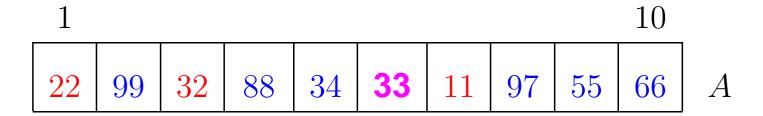
i-ésimo menor elemento

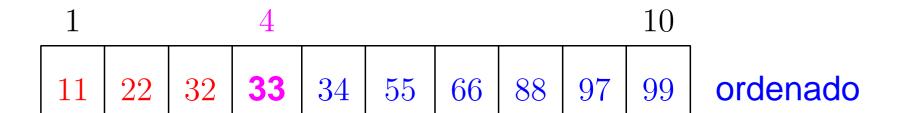
CLRS 9

i-ésimo menor

Problema: Encontrar o i-ésimo menor elemento de A[1 ... n] Suponha A[1 ... n] sem elementos repetidos.

Exemplo: 33 é o 40. menor elemento de:





Mediana

Mediana é o $\lfloor \frac{n+1}{2} \rfloor$ -ésimo menor ou o $\lceil \frac{n+1}{2} \rceil$ -ésimo menor elemento

Exemplo: a mediana é 34 ou 55:

1									10	
22	99	32	88	34	33	11	97	55	66	A

1				5	6				10	
11 2	22	32	33	34	55	66	88	97	99	ordenado

Menor

Recebe um vetor A[1..n] e devolve o valor do menor elemento.

```
MENOR (A, n)

1 menor \leftarrow A[1]

2 para k \leftarrow 2 até n faça

3 se A[k] < menor

4 então menor \leftarrow A[k]

5 devolva menor
```

O consumo de tempo do algoritmo MENOR é $\Theta(n)$.

Segundo menor

Recebe um vetor A[1..n] e devolve o valor do segundo menor elemento, supondo $n \ge 2$.

```
SEG-MENOR (A, n)

1  menor \leftarrow \min\{A[1], A[2]\} segmenor \leftarrow \max\{A[1], A[2]\}

2  para k \leftarrow 3 até n faça

3  se A[k] < \text{menor}

4  então segmenor \leftarrow \text{menor}

5  menor \leftarrow A[k]

6  senão se A[k] < \text{segmenor}

7  então segmenor \leftarrow A[k]

8 devolva segmenor
```

O consumo de tempo do algoritmo SEG-MENOR é $\Theta(n)$.

i-ésimo menor

Recebe A[1..n] e i tal que $1 \le i \le n$ e devolve valor do i-ésimo menor elemento de A[1..n]

```
SELECT-ORD (A, n, i)
1 ORDENE (A, n)
2 devolva A[i]
```

O consumo de tempo do algoritmo SELECT-ORD é $\Theta(n \lg n)$.

Particione

```
Rearranja A[p ... r] de modo que p \le q \le r e
A[p \dots q-1] \leq A[q] < A[q+1 \dots r]
      PARTICIONE (A, p, r)
            x \leftarrow A[r] \qquad \triangleright x \text{ \'e o "piv\'o"}
      2 i \leftarrow p-1
            para j \leftarrow p até r-1 faça
                   se A[j] \leq x
      5
                          então i \leftarrow i + 1
                                   A[i] \leftrightarrow A[j]
            A[i+1] \leftrightarrow A[r]
            devolva i+1
```

	p									r	
A	99	33	55	77	11	22	88	66	33	44	

Particione

```
Rearranja A[p..r] de modo que p \le q \le r e
A[\mathbf{p} \dots \mathbf{q}-1] < A[\mathbf{q}] < A[\mathbf{q}+1 \dots \mathbf{r}]
       PARTICIONE (A, p, r)
             x \leftarrow A[r] \qquad \triangleright x \text{ \'e o "piv\'o"}
      2 i \leftarrow p-1
              para j \leftarrow p até r-1 faça
                     se A[j] \leq x
       5
                             então i \leftarrow i + 1
       6
                                        A[i] \leftrightarrow A[j]
             A[i+1] \leftrightarrow A[r]
              devolva i+1
```

