Block-transitive algebraic geometry codes attaining the Tsfasman-Vladut-Zink bound

María Chara*, Ricardo Podestá**, Ricardo Toledano*

* IMAL (CONICET) - Universidad Nacional del Litoral
** CIEM (CONICET) - Universidad Nacional de Córdoba

CIMPA Research Skol

Algebraic methods in Coding Theory
July 2-15, 2017 / Ubatuba, São Paulo, Brazil.

Based on the joint work

:
María Chara, Ricardo Podestá, Ricardo Toledano Block-transitive algebraic geometry codes attaining the Tsfasman-Vladut-Zink bound.

Asymptotically good 4-quasi transitive algebraic geometry codes over prime fields, 2016. arXiv:1603.03398v1 [math.NT]

Summary of the talk

(1) 1. Codes
(2) 2. Asymptotics
(3) 3. Good BTC from towers
(4) 4. GBTC from class field towers
(5) 5. GBTC over prime fields

Motivation

Open question
Is the family of cyclic codes asymptotically good?

Block-transitive codes

Linear codes

- A linear code over \mathbb{F}_{q} of length n, dimension k and minimun distance d is \mathbb{F}_{q}-linear subspace $\mathcal{C} \subset \mathbb{F}_{q}^{n}$ with

$$
\begin{aligned}
& k=\operatorname{dim} \mathcal{C} \\
& d=\min \left\{d\left(c, c^{\prime}\right): c, c^{\prime} \in \mathcal{C}, c \neq c^{\prime}\right\}
\end{aligned}
$$

where d is the Hamming distance in \mathbb{F}_{q}^{n}.

- \mathcal{C} is an $[n, k, d]$-code over \mathbb{F}_{q}.

Bounds

- Singleton bound

$$
k+d \leq n-1
$$

- Griesmer bound

$$
n \geq \sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

- Hamming and Gilbert bounds

$$
\sum_{i=0}^{\left[\frac{d-1}{2}\right]}\binom{n}{i}(q-1)^{i} \leq q^{n-k} \leq \sum_{i=0}^{d-1}\binom{n}{i}(q-1)^{i}
$$

Transitive and cyclic codes

- The permutation group \mathbb{S}_{n} acts naturally on \mathbb{F}_{q}^{n}

$$
\pi \cdot\left(v_{1}, \ldots, v_{n}\right)=\left(v_{\pi(1)}, \ldots, v_{\pi(n)}\right)
$$

- The permutation group of \mathcal{C} is

$$
\operatorname{Aut}(\mathcal{C})=\left\{\pi \in \mathbb{S}_{n}: \pi(\mathcal{C})=\mathcal{C}\right\} \subset \mathbb{S}_{n}
$$

- \mathcal{C} is transitive if $\operatorname{Aut}(\mathcal{C})$ acts transitively on \mathcal{C}, i.e. if for any $1 \leq i<j \leq n$ there is some $\pi \in \operatorname{Aut}(\mathcal{C})$ s.t. $\pi(i)=j$.
- \mathcal{C} is cyclic if $\sigma=(12 \cdots n) \in \operatorname{Aut}(\mathcal{C})$, i.e.

$$
c=\left(c_{1}, \ldots, c_{n-1}, c_{n}\right) \in \mathcal{C} \Rightarrow \sigma(c)=\left(c_{n}, c_{1}, \ldots, c_{n-1}\right) \in \mathcal{C}
$$

Block-by-block actions

- If

$$
n=m_{1}+m_{2}+\cdots+m_{r}
$$

we can consider $v \in \mathbb{F}_{q}^{n}$ divided into r blocks of lengths m_{i}

$$
v=\left(v_{1,1}, \ldots, v_{1, m_{1}} ; \ldots ; v_{r, 1}, \ldots, v_{r, m_{r}}\right)
$$

- There is a block-by-block action of $\mathbb{S}_{m_{1}} \times \cdots \times \mathbb{S}_{m_{r}}$ on \mathbb{F}_{q}^{n},

$$
\pi \cdot v=\left(v_{1, \pi_{1}(1)}, \ldots, v_{1, \pi_{1}(m)} ; \ldots ; v_{r, \pi_{r}(1)}, \ldots, v_{r, \pi_{r}(m)}\right)
$$

where $\pi=\left(\pi_{1}, \ldots, \pi_{r}\right) \in \mathbb{S}_{m} \times \cdots \times \mathbb{S}_{m}$.

