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In this talk I will:
Recall the use of a group ring matrix to generate a code.
Recap on the motivation for finding V∗(F2C48).
Give the structure of V∗(F2C48).
Show how to reduce the search by ignoring equivalent
codes.
Show how to reduce the search further by ignoring
elements of order dividing 8.
Conclude. Discuss further work.
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Let RG be a group ring with |G| = n.
Then for each element u of the group ring RG there is a unique
n× n matrix U with coefficients from R according to a particular
listing of the group elements g1,g2, ....,gn.

The column headings are the group elements according to the
group listing, and the row headings are the inverses of the
group elements in the listing.

The entries of the matrix U consist of the product of the row
and column headings.
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Example

Let u ∈ F2D96, where D96 = 〈b, y |b48 = y2 = 1,by = b−1〉.
Suppose u = 1 + yv where v ∈ F2C48.
Then rank(U) = 48.
Also U = UT because it is of the form[

I A
A I

]
where I is the identity matrix and AT = A.
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Now we want U2 = 0, so that every row of U is orthogonal to
every other row. Then the code generated by U will be a self
dual code.

U2 = 0⇔ u2 = 0⇔ (1 + yv)(1 + yv) = 0⇔
1 + 2(yv) + yvyv = 0⇔ 1 + 0 + yyv∗v = 0⇔ v∗v = 1.

Thus u generates a code which is self-dual if and only if
v ∈ V∗(F2C48).
That is a self-dual [96,48,d ] code for some minimum distance
d .
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Using Bovdi and Scazaks method,
V∗(F2C48) ' C7

2 × C3
4 × C8 × C2

16 × C3.

There are 224 ∗ 3 = 50,331,648 elements in this group.
For each v ∈ V∗(F2C48), the element u = 1 + yv generates a
self-dual code.

However, some of these codes are equivalent, so we can
reduce the search.
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Recall that two binary codes C1 and C2 are equivalent if there
exists a permutation matrix P such that C1P = C2.

Let b be the generator of the group C48.
bi(bi)∗ = bi(b−1) = 1.
So 〈b〉 ' C48 ' (C16 × C3) < V∗(F2C48).
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Let u ∈ F2D96, where D96 = 〈b, y |b48 = y2 = 1,by = b−1〉.
Suppose u = 1 + yv where v ∈ F2C48.

Lemma (Creedon, G., McLoughlin)
The code generated by u = 1 + yv is equivalent to the code
generated by ui = 1 + ybiv for i ∈ {1, . . . ,47}.

Proof.

Let ui = 1 + ybiv for i ∈ {1, . . . ,47}.

The group ring matrix Ui is of the form
[

I Ai
Ai I

]
.

Ai is the matrix resulting from cycling the columns of A, i times.
Hence the row space of Ui is generated by

[
I Ai

]
that is a

column permutation of
[

I A
]

and so is equivalent to the code
generated by u.
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Recall that we have
V∗(F2C48) ' C7

2 × C3
4 × C8 × C2

16 × C3.

If would be nice if could write V∗(F2C48) as 〈b〉 × K .
Then we could list only the elements of K and check the codes
resulting from these.

This would reduce the search to 224(3)
48 = 220 different codes.
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Bovdi and Scazaks method for constructing the generators of
V∗(F2C48) does just that.
Here C48 = 〈b〉 = (〈b3〉 × 〈b16〉)
Let 〈a〉 × 〈h〉 where a = b3 and let h = b16.
Thus C48 =〈a〉 × 〈h〉

The full list of generators of V∗(F2C48) is on the next slide.
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V∗(F2C48) '
〈1 + â〉 × 〈1 + a + a7 + a9 + a15〉×
〈1 + a + a3 + a5 + a7 + a9 + a11 + a13 + a15〉×
〈1 + h(1 + a + a8 + a9) + h−1(1 + a7 + a8 + a15)〉×
〈1 + h(1 + a + a2 + a3 + a8 + a9 + a10 + a11) + h−1(1 + a5 +
a6 + a7 + a8 + a13 + a14 + a15)〉×
〈1 + h(1 + a + a4 + a5 + a8 + a9 + a12 + a13) + h−1(1 + a3 +
a4 + a7 + a8 + a11 + a12 + a15)〉×
〈1+hâ+h−1â〉×〈a+a2 +a3 +a4 +a8 +a10 +a12 +a13 +a15〉×
〈1+ a3 + a5 + a11 + a13 + â+ h(1+ a+ a4 + a5 + â) + h−1(a2 +
a8 + a10 + a11 + a12 + a15)〉×
〈1 + aâ2 + h(1 + a + a2 + a3 + a4 + a5 + a6 + a7) + h−1(a2 +
a4 + a6 + a8 + a9 + a11 + a13 + a15)〉×
〈1 + a + a2 + a4 + a5 + a6 + a7 + a10 + a11 + a12 + a14 + h(a +
a2 + a3 + a4 + a5 + a6 + a8 + a12 + a13 + a14) + h−1(1 + a3 +
a7 + a8 + a10 + a11 + a12 + a13)〉×
〈a〉 × 〈a14 + h(a14 + a15) + h−1(a14 + a15)〉 × 〈h〉.

