On Gröbner basis for certain one-point AG codes

Guilherme Chaud Tizziotti Based on joint work with F. Fornasiero

FAMAT - UFU
guilhermect@ufu.br

CIMPA - Research School Algebraic Methods in Coding Theory

Objective

- Gröbner basis for certain one-point AG codes.
-Why? - Input to an encoding algorithm to certain AG codes.

Idea

- Linear code $C \subset \mathbb{F}_{q}^{n}$.
- S_{n} symmetric group.
- $\sigma \in S_{n},\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{F}_{q}^{n} \rightsquigarrow$ $\sigma\left(c_{1}, \ldots, c_{n}\right)=\left(c_{\sigma(1)}, \ldots, c_{\sigma(n)}\right)$.
- $\operatorname{Aut}(C)=\left\{\sigma \in S_{n}: \sigma(C)=C\right\}$, automorphism group of C.
- Code $C+$ automorphism \rightsquigarrow module $\bar{C} \leq \mathbb{F}_{q}[t]^{r} \rightsquigarrow$ encoding algorithm.

Encoding AG codes via Gröbner basis

- J. Little, C. Heegard and K. Saints, 1995, Systematic encoding via Gröbner bases for a class of algebraic geometric Goppa codes, IEEE Trans. Infor. Theory 41(6), 1752-1761.
- J. Little, C. Heegard and K. Saints, 1997, On the structure of Hermitian codes, J. Pure Appl. Algebra 121, 293-314.

Gröbner basis for $\mathbb{F}_{q}[t]$-modules

- Every submodule $M \subseteq \mathbb{F}_{q}[t]^{n}$ has a Gröbner basis \mathcal{G}, which induces a division algorithm: given $\mathbf{f} \in \mathbb{F}_{q}[t]^{r}$ there exist $\mathbf{a}_{1}, \ldots, \mathbf{a}_{s}, \mathbf{R}_{\mathcal{G}} \in \mathbb{F}_{q}[t]^{r}$ such that $\mathbf{f}=\mathbf{a}_{1} \mathbf{g}_{1}+\ldots+\mathbf{a} s \mathbf{g}_{s}+\mathbf{R}_{\mathcal{G}}$.
- Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{r}\right\}$ be the standard basis in $\mathbb{F}_{q}[t]^{r}$, with $\mathbf{e}_{1}>\ldots>\mathbf{e}_{r}$. The POT ordering on $\mathbb{F}_{q}[t]^{r}$ is defined by

$$
t^{i} \mathbf{e}_{j}>t^{k} \mathbf{e}_{\ell}
$$

if $j<\ell$, or $j=\ell$ and $i>k$.

AG codes

$$
C_{\mathcal{X}}(D, G):=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n}: f \in \mathcal{L}(G)\right\}
$$

where $\mathcal{L}(G)$ is the space of rational functions f on \mathcal{X} such that $f=0$ or $\operatorname{div}(f)+G \geq 0$.

- If $G=\lambda P$, for some rational point P on \mathcal{X}, and D is the sum of the all others rational points on \mathcal{X}, the AG code $C_{\mathcal{X}}(D, \lambda P)$ is called one-point $A G$ code.

AG codes

Proposition (Goppa): Let $\operatorname{Aut}(\mathcal{X})$ be the automorphism group of \mathcal{X} over \mathbb{F}_{q} and consider the subgroup

$$
\operatorname{Aut}_{D, G}(\mathcal{X})=\{\sigma \in \operatorname{Aut}(\mathcal{X}): \sigma(D)=D \text { and } \sigma(G)=G\} .
$$

Each $\sigma \in \operatorname{Aut}_{D, G}(\mathcal{X})$ induces an automorphism of $C_{\mathcal{X}}(D, G)$ by

$$
\widehat{\sigma}\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)=\left(f\left(\sigma\left(P_{1}\right)\right), \ldots, f\left(\sigma\left(P_{n}\right)\right)\right) .
$$

Linking $A G$ codes and $\mathbb{F}_{q}[t]$-modules

Lemma: Let $C_{\mathcal{X}}(D, G)$ be an $A G$ code arising from \mathcal{X} over \mathbb{F}_{q}. Suppose that \mathcal{X} has a nontrivial automorphism $\sigma \in \operatorname{Aut}_{D, G}(\mathcal{X})$. If $\operatorname{Supp}(D)=O_{1} \cup \ldots \cup O_{r}$ is the decomposition of the support of D into disjoint orbits under the action of σ, then there is an one-to-one correspondence between $C_{\mathcal{X}}(D, G)$ and a submodule \bar{C} of the free module $\mathbb{F}_{q}[t]^{r}$.