Block-transitive codes (BTC)

Definition

- A code \mathcal{C} of length $n=m_{1}+m_{2}+\cdots+m_{r}$ is said to be block-transitive if for some $r \in \mathbb{N}$ there is a subgroup

$$
\Delta=\left\{\left(\pi_{1}, \ldots, \pi_{r}\right)\right\}<\mathbb{S}_{m_{1}} \times \cdots \times \mathbb{S}_{m_{r}}
$$

acting transitively on the corresponding blocks in which the words of \mathcal{C} are divided.

- If $m_{1}=m_{2}=\cdots=m_{r}=m$, hence $n=r m$, we say that \mathcal{C} is an r-block transitive code.
- If $\pi_{1}=\cdots=\pi_{r}=\pi$ we have an r-quasi transitive code.

Algebraic geometric codes

AG-codes: definition

We will use the language of 'algebraic function fields'.

- Let F be an algebraic function field over \mathbb{F}_{q}.
- Let $D=P_{1}+\cdots+P_{n}$ and G be disjoints divisors of F, where P_{1}, \ldots, P_{n} are different rational places.
- The Riemann-Roch space associated to G

$$
\mathcal{L}(G)=\left\{x \in F^{*}:(x) \geq-G\right\} \cup\{0\}
$$

- The AG-code defined by F, D and G is

$$
C(D, G)=\left\{\left(x\left(P_{1}\right), \ldots, x\left(P_{n}\right)\right): x \in \mathcal{L}(G)\right\} \subset\left(\mathbb{F}_{q}\right)^{n}
$$

where $x\left(P_{i}\right)$ stands for the residue class of x modulo P_{i} in the residual field $F_{P_{i}}=\mathcal{O}_{P_{i}} / P_{i}$.

AG-codes: parameters

- $C(D, G)$ is an $[n, k, d]$-code with

$$
d \geq n-\operatorname{deg} G
$$

and $k=\operatorname{dim} \mathcal{L}(G)-\operatorname{dim} \mathcal{L}(D-G)$.

- If $\operatorname{deg} G<n$ then, by Riemann-Roch,

$$
k=\operatorname{dim} \mathcal{L}(G) \geq \operatorname{deg} G+1-g
$$

where g is the genus of F.

- If also $2 g-2<\operatorname{deg} G$ then $k=\operatorname{deg} G+1-g$.

Geometric block-transitive codes

Question

How can one construct (geometric) block-transitive codes?

Asymptotically good codes

Asymptotically good codes

- The information rate and relative minimum distance of an [$n, k, d]$-code \mathcal{C} are

$$
R=\frac{k}{n} \quad \text { and } \quad \delta=\frac{d}{n}
$$

- The goodness of \mathcal{C} is usually measured according to how big is

$$
0<R+\delta<1
$$

- A sequence $\left\{\mathcal{C}_{i}\right\}_{i=0}^{\infty}$ of $\left[n_{i}, k_{i}, d_{i}\right]$-codes over \mathbb{F}_{q} is called asymptotically good over \mathbb{F}_{q} if

$$
\limsup _{i \rightarrow \infty} \frac{k_{i}}{n_{i}}>0 \quad \text { and } \quad \limsup _{i \rightarrow \infty} \frac{d_{i}}{n_{i}}>0
$$

where $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$. Otherwise the sequence is said to be bad.

Asymptotically good families

Definition: A family of codes

- is asymptotically good if there is a sequence in the family which is asymptotically good.
- is asymptotically bad if there is no asymptotically good sequence in the family.

Examples:

- Self-dual codes are asymptotically good.
- Transitive codes are asymptotically good.
- Quasi-cyclic groups are asymptotically good.
- BCH codes are asymptotically bad.
- Cyclic codes? We don't know.

The Ihara function

- The Ihara's function is

$$
A(q)=\limsup _{g \rightarrow \infty} \frac{N_{q}(g)}{g}
$$

where $N_{q}(g)$ is the maximum number of rational places that a function field over \mathbb{F}_{q} of genus g can have.

- By the Serre and Drinfeld-Vladut bounds

$$
c \log q \leq A(q) \leq \sqrt{q}-1
$$

for some $c>0$.

- For $\mathbb{F}_{q^{2}}$ one has

$$
A\left(q^{2}\right)=q-1
$$

Manin's function

- Consider the map $\psi:\left\{\right.$ linear codes over $\left.\mathbb{F}_{q}\right\} \rightarrow[0,1] \times[0,1]$

$$
\mathcal{C} \mapsto\left(\delta_{\mathcal{C}}, R_{\mathcal{C}}\right)
$$

- For $\delta \in[0,1]$, consider the accumulation points of $\psi(C)$ in the line $x=\delta$. Define $\alpha_{q}(\delta)$ to be the greatest second coordinate of these points.