Particione

```
Rearranja A[p..r] de modo que p \le q \le r e
A[p \dots q-1] \leq A[q] < A[q+1 \dots r]
      PARTICIONE (A, p, r)
            x \leftarrow A[r] \qquad \triangleright x \text{ \'e o "piv\'o"}
      2 i \leftarrow p-1
            para j \leftarrow p até r-1 faça
                   se A[j] \leq x
                          então i \leftarrow i + 1
                                   A[i] \leftrightarrow A[j]
            A[i+1] \leftrightarrow A[r]
            devolva i+1
```

O algoritmo PARTICIONE consome tempo $\Theta(n)$.

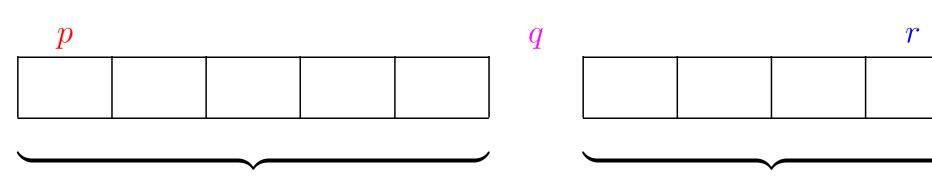
Algoritmo Select

Recebe A[p ... r] e i tal que $1 \le i \le r - p + 1$ e devolve valor do i-ésimo menor elemento de A[p ... r]

```
SELECT(A, p, r, i)
    se p = r
         então devolva A[p]
3 q \leftarrow \mathsf{PARTICIONE}(p, r)
   k \leftarrow q - p + 1
5 se k=i
6
          então devolva A[q]
    se k > i
         então devolva SELECT (A, p, q - 1, i)
          senão devolva SELECT(A, q + 1, r, i - k)
9
```

Algoritmo Select

```
SELECT(A, p, r, i)
    se p = r
         então devolva A[p]
3 q \leftarrow \mathsf{PARTICIONE}(A, p, r)
    k \leftarrow q - p + 1
5
   se k=i
6
          então devolva A[q]
    se k > i
          então devolva SELECT (A, p, q - 1, i)
8
          senão devolva SELECT (A, q + 1, r, i - k)
9
```



n-k

Consumo de tempo

T(n) =consumo de tempo máximo quando n = r - p + 1

linha consumo de todas as execuções da linha

1-2
$$= 2\Theta(1)$$

3 $= \Theta(n)$
4-7 $= 4\Theta(1)$
8 $= T(k-1)$
9 $= T(n-k)$

$$T(n) = \Theta(n+6) + \max\{T(k-1), T(n-k)\}\$$
$$= \Theta(n) + \max\{T(k-1), T(n-k)\}\$$

Consumo de tempo

T(n) pertence a mesma classe Θ que:

$$T'(1) = 1$$

$$T'(n) = T'(n-1) + n \text{ para } n = 2, 3, \dots$$

Solução assintótica: T'(n) é $\Theta(n^2)$

Solução exata:

$$T'(n) = \frac{n^2}{2} + \frac{n}{2}.$$

Algumas conclusões

No melhor caso o consumo de tempo do algoritmo SELECT é $\Theta(n)$.

No pior caso o consumo de tempo do algoritmo SELECT é $\Theta(n^2)$.

Consumo médio? E[T(n)] = ???

