On Gröbner basis for certain one-point AG codes

Guilherme Chaud Tizziotti Based on joint work with F. Fornasiero

FAMAT - UFU guilhermect@ufu.br

CIMPA - Research School Algebraic Methods in Coding Theory

Objective

- Gröbner basis for certain one-point AG codes.
- Why? Input to an encoding algorithm to certain AG codes.

Idea

- Linear code $C \subset \mathbb{F}_q^n$.
- *S_n* symmetric group.

•
$$\sigma \in S_n$$
, $(c_1, \ldots, c_n) \in \mathbb{F}_q^n \rightsquigarrow \sigma(c_1, \ldots, c_n) = (c_{\sigma(1)}, \ldots, c_{\sigma(n)})$.

• Aut(C) = { $\sigma \in S_n : \sigma(C) = C$ }, automorphism group of C.

• Code C + automorphism \rightsquigarrow module $\overline{C} \leq \mathbb{F}_q[t]^r \rightsquigarrow$ encoding algorithm.

Encoding AG codes via Gröbner basis

• J. Little, C. Heegard and K. Saints, 1995, Systematic encoding via Gröbner bases for a class of algebraic geometric Goppa codes, IEEE Trans. Infor. Theory 41(6), 1752-1761.

• J. Little, C. Heegard and K. Saints, 1997, On the structure of Hermitian codes, J. Pure Appl. Algebra 121, 293-314.

Gröbner basis for $\mathbb{F}_q[t]$ -modules

• Every submodule $M \subseteq \mathbb{F}_q[t]^n$ has a Gröbner basis \mathcal{G} , which induces a a division algorithm: given $\mathbf{f} \in \mathbb{F}_q[t]^r$ there exist $\mathbf{a}_1, \ldots, \mathbf{a}_s, \mathbf{R}_{\mathcal{G}} \in \mathbb{F}_q[t]^r$ such that $\mathbf{f} = \mathbf{a}_1 \mathbf{g}_1 + \ldots + \mathbf{a}_s \mathbf{g}_s + \mathbf{R}_{\mathcal{G}}$.

• Let $\{\mathbf{e}_1, \ldots, \mathbf{e}_r\}$ be the standard basis in $\mathbb{F}_q[t]^r$, with $\mathbf{e}_1 > \ldots > \mathbf{e}_r$. The POT ordering on $\mathbb{F}_q[t]^r$ is defined by

$$t^i \mathbf{e}_j > t^k \mathbf{e}_\ell$$

if $j < \ell$, or $j = \ell$ and i > k.

AG codes

 $C_{\mathcal{X}}(D,G) := \{(f(P_1),\ldots,f(P_n)) \in \mathbb{F}_q^n : f \in \mathcal{L}(G)\},\$

where $\mathcal{L}(G)$ is the space of rational functions f on \mathcal{X} such that f = 0 or div $(f) + G \ge 0$.

• If $G = \lambda P$, for some rational point P on \mathcal{X} , and D is the sum of the all others rational points on \mathcal{X} , the AG code $C_{\mathcal{X}}(D, \lambda P)$ is called *one-point AG code*.

AG codes

Proposition (Goppa): Let $Aut(\mathcal{X})$ be the automorphism group of \mathcal{X} over \mathbb{F}_q and consider the subgroup

$$\mathit{Aut}_{\mathsf{D},\mathsf{G}}(\mathcal{X}) = \{\sigma \in \mathsf{Aut}(\mathcal{X}): \, \sigma(\mathsf{D}) = \mathsf{D} \, \, \mathsf{and} \, \, \sigma(\mathsf{G}) = \mathsf{G} \} \; .$$

Each $\sigma \in \operatorname{Aut}_{D,G}(\mathcal{X})$ induces an automorphism of $C_{\mathcal{X}}(D,G)$ by

$$\widehat{\sigma}(f(P_1),\ldots,f(P_n))=(f(\sigma(P_1)),\ldots,f(\sigma(P_n)))$$
.