Theorem

The Manin's function $\alpha_{q}:[0,1] \rightarrow[0,1]$ is continuous with

- $\alpha_{q}(0)=1$,
- α_{q} is decreasing on $\left[0,1-\frac{1}{A(q)}\right]$ and,
- $\alpha_{q}=0$ in $\left[1-\frac{1}{A(q)}, 1\right]$.

Asymptotic bounds for $\alpha_{q}(\delta)$

- Singleton bound

$$
\alpha_{q}(\delta) \leq 1-\delta
$$

- Griesmer bound

$$
\alpha_{q}(\delta) \leq 1-\frac{q}{q-1} \delta
$$

- Hamming and Gilbert-Varshamov bounds

$$
1-H_{q}\left(\frac{\delta}{2}\right) \leq \alpha_{q}(\delta) \leq 1-H_{q}(\delta)
$$

where $H_{q}:\left[0,1-\frac{1}{q}\right] \rightarrow \mathbb{R}$ is the q-ary entropy function

$$
H_{q}(x)=x \log _{q}(q-1)-x \log _{q}(x)-(1-x) \log _{q}(1-x)
$$

and $H_{q}(0)=0$.

Tsfasman-Vladut-Zink bound

Theorem (Tsfasman-Vladut-Zink bound)

Let q be a prime power. If $A(q)>1$ then

$$
\alpha_{q}(\delta) \geq 1-\delta-\frac{1}{A(q)}
$$

for $\delta \in[0,1-1 / A(q)]$.

- The TVZ-bound improves the GV-bound over $\mathbb{F}_{q^{2}}$, for $q^{2} \geq 49$.

(ℓ, δ)-bounds

Definition

Let

$$
0<\delta<\ell<1
$$

A sequence $\left\{\mathcal{C}_{i}\right\}_{i=0}^{\infty}$ of $\left[n_{i}, k_{i}, d_{i}\right]$-codes over \mathbb{F}_{q} is said to attain a (ℓ, δ)-bound over \mathbb{F}_{q} if

$$
\limsup _{i \rightarrow \infty} \frac{k_{i}}{n_{i}} \geq \ell-\delta \quad \text { and } \quad \limsup _{i \rightarrow \infty} \frac{d_{i}}{n_{i}} \geq \delta
$$

Example (Tsfasman-Vladut-Zink bound)

A sequence $\left\{\mathcal{C}_{i}\right\}_{i=0}^{\infty}$ of codes over \mathbb{F}_{q} with $A(q)>1$ attains the $T V Z$-bound over \mathbb{F}_{q} if it attains a (ℓ, δ)-bound with

$$
\ell=1-\frac{1}{A(q)}
$$

Asymptotically good towers

Towers of function fields

- A sequence $\mathcal{F}=\left\{F_{i}\right\}_{i=0}^{\infty}$ of function fields over \mathbb{F}_{q} is called a tower if
- $F_{i} \subsetneq F_{i+1}$ for all $i \geq 0$.
- F_{i+1} / F_{i} is finite and separable of degree >1 for all $i \geq 1$.
- \mathbb{F}_{q} is algebraically closed in F_{i} for all $i \geq 0$.
- $g\left(F_{i}\right) \rightarrow \infty$ for $i \rightarrow \infty$.
- A tower \mathcal{F} is recursive if there exist a sequence $\left\{x_{i}\right\}_{i=0}^{\infty}$ of transcendental elements over \mathbb{F}_{q} and $H(X, Y) \in \mathbb{F}_{q}[X, Y]$ such that $F_{0}=\mathbb{F}_{q}\left(x_{0}\right)$ and

$$
F_{i+1}=F_{i}\left(x_{i+1}\right), \quad H\left(x_{i}, x_{i+1}\right)=0, \quad i \geq 0
$$

Parameters of towers

Let $\mathcal{F}=\left\{F_{i}\right\}_{i=0}^{\infty}$ be a tower of function fields over \mathbb{F}_{q}.

- The genus of \mathcal{F} over F_{0} is defined as

$$
\gamma(\mathcal{F}):=\lim _{i \rightarrow \infty} \frac{g\left(F_{i}\right)}{\left[F_{i}: F_{0}\right]}
$$

- The splitting rate of \mathcal{F} over F_{0} is defined as

$$
\nu(\mathcal{F}):=\lim _{i \rightarrow \infty} \frac{N\left(F_{i}\right)}{\left[F_{i}: F_{0}\right]}
$$

where $N\left(F_{i}\right)$ the number of rational places of F_{i}

Asymptotic behavior of towers

- the limit of the tower \mathcal{F} is

$$
\lambda(\mathcal{F}):=\lim _{i \rightarrow \infty} \frac{N\left(F_{i}\right)}{g\left(F_{i}\right)}=\frac{\nu(\mathcal{F})}{\gamma(\mathcal{F})}
$$

- Note that $0 \leq \lambda(\mathcal{F}) \leq A(q)<\infty$.
- A tower \mathcal{F} is called asymptotically good over \mathbb{F}_{q} if

$$
\nu(\mathcal{F})>0 \quad \text { and } \quad \gamma(\mathcal{F})<\infty
$$

Otherwise is called asymptotically bad.