Exemplos

Número médio de comparações sobre todas as permutações de A[p...r] (supondo que nas linhas 8 e 9 o algoritmo sempre escolhe o lado maior):

$A[p \dots r]$	comps	$A[p \dots r]$	comps
1,2	1+0	1,2,3	2+1
2,1	1+0	2,1,3	2+1
média	2/2	1,3,2	2+0
modia		3,1,2	2+0
		2,3,1	2+1
		3,2,1	2+1
		média	16/6

Mais exemplos

$A[p \dots r]$	comps	$A[p \dots r]$	comps
1,2,3,4	3+3	1,3,4,2	3+1
2,1,3,4	3+3	3,1,4,2	3+1
1,3,2,4	3+2	1,4,3,2	3+1
3,1,2,4	3+2	4,1,3,2	3+1
2,3,1,4	3+3	3,4,1,2	3+1
3,2,1,4	3+3	4,3,1,2	3+1
1,2,4,3	3+1	2,3,4,1	3+3
2,1,4,3	3+1	3,2,4,1	3+3
1,4,2,3	3+1	2,4,3,1	3+2
4,1,2,3	3+1	4,2,3,1	3+2
2,4,1,3	3+1	3,4,2,1	3+3
4,2,1,3	3+1	4,3,2,1	3+3
		média	116/24

Ainda exemplos

No caso r - p + 1 = 5, a média é 864/120.

n	$\mathrm{E}[T(n)]$	\cong
1	0	0
2	2/2	1
3	16/6	2.7
4	116/24	4.8
5	864/120	7.2

Número de comparações

O consumo de tempo assintótico é proporcional a C(n)= número de comparações entre elementos de A quando n=r-p+1

linha consumo de todas as execuções da linha

1-2 = 0
3 =
$$n-1$$

4-7 = 0
8 = $C(k-1)$
9 = $C(n-k)$

total
$$\leq \max\{C(k-1), C(n-k)\} + n - 1$$

Número de comparações

No pior caso C(n) pertence a mesma classe Θ que:

$$C'(1) = 0$$

$$C'(n) = C'(n-1) + n - 1 \text{ para } n = 3, 4, \dots$$

Solução assintótica: C'(n) é $\Theta(n^2)$

Solução exata:

$$C'(n) = \frac{n^2}{2} - \frac{n}{2}.$$

Particione aleatorizado

Rearranja A[p ... r] de modo que $p \le q \le r$ e $A[p ... q-1] \le A[q] < A[q+1 ... r]$

PARTICIONE-ALEA(A, p, r)

- 1 $i \leftarrow \mathsf{RANDOM}(p, r)$
- 2 $A[i] \leftrightarrow A[r]$
- 3 devolva PARTICIONE (A, p, r)

O algoritmo PARTICIONE-ALEA consome tempo $\Theta(n)$.

Select-Aleatorizado (= randomized select)

Recebe A[p ...r] e i tal que $1 \le i \le r - p + 1$ e devolve valor do i-ésimo menor elemento de A[p ...r]

```
SELECT-ALEA(A, p, r, i)

1 se p = r

2 então devolva A[p]

3 q \leftarrow \mathsf{PARTICIONE}\text{-ALEA}\,(A, p, r)

4 k \leftarrow q - p + 1

5 se k = i

6 então devolva A[q]

7 se k > i

8 então devolva SELECT-ALEA (A, p, q - 1, i)

9 senão devolva SELECT-ALEA (A, q + 1, r, i - k)
```

Cosumo de tempo

O consumo de tempo é proporcional a

 $T(n)=% {\displaystyle\int\limits_{0}^{\infty}} {\displaystyle\int\limits_{0$

linha consumo de todas as execuções da linha

1-2 = 0
3 =
$$n-1$$

4-7 = 0
8 = $T(k-1)$
9 = $T(n-k)$

total
$$\leq \max\{T(k-1), T(n-k)\} + n - 1$$

T(n) é uma variável aleatória.

Consumo de tempo

$$T(1) = 0$$

$$T(n) \leq \sum_{h=1}^{n-1} X_h T(h) + n - 1 \text{ para } n = 2, 3, \dots$$

onde

$$X_h = \begin{cases} 1 & \text{se } \max\{k-1, n-k\} = h \\ 0 & \text{caso contrário} \end{cases}$$

$$\Pr\{X_h = 1\} = \mathrm{E}[X_h]$$

$$X_h = \begin{cases} 1 & \text{se } \max\{k-1, n-k\} = h \\ 0 & \text{caso contrário} \end{cases}$$

Qual a probabilidade de X_h valer 1?

$$\Pr\{X_h = 1\} = \mathrm{E}[X_h]$$

$$X_h = \begin{cases} 1 & \text{se } \max\{k-1, n-k\} = h \\ 0 & \text{caso contrário} \end{cases}$$

Qual a probabilidade de X_h valer 1?