Linking AG codes and $\mathbb{F}_{q}[t]$-modules

Proof. Suppose that $\operatorname{Supp}(D)=O_{1} \cup \ldots \cup O_{r}$ is the decomposition of the support of D into disjoint orbits under the action of σ. For each $i=1, \ldots, r$, let $O_{i}=\left\{P_{i, 0}, \ldots, P_{i,\left|O_{i}\right|-1}\right\}$, where for each $P_{i, j} \in O_{i}$ we have that $P_{i, j}=\sigma^{j}\left(P_{i, 0}\right)$ be as above, and let $h_{i}(t)=\sum_{j=0}^{\left|O_{i}\right|-1} f\left(P_{i, j}\right) t^{j}$.
The r-tuples $\left(h_{1}(t), \ldots, h_{r}(t)\right)$ can be seen also as an element of the $\mathbb{F}_{q}[t]$-module $A=\oplus_{i=1}^{r} \mathbb{F}_{q}[t] /\left\langle t^{O_{i} \mid}-1\right\rangle$. So, the collection \tilde{C} of r-tuples obtained from all $f \in \mathcal{L}(G)$ is closed under sum and multiplication by t. Define $\bar{C}:=\pi^{-1}(\tilde{C})$, where π is the natural projection from $\mathbb{F}_{q}[t]^{r}$ onto $\oplus_{i=1}^{r} \mathbb{F}_{q}[t] /\left\langle t^{\left|O_{i}\right|}-1\right\rangle$. Thus, we get an one-to-one correspondence between $\mathcal{C}_{\mathcal{X}}(D, G)$ and $\bar{C} \leq \mathbb{F}_{q}[t]^{r}$.

The root diagram

- Suppose that the one-point $A G$ code $C=C_{\mathcal{X}}(D, \lambda P)(\mathcal{X}$ over \mathbb{F}_{q}) has an automorphism σ that fixing the divisors D and $G=\lambda P$.
- Suppose also that the order of σ is equal to s, with $s=d(q-1)$ for some $d \in \mathbb{N}$.
- Let \bar{C} be the submodule of $\mathbb{F}_{q}[t]^{r}$ associated to C by the automorphism σ.
- Using the POT ordering we can get that a Gröbner basis $\mathcal{G}=\left\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{r}\right\}$ for \bar{C} such that
$\mathbf{g}_{i}=\left(0, \ldots, 0, g_{i}^{(i)}(t), g_{i}^{(i+1)}(t), \ldots, g_{i}^{(r)}(t)\right)$, for all $i=1, \ldots, r$.
- If $\operatorname{deg}\left(g_{i}^{(i)}(t)\right)=d_{i}$, then $g_{i}^{(i)}(t)$ has d_{i} distinct roots in $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$.

The root diagram

- For $i=1, \ldots, r$, let $\mathcal{R}_{i} \subseteq \mathbb{F}_{q}^{*}$ be the set of roots of $t^{\left|O_{i}\right|}-1$. By a root diagram \mathcal{D}_{C} for the code C, we mean a table with r rows. For each i, the boxes on the i-th row correspond to the elements of \mathcal{R}_{i}. We mark the roots of $g_{i}^{(i)}(t)$ on the i-th row with a X in the corresponding box.

Proposition (Saints, Heegard and Little): The dimension of the code C is equal to the number of empty boxes in the root diagram \mathcal{D}_{C}.

Gröbner basis for certain AG codes

- Let $\mathcal{X}_{a, b}$ be the curve defined over \mathbb{F}_{q} by affine equation $f(y)=g(x)$, where $f(T), g(T) \in \mathbb{F}_{q}[T], \operatorname{deg}(f)=a$ and $\operatorname{deg}(g)=b$, with $a<b$ and $\operatorname{gcd}(a, b)=1$.
- Consider the one-point $A G$ code $C_{\mathcal{X}_{a, b}}(D, \lambda P)$.
- Suppose that $\operatorname{div}_{\infty}(x)=a P$ and $\operatorname{div}_{\infty}(y)=b P$, for some point on $\mathcal{X}_{a, b}$, and that there exists $\sigma \in A u t_{D, G}\left(\mathcal{X}_{a, b}\right)$, given by $\sigma(x)=\alpha x$ and $\sigma(y)=\alpha^{t} y$, for some positive integer t and some $\alpha \in \mathbb{F}_{q}^{*}$ with order equal to $\operatorname{ord}(\alpha):=\nu$.
- Assume that $H(P)=\langle a, b\rangle$.