- Equivalently, \mathcal{F} is asymptotically good if and only if

$$
\lambda(\mathcal{F}):=\lim _{i \rightarrow \infty} \frac{N\left(F_{i}\right)}{g\left(F_{i}\right)}>0
$$

and \mathcal{F} is called optimal over \mathbb{F}_{q} if $\lambda(\mathcal{F})=A(q)$.

Asymptotically good codes from towers

Asymptotically good AG-codes from towers

Proposition

Let $\mathcal{F}=\left\{F_{i}\right\}_{i=0}^{\infty}$ be a tower such that for each $i \geq 1$ there are n_{i} rational places $P_{1}^{(i)}, \ldots, P_{n_{i}}^{(i)}$ in F_{i} satisfying
(a) $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$,
(b) for $\lambda \in(0,1)$ there exists i_{0} s.t. $\frac{g\left(F_{i}\right)}{n_{i}} \leq \lambda$ for all $i \geq i_{0}$, and
(c) for each $i>0$ there exists a divisor G_{i} of F_{i} disjoint from

$$
D_{i}:=P_{1}^{(i)}+\cdots+P_{n_{i}}^{(i)}
$$

such that

$$
\operatorname{deg} G_{i} \leq n_{i} s(i)
$$

where $s: \mathbb{N} \rightarrow \mathbb{R}$ with $s(i) \rightarrow 0$ as $i \rightarrow \infty$.

Asymptotically good AG-codes from towers

Proposition (continued)

Then, there exists a sequence $\left\{r_{i}\right\}_{i=m}^{\infty} \subset \mathbb{N}$ such that \mathcal{F} induces a sequence

$$
\mathcal{G}=\left\{\mathcal{C}_{i}\right\}_{i=m}^{\infty}
$$

of asymptotically good $A G$-codes of the form

$$
\mathcal{C}_{i}=C_{\mathcal{L}}\left(D_{i}, r_{i} G_{i}\right)
$$

attaining a (ℓ, δ)-bound with

$$
\ell=1-\lambda \quad \text { and } \quad 0<\delta<\ell
$$

Conditions for asymptotically good BT codes

Ramification

Let E / F be a function field extension of finite degree. Let Q and P be places of E and F, with $Q \mid P$.

- $e(Q \mid P)$ and $f(Q \mid P)$ the ramification index and the inertia degree of $Q \mid P$.
- P splits completely in E if $e(Q \mid P)=f(Q \mid P)=1$ for any place Q of E lying over P (hence there are $[E: F$] places in E above P).
- P ramifies in E if $e(Q \mid P)>1$ for some place Q of E above P
- P is totally ramified in E if there is only one place Q of E lying over P and $e(Q \mid P)=[E: F]$ (hence $f(Q \mid P)=1$).
- E / F is called b-bounded if for any place P of F and any place Q of E lying over P we have

$$
e(Q \mid P)-1 \leq d(Q \mid P) \leq b(e(Q \mid P)-1)
$$

Ramification

Let $\mathcal{F}=\left\{F_{i}\right\}_{i=0}^{\infty}$ be a tower of function fields over \mathbb{F}_{q}.

- The ramification locus $R(\mathcal{F})$ of \mathcal{F} is the set of places P of F_{0} such that P is ramified in F_{i} for some $i \geq 1$.
- The splitting locus $\operatorname{Sp}(\mathcal{F})$ of \mathcal{F} is the set of rational places P of F_{0} such that P splits completely in F_{i} for all $i \geq 1$.
- A place P of F_{0} is totally ramified in the tower if for each $i \geq 1$ there is only one place Q of F_{i} lying over P and $e(Q \mid P)=\left[F_{i}: F_{0}\right]$.

Definition

A place P of F_{0} is absolutely μ-ramified in $\mathcal{F}(\mu>1)$ if for each $i \geq 1$ and any place Q of F_{i} lying over P we have that $e(R \mid Q) \geq \mu$ for any place R of F_{i+1} lying over Q.