Linking AG codes and $\mathbb{F}_q[t]$ -modules

Lemma: Let $C_{\mathcal{X}}(D, G)$ be an AG code arising from \mathcal{X} over \mathbb{F}_q . Suppose that \mathcal{X} has a nontrivial automorphism $\sigma \in Aut_{D,G}(\mathcal{X})$. If $Supp(D) = O_1 \cup \ldots \cup O_r$ is the decomposition of the support of D into disjoint orbits under the action of σ , then there is an one-to-one correspondence between $C_{\mathcal{X}}(D, G)$ and a submodule \overline{C} of the free module $\mathbb{F}_q[t]^r$.

Linking AG codes and $\mathbb{F}_q[t]$ -modules

Proof. Suppose that $Supp(D) = O_1 \cup \ldots \cup O_r$ is the decomposition of the support of D into disjoint orbits under the action of σ . For each $i = 1, \ldots, r$, let $O_i = \{P_{i,0}, \ldots, P_{i,|O_i|-1}\}$, where for each $P_{i,i} \in O_i$ we have that $P_{i,i} = \sigma^j(P_{i,0})$ be as above, and let $h_i(t) = \sum_{i=0}^{|O_i|-1} f(P_{i,i}) t^j$. The *r*-tuples $(h_1(t), \ldots, h_r(t))$ can be seen also as an element of the $\mathbb{F}_{q}[t]$ -module $A = \bigoplus_{i=1}^{r} \mathbb{F}_{q}[t]/\langle t^{|O_{i}|} - 1 \rangle$. So, the collection \tilde{C} of *r*-tuples obtained from all $f \in \mathcal{L}(G)$ is closed under sum and multiplication by t. Define $\overline{C} := \pi^{-1}(\widetilde{C})$, where π is the natural projection from $\mathbb{F}_{q}[t]^{r}$ onto $\bigoplus_{i=1}^{r} \mathbb{F}_{q}[t]/\langle t^{|O_{i}|}-1\rangle$. Thus, we get an one-to-one correspondence between $C_{\mathcal{X}}(D,G)$ and $\overline{C} \leq \mathbb{F}_{q}[t]^{r}$. \Box

The root diagram

• Suppose that the one-point AG code $C = C_{\mathcal{X}}(D, \lambda P)$ (\mathcal{X} over \mathbb{F}_q) has an automorphism σ that fixing the divisors D and $G = \lambda P$.

• Suppose also that the order of σ is equal to s, with s = d(q-1) for some $d \in \mathbb{N}$.

• Let \overline{C} be the submodule of $\mathbb{F}_q[t]^r$ associated to C by the automorphism σ .

• Using the POT ordering we can get that a Gröbner basis $\mathcal{G} = \{\mathbf{g}_1, \dots, \mathbf{g}_r\}$ for \overline{C} such that $\mathbf{g}_i = (0, \dots, 0, g_i^{(i)}(t), g_i^{(i+1)}(t), \dots, g_i^{(r)}(t))$, for all $i = 1, \dots, r$. • If $deg(g_i^{(i)}(t)) = d_i$, then $g_i^{(i)}(t)$ has d_i distinct roots in $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$.

The root diagram

• For i = 1, ..., r, let $\mathcal{R}_i \subseteq \mathbb{F}_q^*$ be the set of roots of $t^{|O_i|} - 1$.

By a root diagram \mathcal{D}_C for the code *C*, we mean a table with *r* rows. For each *i*, the boxes on the *i*-th row correspond to the elements of \mathcal{R}_i . We mark the roots of $g_i^{(i)}(t)$ on the *i*-th row with a *X* in the corresponding box.

Proposition (Saints, Heegard and Little): The dimension of the code *C* is equal to the number of empty boxes in the root diagram D_C .

• Let $\mathcal{X}_{a,b}$ be the curve defined over \mathbb{F}_q by affine equation f(y) = g(x), where $f(T), g(T) \in \mathbb{F}_q[T]$, deg(f) = a and deg(g) = b, with a < b and gcd(a, b) = 1.

• Consider the one-point AG code $C_{\mathcal{X}_{a,b}}(D, \lambda P)$.

• Suppose that $div_{\infty}(x) = aP$ and $div_{\infty}(y) = bP$, for some point on $\mathcal{X}_{a,b}$, and that there exists $\sigma \in Aut_{D,G}(\mathcal{X}_{a,b})$, given by $\sigma(x) = \alpha x$ and $\sigma(y) = \alpha^t y$, for some positive integer t and some $\alpha \in \mathbb{F}_q^*$ with order equal to $ord(\alpha) := \nu$.