11 / 21



Using Bovdi and Szacaks method we can write V∗(F2C48) as
〈b〉 × K .

Thus we need only check the elements of K and so we can
reduce the search to 224(3)

48 = 220 different codes.
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Recall that unitary units of the form biv create equivalent codes
to v .
To see that two unitary units are cycles of each other, we look
at an element’s "cycle type".

Example

Let α = 1 + b3 + b24 + b29 + b43.
Then α has cycle type (3,21,5,14,5).
Consider b23α = b4 + b18 + b23 + b26 + b47.
Then b23α has cycle type (14,5,3,21,5) which is the same as
the cycle type of α (except it has been cycled).

13 / 21



Recall that unitary units of the form biv create equivalent codes
to v .
To see that two unitary units are cycles of each other, we look
at an element’s "cycle type".

Example

Let α = 1 + b3 + b24 + b29 + b43.
Then α has cycle type (3,21,5,14,5).
Consider b23α = b4 + b18 + b23 + b26 + b47.
Then b23α has cycle type (14,5,3,21,5) which is the same as
the cycle type of α (except it has been cycled).

13 / 21



Lemma (Creedon, G., McLoughlin)

Let C48 = 〈b〉. Assume V∗(F2C48) ' 〈b〉 × K . Then every
element of K has a different cycle type. Further, all of the
different cycle types of V∗(F2C48) occur in K .

Proof.

We can partition V∗(F2C48) into b0K ∪ b1K ∪ ... ∪ b47K .
i) Suppose α1, α2 are two distinct elements in K with the same
cycle type. Then biα1 = α2 ∃ i 6= 0.
Then biα1 ∈ K and so bi ∈ K . This contradiction implies that all
elements of K have different cycle types.
ii) The coset b0K (=K ) contains a set of cycle types. The coset
biK will contain the exact same set of cycle types (cycled i
times). Thus every coset has the same set of cycle types as K .
Thus any cycle type occurring in V∗(F2C48) occurs in K .
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Theorem (Creedon, G., McLoughlin)

The elements of V∗(F2C48) of order 2 form the set
{1 + a0(1 + b24) +

∑11
i=1 ai(bi + b24+i + b48−i + b24−i) +

a12(b12 + b36)|ai ∈ F2}
and do not generate extremal codes.

Proof.
(First part omitted).
If v ∈ V∗(F2C48) has order 2 then b̂24v = b̂24 + 0 + 0 + 0 = b̂24.
Letting u = 1 + yv , then u + b24u = b̂24(1 + yv) =
b̂24 + b̂24yv = b̂24 + yb̂24v = b̂24 + yb̂24 = 1 + b24 + y + yb24

which has weight 4, so unitary units of order 2 do not generate
extremal codes.
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Theorem (Creedon, G., McLoughlin)

The elements of V∗(F2C48) of order 4 are contained in the set{
a0b0 + a12b12 + a24b24 + a36b36+∑3

k=1
∑47

i=1k 6=12,24,36 aik (b
i + b12k+i)where

∑
ai = 1

}
and do not generate extremal codes.

Proof.
(First part omitted).
If v ∈ V∗(F2C48) has order 4 then, letting u = 1 + yv ,

(b̂12)u = (b̂12) + y
[
(a0 + a12 + a24 + a36)(b̂12) + 0

]
= (1 + b12 + b24 + b36) + y(1 + b12 + b24 + b36).
This codeword has weight 8, so unitary units of order 4 do not
generate extremal codes.
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Theorem (Creedon, G., McLoughlin)

The elements of V∗(F2C48) of order 8 do not generate extremal
codes.

Proof.
The proof is similar to the previous two. Here is a summary.
Let v ∈ V∗(F2C48) such that v has order 8.
Then let u = 1 + yv and consider the matrix U.
Take the 8-row combination of rows 1, 1+6, 1+12, ..., 1+42 and
the result is a codeword of weight 16.
Thus the elements of V∗(F2C48) of order 8 do not generate
extremal codes.
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Corollary
If there exist extremal codes of the form u = 1 + yv where
u ∈ F2D96 and v ∈ V∗(F2C48), then they exist for some v with
order exactly 16.

So instead of searching the 220 different codes to find their
minimum distances, we need only search those of order 16.
This reduces the search to 219 different codes.
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Further Work
Adapt the technique to use other group algebras FG where
G has order 96 and search again for extremal self-dual
[96,48,20] codes
Apply the same technique to groups of order 72 and 120 to
search for extremal self-dual codes of those lengths.
Apply this technique for FG where |G| = 2n(m) for m 6= 3.
Approach these problems using a decomposition of the
(non-semisimple) group algebra F2C2n3.
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Thank You

Thank You!
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