Ramification

- The tower \mathcal{F} is tamely ramified if for any $i \geq 0$, any place P of F_{i} and any place Q of F_{i+1} lying over P, the ramification index $e(Q \mid P)$ is not divisible by the characteristic of \mathbb{F}_{q}. Otherwise, \mathcal{F} is called wildly ramified.
- \mathcal{F} has Galois steps if each extension F_{i+1} / F_{i} is Galois.
- \mathcal{F} is a \mathbf{b}-bounded tower if each extension F_{i+1} / F_{i} is a b-bounded Galois p-extension where $p=\operatorname{char}\left(\mathbb{F}_{q}\right)$.
- If each extension F_{i} / F_{0} is Galois, \mathcal{F} is said to be a Galois tower over \mathbb{F}_{q}.

Theorem 1: general conditions for existence

Theorem

Let $\mathcal{F}=\left\{F_{i}\right\}_{i=0}^{\infty}$ be either a tamely ramified tower with Galois steps or a 2-bounded tower over \mathbb{F}_{q} with $\operatorname{Sp}(\mathcal{F}) \neq \varnothing$ and $R(\mathcal{F}) \neq \varnothing$. Suppose there are finite sets Γ and Ω of rational places of F_{0} such that $R(\mathcal{F}) \subset \Gamma$ and $\Omega \subset \operatorname{Sp}(\mathcal{F})$ with

$$
0<g_{0}-1+\epsilon t<r
$$

where $g_{0}=g\left(F_{0}\right), t=|\Gamma|, r=|\Omega|$ and $\epsilon=\frac{1}{2}$ if \mathcal{F} is tamely ramified or $\epsilon=1$ otherwise.
If a place $P_{0} \in R(\mathcal{F})$ is absolutely μ-ramified in \mathcal{F} for some $\mu>1$ then there exists a sequence $\mathcal{C}=\left\{\mathcal{C}_{i}\right\}_{i=0}^{\infty}$ of r-block transitive $A G$-codes over \mathbb{F}_{q} attaining a (ℓ, δ)-bound with $\ell=1-\frac{g_{0}-1+\epsilon t}{r}$. In particular, the Manin's function satisfies $\alpha_{q}(\delta) \geq \ell-\delta$.
Moreover, the sequence \mathcal{C} is defined over the Galois closure \mathcal{E} of \mathcal{F} with limit $\lambda(\mathcal{E})>1$.

Block-transitive codes attaining the TVZ-bound

From wild towers

$$
m_{i}= \begin{cases}q^{2 i-1}\left(\text { resp. } q^{2 i-1-\lfloor 1 / 2\rfloor}\right) & \text { if } 1 \leq i \leq 2, q \text { is odd (resp. even) } \\ q^{3 i-3}\left(\text { resp. } q^{3 i-3\lfloor 1 / 2\rfloor}\right) & \text { if } i \geq 3, q \text { is odd (resp. even) }\end{cases}
$$

Theorem

Let $q>2$ be a prime power. Then, there exists a sequence $\mathcal{C}=\left\{\mathcal{C}_{i}\right\}_{i=1}^{\infty}$ of r-block transitive codes over $\mathbb{F}_{q^{2}}$, with $r=q^{2}-q$, attaining the TVZ-bound. Each \mathcal{C}_{i} is an $\left[n_{i}=r m_{i}, k_{i}, d_{i}\right]$-code. By fixing $0<\delta<1-q^{-2}$, we also have that

$$
d_{i} \geq \delta n_{i} \quad \text { and } \quad k_{i} \geq\left\{(1-\delta) r-\left(q+q^{-i}\right)\right\} m_{i}
$$

for each $i \geq 1$, where the second inequality is non trivial if δ satisfies $0<\delta<1-\frac{1}{r}\left(q+q^{-i}\right)$.

Sketch of proof

Consider the wildly ramified tower $\mathcal{F}=\left\{F_{i}\right\}_{i=0}^{\infty}$ over $\mathbb{F}_{q^{2}}$ recursively defined by the equation

$$
y^{q}+y=\frac{x^{q}}{x^{q-1}+1}
$$

which is optimal ([GS'96]).

- \mathcal{F} is a 2-bounded tower over $\mathbb{F}_{q^{2}}$,
- the pole P_{∞} of x_{0} in $F_{0}=\mathbb{F}_{q^{2}}\left(x_{0}\right)$ is totally ramified in \mathcal{F}, so that P_{∞} is absolutely q-ramified in \mathcal{F},
- at least $q^{2}-q$ rational places of $\mathbb{F}_{q^{2}}$ split completely in \mathcal{F} and
- the ramification locus $R(\mathcal{F})$ has at most $q+1$ elements,
- i.e. $q^{2}-q \leq|S p(\mathcal{F})|$ and $|R(\mathcal{F})| \geq q+1$.

