P-Chain Codes

Beatriz Casulari da Motta Ribeiro

beatriz@ice.ufjf.br

Joint work with Pedro Esperidião and Allan Moura

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

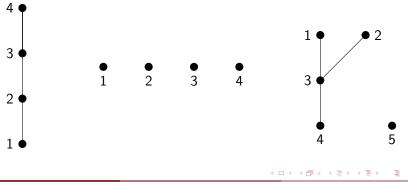
Fix $[n] := \{1, ..., n\}$, the set of ordered coordinate positions of \mathbb{F}_q^n .

イロト イヨト イヨト イヨト

- 2

Fix $[n] := \{1, ..., n\}$, the set of ordered coordinate positions of \mathbb{F}_q^n .

- A poset $P = ([n], \leq_P)$ is a partial order on [n].
- A linear poset (or chain) is a well ordered poset (i ≤_P j or j ≤_P i for every i, j ∈ P).
- A Hamming poset (or antichain) is a poset such that $i \leq_P j \Leftrightarrow i = j$.



Let P be a poset on [n], the opposite (dual) poset \overline{P} is given by

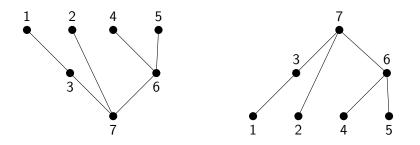
 $i \preceq_{\overline{P}} j \Leftrightarrow j \preceq_{P} i$

- 31

・ロン ・聞と ・ヨン ・ヨン

Let P be a poset on [n], the opposite (dual) poset \overline{P} is given by

 $i \preceq_{\overline{P}} j \Leftrightarrow j \preceq_{P} i$



-47 ▶

3

Ideals

• A subset $I \subseteq P$ is called an ideal if

$$i \in I$$
 and $j \preceq_P i \Rightarrow j \in I$.

Given a subset A ⊆ P, the ideal generated by A is the smallest ideal of P containing A, denoted by ⟨A⟩_P.

< 同 > < Ξ

Ideals

• A subset $I \subseteq P$ is called an ideal if

$$i \in I$$
 and $j \preceq_P i \Rightarrow j \in I$.

Given a subset A ⊆ P, the ideal generated by A is the smallest ideal of P containing A, denoted by ⟨A⟩_P.

< 67 ▶ <

Ideals

• A subset $I \subseteq P$ is called an ideal if

$$i \in I$$
 and $j \preceq_P i \Rightarrow j \in I$.

Given a subset A ⊆ P, the ideal generated by A is the smallest ideal of P containing A, denoted by ⟨A⟩_P.

In the poset to the left:

- $\{1,2,3\}$, $\{2,4\}$ and $\{2\}$ are examples of ideals
- $\{2,3\}$ is not an ideal: $1 \leq 3$, but $1 \notin \{2,3\}$.

P-metric

• If $x = (x_1, \dots, x_n) \in \mathbb{F}_q^n$, we define the support of x by $\mathrm{supp}(x) = \{i; x_i \neq 0\}$

and the P-weight of x by

$$w_P(x) = |\langle \operatorname{supp}(x) \rangle_P|$$

• If $x, y \in \mathbb{F}_{q}^{n}$, the *P*-distance between *x* and *y* is given by

$$d_P(x,y) = w_P(x-y)$$

• Note that the Hamming distance is the poset distance using the Hamming poset (that explains its name).

イロト 不得 トイヨト イヨト ヨー つくつ

Example

• We consider the element x = 1100 in \mathbb{F}_2^4 .

We have

$$(\operatorname{supp}(x))_H = \operatorname{supp}(x) = \{1, 2\}$$

and

$$\langle \operatorname{supp}(x) \rangle_P = \langle \{1,2\} \rangle = \{1,2,3\}$$

• Therefore $w_H(x) = 2$ and $w_P(x) = 3$.

Figura : The posets P and H.

Beatriz Motta (UFJF)

3

< 🗇 🕨 🔸

P-Codes

- The pair (\mathbb{F}_q^n, d_P) is a metric space.
- A *P*-linear code *C* is a vector subspace of \mathbb{F}_q^n with this metric.
- If dim C = k, we refer to it as an $[n, k]_q P$ -code.
- The minimal distance (or weight) of C:

$$d_P(C) = \min\{w_P(x); 0 \neq x \in C\}$$

▲ @ ▶ ▲ ■ ▶

3

• The (generalized) *P*-weight of a subset $D \subset \mathbb{F}_q^n$:

 $w_P(D) = |\langle \operatorname{supp}(D) \rangle_P|$

- 3

イロト イポト イヨト イヨト

• The (generalized) *P*-weight of a subset $D \subset \mathbb{F}_q^n$:

 $w_P(D) = |\langle \operatorname{supp}(D) \rangle_P|$

• The r-th minimal generalized P-weight of a $[n, k]_q$ -P-Code: $d_r^P(C) = \min\{w_P(D); D \subseteq C \text{ and } \dim D = r\}$

- 3

イロト イポト イヨト イヨト

• The (generalized) P-weight of a subset $D \subset \mathbb{F}_q^n$:

$$w_P(D) = |\langle \operatorname{supp}(D) \rangle_P|$$

- The r-th minimal generalized P-weight of a $[n, k]_q$ -P-Code: $d_r^P(C) = \min\{w_P(D); D \subseteq C \text{ and } \dim D = r\}$
- Note that the first minimal weight is the minimal distance $d_P(C)$.