Gröbner basis for certain AG codes

- Assume that there exists polynomials $M_{i}(y)$ such that the orbit O_{i} is the intersection of \mathcal{X} with the curve $M_{i}(y)=0$ and, for all $i, M_{i}(y)$ is a non-zero constant when restricted to each of the orbits $O_{k}, k \neq i$.
- Assume also that there are polynomials $B_{i, j}(x, y)$ such that $B_{i, j}(x, y)$ vanishes at each point of O_{i} except $P_{i, j}$.

Gröbner basis for certain AG codes

Lemma: $\operatorname{div}_{\infty}\left(M_{i}\right)=\left(\rho_{1} b\right) P$ and $\operatorname{div}_{\infty}\left(B_{i, j}\right)=\left(\rho_{2} a+\rho_{3} b\right) P$, where ρ_{1}, ρ_{2} and ρ_{3} are non-negative integers.

Gröbner basis for certain AG codes

Proposition: Let $C_{\mathcal{X}_{a, b}}(D, \lambda P)$ and σ be as above. Let \mathcal{D}_{C} be the root diagram for $C_{\mathcal{X}_{a, b}}(D, \lambda P)$. Fix $i, 1 \leq i \leq r$, and let ρ_{1}, ρ_{2} and ρ_{3} be as above. Therefore, 1) if $\lambda \geq(i-1)\left(\rho_{1} b\right)$, then the i-th row of \mathcal{D}_{C} is not full, in the sense that not every boxes composing the i-th row are marked with X;
2) if $\lambda \geq\left(\rho_{2} a+\rho_{3} b\right)+(i-1)\left(\rho_{1} b\right)$, then the row is empty, in the sense that none of the boxes composing the i-th row is marked with X.

Theorem

Let \mathcal{D}_{C} be the root diagram for $C_{\mathcal{X}_{a, b}}(D, \lambda P)$. If there is $i \in\{1, \ldots, r\}$ such that

$$
(i-1)\left(\rho_{1} b\right) \leq \lambda<\left(\rho_{2} a+\rho_{3} b\right)+(i-1)\left(\rho_{1} b\right)
$$

then the i-th row of \mathcal{D}_{C} is neither full, nor empty, and the complement of the set of roots marked on row i of the diagram is the set

$$
\begin{aligned}
& E_{i}=\left\{\alpha^{-(\beta+\gamma b)} \in \mathbb{F}_{q}^{*} \mid 0 \leq \beta \leq b-1,0 \leq \gamma \leq\right. \\
& \left.\rho_{1}-1,(i-1)\left(\rho_{1} b\right)+\beta a+\gamma b \leq \lambda\right\}
\end{aligned}
$$

Gröbner basis for certain AG codes

Input: the root diagram \mathcal{D}_{C}, the N rational points $P_{i, j}$ of $\operatorname{Supp}(D)=O_{1} \cup \ldots \cup O_{r} \cup O_{r+1} \cup O_{r+s}$.
Output: a non-reduced Gröbner basis
$\mathcal{G}=\left\{\mathbf{g}^{(1)}, \mathbf{g}^{(2)}, \ldots, \mathbf{g}^{(r+s)}\right\}$ of \bar{C}.

1. $\mathcal{G}:=\{ \}$
2. for i from 1 to $r+s$ do
3. if \mid RootDiagram[i]|<Boxes[i] then
4. for k from 1 to $r+s$ do
$\begin{array}{ll}5 . & g_{k}^{(i)}:=0 \\ 6 . & \text { if } k \geq i \text { then }\end{array}$
5. for j from 0 to Boxes $[k]-1$ do
6. $\quad g_{k}^{(i)}:=g_{k}^{(i)}+$ Evaluate $\left[i, P_{k, j}\right] t^{j} \mathbf{e}_{k}$ end for end if end for
else
$\mathbf{g}^{(i)}:=\left({ }_{t}\right.$ Boxes [i] -1) \mathbf{e}_{i}
end if
$\mathcal{G}:=\mathcal{G} \cup\left\{\mathbf{g}^{(i)}\right\}$
end for
7. return \mathcal{G}

Examples

- The curve $\mathcal{X}_{q^{2 r}}$ defined over $\mathbb{F}_{q^{2 r}}$ by the affine equation

$$
y^{q}+y=x^{q+1}
$$

where q is a prime power and r an odd integer.

- The curve \mathcal{X}_{m} defined over $\mathbb{F}_{q^{2}}$ by the affine equation

$$
y^{q}+y=x^{m}
$$

where q is a prime power and $m>2$ is a divisor of $q+1$.

Referência

E F. Fornasiero and G. Tizziotti, On Gröbner basis for certain one-point AG codes, 2017, arxiv.org/abs/1703.06899

MUITO OBRIGADO!