Sketch of proof

- We are in the conditions of Theorem 1 with

$$
\mu=q, \quad \epsilon=1, \quad g_{0}=0, \quad r=q^{2}-q \quad \text { and } \quad t=q+1 .
$$

- Therefore, there exists a sequence $\mathcal{C}=\left\{\mathcal{C}_{i}\right\}_{i \in \mathbb{N}}$ of r-block transitive AG-codes over $\mathbb{F}_{q^{2}}$ attaining a (ℓ, δ)-bound with

$$
\ell=1-\frac{g_{0}-1+t}{r}=1-\frac{q}{q^{2}-q}=1-\frac{1}{q-1},
$$

- Thus, \mathcal{F} attains the TVZ-bound over $\mathbb{F}_{q^{2}}$.

Good block transitive from class field towers

GBTC from polynomials

- Given $n, m \in \mathbb{Z}$ we put

$$
\varepsilon_{n}(m)= \begin{cases}1 & \text { if } n \mid m \\ 0 & \text { if } n \nmid m\end{cases}
$$

- For $h \in \mathbb{F}_{q}[t]$, we define

$$
\begin{aligned}
& S_{q}^{2}(h)=\left\{\beta \in \mathbb{F}_{q}: h(\beta) \text { is a non zero square in } \mathbb{F}_{q}\right\}, \\
& S_{q}^{3}(h)=\left\{\beta \in \mathbb{F}_{q}: h(\beta) \text { is a non zero cube in } \mathbb{F}_{q}\right\}
\end{aligned}
$$

GBTC from polynomials

Theorem (case q odd)

Let q be an odd prime power and let $h \in \mathbb{F}_{q}[t]$ be a monic and separable polynomial of degree m such that it splits completely into linear factors over \mathbb{F}_{q}.
Suppose there is a set $\Sigma_{o} \subset S_{q}^{2}(h)$ such that $u=\left|\Sigma_{o}\right|>0$ and

$$
2 \sqrt{2 u} \leq m-\left(u+2+\varepsilon_{2}(m)\right)<3 u
$$

Then, there exists a tamely ramified Galois tower \mathcal{F} over \mathbb{F}_{q} with limit $\lambda(\mathcal{F}) \geq \frac{4 u}{m-2-\varepsilon_{2}(m)}>1$. In particular, there exists a sequence of asymptotically good $2 u$-block transitive codes over \mathbb{F}_{q}, constructed from \mathcal{F}, attaining an (ℓ, δ)-bound, with

$$
\ell=1-\frac{m-3+\varepsilon_{2}(m)}{4 u}
$$

GBTC from polynomials

Theorem (case q even)

Let $q=2^{2 s}$ and let $h \in \mathbb{F}_{q}[t]$ be a monic and separable polynomial of degree m such that it splits completely into linear factors over \mathbb{F}_{q}.
Suppose there is a set $\Sigma_{e} \subset S_{q}^{3}(h)$ such that $v=\left|\Sigma_{e}\right|>0$ and

$$
2 \sqrt{3 v} \leq m-\left(v+2+\varepsilon_{3}(m)\right)<2 v-\frac{1}{2}
$$

Then, there exists a tamely ramified Galois tower \mathcal{F}^{\prime} over \mathbb{F}_{q} with limit $\lambda\left(\mathcal{F}^{\prime}\right) \geq \frac{6 v}{2\left(m-\varepsilon_{3}(m)\right)-3}>1$. In particular, there exists a sequence of asymptotically good $3 v$-block transitive codes over \mathbb{F}_{q}, constructed from \mathcal{F}^{\prime}, attaining an (ℓ, δ)-bound with

$$
\ell=1-\frac{2 m-5+2 \varepsilon_{3}(m)}{6 v}
$$

Sketch of proof

- Let $K=\mathbb{F}_{q}(x)$ and $F=\mathbb{F}_{q}(x, y)$ given by the equation

$$
y^{2}=h(x)=\left(x-a_{1}\right) \cdots\left(x-a_{m}\right)
$$

- F / K is cyclic Galois of degree 2.
- The rational places $P_{a_{1}}, \ldots, P_{a_{m}}$ of K are totally ramified in F / K and no other places than $P_{a_{1}}, \ldots, P_{a_{m}}$ and P_{∞} ramify in F / K. Moreover, P_{∞} is totally ramified if m is odd.
- There are $m+1-\varepsilon_{2}(m)$ places in K totally ramified in F.
- The genus $g(F)=\frac{1}{2}\left(m-1-\varepsilon_{2}(m)\right)$.