- 3

- 4 同 6 4 回 6 4 回 6

• The (generalized) P-weight of a subset $D \subset \mathbb{F}_q^n$:

$$w_P(D) = |\langle \operatorname{supp}(D) \rangle_P|$$

- The r-th minimal generalized P-weight of a $[n, k]_q$ -P-Code: $d_r^P(C) = \min\{w_P(D); D \subseteq C \text{ and } \dim D = r\}$
- Note that the first minimal weight is the minimal distance $d_P(C)$.
- The *P*-weight hierarchy of a $[n, k]_q$ *P*-code *C* is the set

$$\{d_1^P(C), d_2^P(C), d_3^P(C), \dots, d_k^P(C)\}$$

• The hierarchy is strictly increasing and satisfies the generalized Singleton Bound:

$$r \leq d_r^P(C) \leq n-k+r$$

Def. If P and Q are posets on [n] such that $x \preceq_Q y \Rightarrow x \preceq_P y$ then we say that P is a extension of Q.

- 3

イロト イヨト イヨト

Def. If *P* and *Q* are posets on [*n*] such that $x \preceq_Q y \Rightarrow x \preceq_P y$ then we say that *P* is a extension of *Q*.

• Every finite poset is an extension of the Hamming poset and can be extended to a linear poset (over the same [n]).

3

- 4 同 6 4 回 6 4 回 6

Def. If *P* and *Q* are posets on [*n*] such that $x \preceq_Q y \Rightarrow x \preceq_P y$ then we say that *P* is a extension of *Q*.

- Every finite poset is an extension of the Hamming poset and can be extended to a linear poset (over the same [n]).
- If P is an extension of Q and C is a code, it follows that C: $d_r^Q(C) \le d_r^P(C)$

3

Def. If *P* and *Q* are posets on [*n*] such that $x \preceq_Q y \Rightarrow x \preceq_P y$ then we say that *P* is a extension of *Q*.

- Every finite poset is an extension of the Hamming poset and can be extended to a linear poset (over the same [n]).
- If P is an extension of Q and C is a code, it follows that C: $d_r^Q(C) \le d_r^P(C)$
- Also: if C is a r-MDS code using the poset Q (that is, $d_r^Q(C) = n k + r$), then it is also a r-MDS code using the poset P (that is, $d_r^P(C) = n k + r$).

- 3

Def. If *P* and *Q* are posets on [*n*] such that $x \preceq_Q y \Rightarrow x \preceq_P y$ then we say that *P* is a extension of *Q*.

- Every finite poset is an extension of the Hamming poset and can be extended to a linear poset (over the same [n]).
- If P is an extension of Q and C is a code, it follows that C: $d_r^Q(C) \le d_r^P(C)$
- Also: if C is a r-MDS code using the poset Q (that is, $d_r^Q(C) = n k + r$), then it is also a r-MDS code using the poset P (that is, $d_r^P(C) = n k + r$).
- In particular, d_r(C) ≤ d^P_r(C), where d_r(C) is the rth Hamming distance, and every r-MDS code in the Hamming metric is also a r-MDS code for every poset P over the same [n].

イロト イポト イヨト イヨト 二日

P-chain code

A $[n, k]_q$ -code is said to be a P-chain code if there is a sequence of linear subspaces D_i , i = 1, 2, ..., k such that

$$\{0\} = D_0 \subsetneq D_1 \subsetneq D_2 \subsetneq ... \subsetneq D_k = C$$

where

$$w_P(D_i) = d_i^P(C)$$

dim $D_i = i$

In this case, we say that C satisfies the P-chain condition.

・ 同 ト ・ ヨ ト ・ ヨ ト

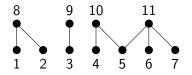
Example

For the Hamming poset:

- The following codes satisfy the chain condition:
 - Hamming codes
 - Dual Hamming codes
 - Reed-Muller codes for all orders
 - Maximum Separable Distance codes
 - Golay codes
- Moreover, every perfect code must satisfy the chain condition.

Example

Let P be the following poset.