Para
$$h = 1, ..., \lfloor n/2 \rfloor - 1$$
, $\Pr\{X_h = 1\} = 0 = \mathrm{E}[X_h]$.

Para $h = \lceil n/2 \rceil, \ldots, n$,

$$\Pr\{X_h=1\} = \frac{1}{n} + \frac{1}{n} = \frac{2}{n} = E[X_h]$$

Se n é impar e $h = \lfloor n/2 \rfloor$, então

$$\Pr\{X_h = 1\} = \frac{1}{n} = \mathrm{E}[X_h]$$

Consumo de tempo esperado

$$\begin{split} \mathrm{E}[T(1)] &= 0 \\ \mathrm{E}[T(n)] &\leq \sum_{h=1}^{n-1} \mathrm{E}[X_h T(h)] + n - 1 \\ &\leq \sum_{h=1}^{n-1} \mathrm{E}[X_h] \ \mathrm{E}[T(h)] + n - 1 \ \ \text{(CLRS 9.2-2)} \\ &\leq \frac{2}{n} \sum_{h=a}^{n-1} \mathrm{E}[T(h)] + n - 1 \ \ \text{para } n = 2, 3, \dots \end{split}$$

onde $a = \lfloor n/2 \rfloor$.

Solução: E[T(n)] = O(n).

Consumo de tempo esperado

E[T(n)] pertence a mesma classe O que:

$$S(1) = 0$$

$$S(n) \le \frac{2}{n} \sum_{h=1}^{n-1} S(h) + n - 1 \text{ para } n = 2, 3, \dots$$

onde $a = \lfloor n/2 \rfloor$.

n	1	2	3	4	5	6	7	8	9	10
$\overline{S(n)}$	0.0	1.0	2.7	4.8	7.4	10.0	13.1	15.8	19.4	22.1
$\overline{4n}$	4	8	12	16	20	24	28	32	36	40

Vamos veri£car que S(n) < 4n para n = 1, 2, 3, 4, ...

Recorrência

Prova: Se n = 1, então $S(n) = 0 < 4 = 4 \cdot 1 = 4n$. Se $n \ge 2$,

$$\begin{split} S(n) & \leq \frac{2}{n} \sum_{h=a}^{n-1} S(h) + n - 1 \\ & \overset{\text{hi}}{<} \frac{2}{n} \sum_{h=a}^{n-1} 4 \frac{h}{n} + n - 1 \\ & = \frac{8}{n} (\sum_{h=1}^{n-1} h - \sum_{h=1}^{a-1} h) + n - 1 \\ & \leq \frac{4}{n} (n^2 - n - \frac{(n-1)(n-3)}{4}) + n - 1 \\ & = \frac{4}{n} (\frac{3n^2}{4} - \frac{3}{4}) + n - 1 \\ & = 3n - \frac{3}{n} + n - 1 = 4n - \frac{3}{n} - 1 < 4n. \end{split}$$

Conclusão

O consumo de tempo esperado do algoritmo SELECT-ALEA é O(n).

Exercícios

Exercício 18.A [CLRS 9.1-1] [muito bom!]

Mostre que o segundo menor elemento de um vetor $A[1\mathinner{.\,.} n]$ pode ser encontrado com não mais que $n+\lceil\lg n\rceil-2$ comparações.

Exercício 18.B

Prove que o algoritmo Select Aleatorizado (= Randomized Select) funciona corretamente.

Exercício 18.C [CLRS 9.2-3]

Escreva uma versão iterativa do algoritmo Select Aleatorizado (= Randomized Select).