Sketch of proof

- By Kummer's theorem, the place $P_{\beta}=P_{x-\beta}$ in $K, \beta \in \Sigma_{o}$, splits completely into 2 rational places of F for each $\beta \in \Sigma_{0}$.
- Let P_{0} be some $P_{a_{i}}$ and let Q_{0} be the only place of F lying above P_{0}. Let $Q_{1}, \ldots, Q_{2 u}$ be the rational places of F lying over the places P_{β} with $\beta \in \Sigma_{o}$ and put

$$
T=\left\{Q_{0}\right\} \quad \text { and } \quad S=\left\{Q_{1}, \ldots, Q_{2 u}\right\}
$$

- Since

$$
\#\{P \in \mathbb{P}(K): P \text { ramifies in } F\}=m+1-\varepsilon_{2}(m)
$$

thus, by hypothesis,

$$
\#\{P \in \mathbb{P}(K): P \text { ramifies in } F\} \geq 2+|\Sigma|+2 \sqrt{n|\Sigma|}
$$

Sketch of proof

- By a result of [AM], the T-tamely ramified and S-decomposed Hilbert tower \mathcal{H}_{S}^{T} of F is infinite.
- This means that there is a sequence $\mathcal{F}=\left\{F_{i}\right\}_{i=0}^{\infty}$ of function fields over \mathbb{F}_{q} such that $F_{0}=F$,

$$
\mathcal{H}_{S}^{T}=\bigcup_{i=0}^{\infty} F_{i}
$$

and for any $i \geq 1$

- each place in S splits completely in F_{i},
- the place Q_{0} is tamely and absolutely ramified in the tower,
- F_{i} / F_{i-1} is an abelian extension, $\left[F_{i}: F\right] \rightarrow \infty$ as $i \rightarrow \infty$ and
- F_{i} / F_{0} is unramified outside T.

Sketch of proof

- Then, we are in the situation of Theorem 1 with

$$
F_{0}=F, \quad \Gamma=T, \quad \Omega=S
$$

- Also,

$$
g(F)=\frac{1}{2}\left\{m-1-\varepsilon_{2}(m)\right\}<2 u=|S|
$$

- Thus, by Theorem 1, the result follows.

Good block transitive codes over prime fields

Explicit polynomials

Proposition

Let $q=p^{r}$ be an odd prime power. Suppose that:

- there are 4 distinct elements $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{F}_{q}$ such that $\alpha_{i}^{-1} \notin\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ for $1 \leq i \leq 4$ and consider

$$
h(t)=(t+1) \prod_{i=1}^{4}\left(t-\alpha_{i}\right)\left(t-\alpha_{i}^{-1}\right) \in \mathbb{F}_{q}[t]
$$

- there is $\alpha \in \mathbb{F}_{q}^{*}$ such that $h(\alpha)=\gamma^{2} \neq 0, \gamma \in \mathbb{F}_{q}$.

Then there exists a sequence of 4-block transitive codes over \mathbb{F}_{q} attaining a $\left(\frac{1}{8}, \delta\right)$-bound with $0<\delta<\frac{1}{8}$.

Proof.

Take $m=9$ and $u=2$ in the previous Theorem and note that $h(0)=1$ is a nonzero square in \mathbb{F}_{q}.

Asymptotically good 4-block transitive AG-codes over \mathbb{F}_{13}

It is easy to see that there is no separable polynomial over \mathbb{F}_{11} of degree 9 satisfying the required conditions.

Example

- $2,3,4,5 \in \mathbb{F}_{13}$ satisfy the conditions of the proposition.
- We have

$$
h(t)=(t+1)(t-2)(t-7)(t-3)(t-9)(t-4)(t-10)(t-5)(t-8)
$$

- $h(11)=3=4^{2}$ in \mathbb{F}_{13}.
- Thus, there are asymptotically good sequences of 4-block transitive codes over \mathbb{F}_{13} attaining a $\left(\frac{1}{8}, \delta\right)$-bound.

Infinitely many primes

Consider a prime $p \geq 29$.

- By Fermat's little theorem

$$
h(t)=(t+1) \prod_{k=2}^{5}(t-k)\left(t-k^{p-2}\right) \in \mathbb{F}_{p}[t]
$$

has 9 different linear factors.

- $h(a)$ is a nonzero square in \mathbb{F}_{p} for $a \in \mathbb{F}_{p}^{*} \quad \Leftrightarrow \quad\left(\frac{h(a)}{p}\right)=1$.
- By multiplicativity of the Legendre symbol

$$
\left(\frac{h(t)}{p}\right)=\left(\frac{t+1}{p}\right) \prod_{k=2}^{5}\left(\frac{t-k}{p}\right)\left(\frac{t-k^{p-2}}{p}\right)
$$

Infinitely many primes

- For $2 \leq j \leq\left\lfloor\frac{p-1}{5}\right\rfloor$ we have

$$
h(p-j)=(p-(j-1)) \prod_{k=2}^{5}(p-(j+k))\left(p-\left(j+k^{p-2}\right)\right) \neq 0
$$