Let $u_1, u_2, u_3 \in \mathbb{F}_2^{11}$ be as below and consider $D = [u_1, u_2, u_3]$.

 $u_1 = 0000000100, u_2 = 01000110001, u_3 = 01100000010$ *D* satisfies the *P*-chain condition in different ways, both with hierarchy $\{2, 4, 9\}$:

$$\{0\} \subsetneq [u_1] \subsetneq [u_1, u_2] \subsetneq D$$

$$\{0\} \subsetneq [u_1] \subsetneq [u_1, u_3] \subsetneq D$$

Lemma. Let P be a poset in [n] and $1 \le j_1 < j_2 < ... < j_k \le n \in \mathbb{Z}$.

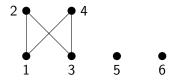
There is a sequence of codes $C_1 \subsetneq C_2 \subsetneq ... \subsetneq C_k = C$ such that $w_P(C_i) = j_i$.

Remark.

However it is not possible to assure that this sequence satisfies the $P-{\rm chain}$ condition.

イロト 不得下 イヨト イヨト ヨー わらい

Example



• Fix $v_1 = 110000$, $v_2 = 000100$ and $E = [v_1, v_2]$.

$$v_1 = 110000$$
 $w_P(v_1) = 3$
 $v_2 = 000110$ \implies $w_P(v_2) = 3$
 $v_1 + v_2 = 110110$ $w_P(v_1 + v_2) = 4$

• *E* satisfies the *P*-chain condition with sequence {3, 4}:

$$0 \subsetneq [v_1] \subsetneq E$$

3

Example

- Let P be the Hamming poset over 𝔽₂⁶. Let's look for a P−chain code C with hierarchy {3,4}.
- We must have $w_H(C_1) = d_1^H(C) = 3$ and dim $C_1 = 1$ (that is $C_1 = [v_1]$).
- WLG: let $v_1 = 111000 \in C_1 \subsetneq C_2 = C$.
- Now, we must have $4 = d_2^H(C) = w_P(C_2) = \# \text{supp}[v_1, v_2].$
- As $w_P(v_1) = 3$, we must have $\#(\operatorname{supp}[v_2] \setminus \operatorname{supp}[v_1]) = 1$.

Then:

$$w_P(v_2) \geq 3 \Rightarrow d(v_1, v_2) \leq 2 \Rightarrow w_P(v_2 - v_1) \leq 2 < d_1(C) = 3$$

• Therefore, there is no code that satisfies the *P*-chain condition with weight sequence {3,4}.

Thm. (Moura-Firer) If the support of a P-code C is a total ordered subset of P then C satisfies the P-chain condition.

3

(人間) トイヨト イヨト

Thm. (Moura-Firer) If the support of a P-code C is a total ordered subset of P then C satisfies the P-chain condition.

Cor. Every code over the linear poset (chain poset) satisfies the *P*-chain condition.

Thm. (Moura-Firer) If the support of a P-code C is a total ordered subset of P then C satisfies the P-chain condition.

Cor. Every code over the linear poset (chain poset) satisfies the *P*-chain condition.

Thm. (Moura-Firer) A code C satisfies the P-chain condition iff C^{\perp} satisfies the \overline{P} -chain condition.

Thm. Let $J_1 \subsetneq J_2 \subsetneq ... \subsetneq J_k$ be ideals of a poset *P* such that

 $\#J_i \leq \#\langle J_{i+1} \setminus J_i \rangle_P.$

Then there exists a code C that satisfies the P-chain condition in the following sense: there is a chain of codes

$$\{0\} = C_0 \subsetneq C_1 \subsetneq C_2 \subsetneq ... \subsetneq C_k = C$$

over \mathbb{F}_q^n such that $d_i^P(C) = w_P(C_i) = \#J_i$ and $\dim(C_i) = i$.

イロト 不得 トイヨト イヨト ヨー のなべ

Thm. Let $J_1 \subsetneq J_2 \subsetneq ... \subsetneq J_k$ be ideals of a poset *P* such that

 $\#J_i \leq \#\langle J_{i+1} \setminus J_i \rangle_P.$

Then there exists a code C that satisfies the P-chain condition in the following sense: there is a chain of codes

$$\{0\} = C_0 \subsetneq C_1 \subsetneq C_2 \subsetneq ... \subsetneq C_k = C$$

over \mathbb{F}_q^n such that $d_i^P(C) = w_P(C_i) = \#J_i$ and $\dim(C_i) = i$.

Thm. Let Q be a poset on [n] and X be the set $\{d_1, d_2, \ldots, d_k\} \subset [n]$.

Then there is an extension P of Q such that there exists a code C satisfying the P-chain condition with hierarchy X.

OBRIGADA!

Δ.

Beatriz Motta (UFJF)

P-Chain Codes

CIMPA - July 13th 18 / 18

LAA CA