• Assume that $H(P) = \langle a, b \rangle$.

• Assume that there exists polynomials $M_i(y)$ such that the orbit O_i is the intersection of \mathcal{X} with the curve $M_i(y) = 0$ and, for all i, $M_i(y)$ is a non-zero constant when restricted to each of the orbits O_k , $k \neq i$.

• Assume also that there are polynomials $B_{i,j}(x, y)$ such that $B_{i,j}(x, y)$ vanishes at each point of O_i except $P_{i,j}$.

Lemma: $div_{\infty}(M_i) = (\rho_1 b)P$ and $div_{\infty}(B_{i,j}) = (\rho_2 a + \rho_3 b)P$, where ρ_1, ρ_2 and ρ_3 are non-negative integers.

Proposition: Let $C_{\chi_{a,b}}(D, \lambda P)$ and σ be as above. Let \mathcal{D}_C be the root diagram for $C_{\chi_{a,b}}(D, \lambda P)$. Fix $i, 1 \leq i \leq r$, and let ρ_1, ρ_2 and ρ_3 be as above. Therefore, 1) if $\lambda \geq (i-1)(\rho_1 b)$, then the *i*-th row of \mathcal{D}_C is not full, in the sense that not every boxes composing the *i*-th row are marked with X; 2) if $\lambda \geq (\rho_2 a + \rho_3 b) + (i-1)(\rho_1 b)$, then the row is empty, in the sense that none of the boxes composing the *i*-th row is marked with X.

Theorem

Let \mathcal{D}_C be the root diagram for $C_{\mathcal{X}_{a,b}}(D, \lambda P)$. If there is $i \in \{1, \ldots, r\}$ such that

$$(i-1)(
ho_1b)\leq\lambda<(
ho_2a+
ho_3b)+(i-1)(
ho_1b),$$

then the *i*-th row of \mathcal{D}_C is neither full, nor empty, and the complement of the set of roots marked on row *i* of the diagram is the set $E_i = \{\alpha^{-(\beta+\gamma b)} \in \mathbb{F}_q^* \mid 0 \le \beta \le b-1, 0 \le \gamma \le \rho_1 - 1, (i-1)(\rho_1 b) + \beta a + \gamma b \le \lambda\}.$

Input: the root diagram \mathcal{D}_{C} , the *N* rational points $P_{i,j}$ of $Supp(D) = O_1 \cup \ldots \cup O_r \cup O_{r+1} \cup O_{r+s}$. **Output:** a non-reduced Gröbner basis $\mathcal{G} = \{\mathbf{g}^{(1)}, \mathbf{g}^{(2)}, \ldots, \mathbf{g}^{(r+s)}\}$ of \overline{C} .

```
1. \mathcal{G} := \{\}
2. for i from 1 to r + s do
3.
         if [RootDiagram[i]] < Boxes[i] then
4.
              for k from 1 to r + s do
                   g_{k}^{(i)} := 0
5.
                    if k \ge i then
6
                         for i from 0 to Boxes [k] - 1 do
7
                              g_{k}^{(i)} := g_{k}^{(i)} + \text{Evaluate}[i, P_{k,i}] t^{j} \mathbf{e}_{k}
8
9.
                         end for
10
                    end if
11.
              end for
12.
         else
              \mathbf{g}^{(i)} := (t \text{Boxes}[i]_{-1)\mathbf{e}_i}
13.
14
         end if
         \mathcal{G} := \mathcal{G} \cup \{\mathbf{g}^{(i)}\}
15.
16. end for
17. return G
```

Examples

• The curve $\mathcal{X}_{q^{2r}}$ defined over $\mathbb{F}_{q^{2r}}$ by the affine equation

$$y^q + y = x^{q^r + 1},$$

where q is a prime power and r an odd integer.

• The curve \mathcal{X}_m defined over \mathbb{F}_{q^2} by the affine equation

$$y^q + y = x^m,$$

where q is a prime power and m > 2 is a divisor of q + 1.

Referência

F. Fornasiero and G. Tizziotti, On Gröbner basis for certain one-point AG codes, 2017, arxiv.org/abs/1703.06899

MUITO OBRIGADO!

Guilherme Chaud Tizziotti On Gröbner basis for certain one-point AG codes