- By modularity:

$$
\begin{aligned}
\left(\frac{h(p-j)}{p}\right) & =\left(\frac{1-j}{p}\right) \prod_{k=2}^{5}\left(\frac{j+k}{p}\right)\left(\frac{j+k^{p-2}}{p}\right) \\
& =\left(\frac{1-j}{p}\right) \prod_{k=2}^{5}\left(\frac{j+k}{p}\right)\left(\frac{k}{p}\right)^{2}\left(\frac{j+k^{p-2}}{p}\right) \\
& =\left(\frac{1-j}{p}\right) \prod_{k=2}^{5}\left(\frac{j+k}{p}\right)\left(\frac{k}{p}\right)\left(\frac{k j+1}{p}\right)
\end{aligned}
$$

Infinitely many primes

For instance, for $j=2$

- we have

$$
\left(\frac{h(p-2)}{p}\right)=\left(\frac{-1}{p}\right) \prod_{k=2}^{5}\left(\frac{k+2}{p}\right)\left(\frac{k}{p}\right)\left(\frac{2 k+1}{p}\right)
$$

- Thus,

$$
\begin{aligned}
\left(\frac{h(p-2)}{p}\right)= & \left(\frac{-1}{p}\right)\left(\left(\frac{4}{p}\right)\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)\right)\left(\left(\frac{5}{p}\right)\left(\frac{3}{p}\right)\left(\frac{7}{p}\right)\right) \\
& \left(\left(\frac{6}{p}\right)\left(\frac{4}{p}\right)\left(\frac{9}{p}\right)\right)\left(\left(\frac{7}{p}\right)\left(\frac{5}{p}\right)\left(\frac{11}{p}\right)\right)
\end{aligned}
$$

- and hence

$$
\left(\frac{h(p-2)}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{5}{p}\right)\left(\frac{11}{p}\right)
$$

Infinitely many primes

- For $p \geq 37$ we can take the $2 \leq j \leq 7$ and we have

$$
\begin{aligned}
& \left(\frac{h(p-2)}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{5}{p}\right)\left(\frac{11}{p}\right) \\
& \left(\frac{h(p-3)}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)\left(\frac{13}{p}\right) \\
& \left(\frac{h(p-4)}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)\left(\frac{13}{p}\right)\left(\frac{17}{p}\right) \\
& \left(\frac{h(p-5)}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{11}{p}\right)\left(\frac{13}{p}\right) \\
& \left(\frac{h(p-6)}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)\left(\frac{3}{p}\right)\left(\frac{5}{p}\right)\left(\frac{11}{p}\right)\left(\frac{13}{p}\right)\left(\frac{19}{p}\right)\left(\frac{31}{p}\right) \\
& \left(\frac{h(p-7)}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)\left(\frac{29}{p}\right)
\end{aligned}
$$

- This reduces the search of $\alpha \in \mathbb{F}_{p}^{*}$ such that $h(\alpha)=\gamma^{2} \in \mathbb{F}_{p}^{*}$, to the computation of Legendre symbols $(\dot{\bar{p}})$.

Infinitely many primes

Proposition

There are asymptotically good 4-block transitive A-codes over \mathbb{F}_{p} for infinitely many primes p. For instance, this holds for primes of the form $p=220 k+1$ or $p=232 k+1, k \in \mathbb{N}$.

Proof.

- As before, for $p \geq 37$, consider the polynomial

$$
h(t)=(t+1) \prod_{k=2}^{5}(t-k)\left(t-k^{p-2}\right) \in \mathbb{F}_{p}[t]
$$

- It suffices to find infinitely many primes p, such that $\left(\frac{h(p-j)}{p}\right)=1$, for a given j.

Infinitely many primes

- Consider $j=2$. We look for prime numbers p such that

$$
\left(\frac{h(p-2)}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{5}{p}\right)\left(\frac{11}{p}\right)=1
$$

- Since $\left(\frac{-1}{p}\right)=1$ if $p \equiv 1$ (4) and $\left(\frac{5}{p}\right)=1$ if $p \equiv \pm 1$ (5), it is clear that if $p=20 k+1$ then $\left(\frac{-1}{p}\right)\left(\frac{5}{p}\right)=1$.
- In this way, if $p=(20 \cdot 11) k+1, k \in \mathbb{N}$, then $\left(\frac{h(p-2)}{p}\right)=1$ by quadratic reciprocity.
- By Dirichlet's theorem on arithmetic progressions, there are infinitely many prime numbers of the form $p=220 k+1$, $k \in \mathbb{N}$ (the first being $p=661$).

muito obrigado!

