Weierstrass Semigroup over Kummer Extensions

Alonso Sepúlveda Castellanos ${ }^{1}$ with G. Tizziotti

CIMPA RESEARCH SCHOOL

 ALGEBRAIC METHODS IN CODING THEORY

 ALGEBRAIC METHODS IN CODING THEORY}

July 2nd to 15th, 2017

Institute of Mathematics and Statistics - University of São Paulo
${ }^{1}$ Universidade Federal de Uberlândia - FAPEMIG
A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extens

Table of Contents

(1) Weierstrass Semigroup
(2) Weierstrass semigroup and Discrepancy
(3) Weierstrass Semigroup $H\left(P_{1}, \ldots, P_{m}\right)$ for certain types of curves
(4) Example

Weierstrass Semigroup

- Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over a finite field \mathbb{F}_{q}.

Weierstrass Semigroup

- Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over a finite field \mathbb{F}_{q}.
- $\mathbb{F}_{q}(\mathcal{X})$ be the field of rational functions and $\operatorname{Div}(\mathcal{X})$ be the set of divisors on \mathcal{X}

Weierstrass Semigroup

- Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over a finite field \mathbb{F}_{q}.
- $\mathbb{F}_{q}(\mathcal{X})$ be the field of rational functions and $\operatorname{Div}(\mathcal{X})$ be the set of divisors on \mathcal{X}
- For $f \in \mathbb{F}_{q}[\mathcal{X}]$, the divisor of f will be denoted by (f) and the divisor of poles of f by $(f)_{\infty}$. We denote $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$

Weierstrass Semigroup

- Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over a finite field \mathbb{F}_{q}.
- $\mathbb{F}_{q}(\mathcal{X})$ be the field of rational functions and $\operatorname{Div}(\mathcal{X})$ be the set of divisors on \mathcal{X}
- For $f \in \mathbb{F}_{q}[\mathcal{X}]$, the divisor of f will be denoted by (f) and the divisor of poles of f by $(f)_{\infty}$. We denote $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$
- Let P_{1}, \ldots, P_{m} be distinct rational points on \mathcal{X}. The set

$$
H\left(P_{1}, \ldots, P_{m}\right)=\left\{\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{N}_{0}^{m} ; \exists f \in \mathbb{F}_{q}[\mathcal{X}] \text { with }(f)_{\infty}=\sum_{i=1}^{m} a_{i} P_{i}\right\}
$$

is called the Weierstrass semigroup at the points P_{1}, \ldots, P_{m}.

- The set $G\left(P_{1}, \ldots, P_{m}\right)=\mathbb{N}_{0}^{m} \backslash H\left(P_{1}, \ldots, P_{m}\right)$ is called gap set of P_{1}, \ldots, P_{m}.
- The case $m=1$, It was observed that to using the arithmetical structure of the Weierstrass semigroup we can improvements in the bounds for minimal distance in Algebraic Geometric One-point-Codes by Garcia, Kim, Lax.
- The case $m=1$, It was observed that to using the arithmetical structure of the Weierstrass semigroup we can improvements in the bounds for minimal distance in Algebraic Geometric One-point-Codes by Garcia, Kim, Lax.
- The case $m=2$, started to be studied by Kim and Homma, where several properties were presented. A similar result for Two-point-Codes was obtained by Homma and Kim using the notion of pure gaps that they introduced.
- The case $m=1$, It was observed that to using the arithmetical structure of the Weierstrass semigroup we can improvements in the bounds for minimal distance in Algebraic Geometric One-point-Codes by Garcia, Kim, Lax.
- The case $m=2$, started to be studied by Kim and Homma, where several properties were presented. A similar result for Two-point-Codes was obtained by Homma and Kim using the notion of pure gaps that they introduced.
- For $m>2$, this semigroup has been studied for some specific curves as Hermitian and Norm-trace curves by Gretchen.
- With increasing interest in this semigroup, many results have been produced with several applications in coding theory by Torres and Carvalho, Garcia, Kim, Lax, Homma, Gretchen, and others.
- The case $m=1$, It was observed that to using the arithmetical structure of the Weierstrass semigroup we can improvements in the bounds for minimal distance in Algebraic Geometric One-point-Codes by Garcia, Kim, Lax.
- The case $m=2$, started to be studied by Kim and Homma, where several properties were presented. A similar result for Two-point-Codes was obtained by Homma and Kim using the notion of pure gaps that they introduced.
- For $m>2$, this semigroup has been studied for some specific curves as Hermitian and Norm-trace curves by Gretchen.
- With increasing interest in this semigroup, many results have been produced with several applications in coding theory by Torres and Carvalho, Garcia, Kim, Lax, Homma, Gretchen, and others.
- For $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{N}_{0}^{m}$, where, for all $k, \mathbf{u}_{k}=\left(u_{k_{1}}, \ldots, u_{k_{m}}\right)$, we define the least upper bound (lub) by:
$\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\}=\left(\max \left\{u_{1_{1}}, \ldots, u_{t_{1}}\right\}, \ldots, \max \left\{u_{1_{m}}, \ldots, u_{t_{m}}\right\}\right) \in \mathbb{N}_{0}^{m}$.

Proposition (Gretchen)

Suppose that $1 \leq t \leq m \leq q$ and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in H\left(P_{1}, \ldots, P_{m}\right)$. Then $\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in H\left(P_{1}, \ldots, P_{m}\right)$.

- For $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{N}_{0}^{m}$, where, for all $k, \mathbf{u}_{k}=\left(u_{k_{1}}, \ldots, u_{k_{m}}\right)$, we define the least upper bound (lub) by:

$$
\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\}=\left(\max \left\{u_{1_{1}}, \ldots, u_{t_{1}}\right\}, \ldots, \max \left\{u_{1_{m}}, \ldots, u_{t_{m}}\right\}\right) \in \mathbb{N}_{0}^{m}
$$

Proposition (Gretchen)

Suppose that $1 \leq t \leq m \leq q$ and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in H\left(P_{1}, \ldots, P_{m}\right)$. Then $\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in H\left(P_{1}, \ldots, P_{m}\right)$.

Definition: (Minimal Generating Set)

Let $\Gamma\left(P_{1}\right)=H\left(P_{1}\right)$ and, for $m \geq 2$, define

$$
\Gamma\left(P_{1}, \ldots, P_{m}\right):=\left\{\mathbf{n} \in \mathbb{N}^{m}: \text { for some } i, 1 \leq i \leq m, \mathbf{n} \text { is minimal in } \nabla_{i}(\mathbf{n})\right\} .
$$

where $\nabla_{i}(\mathbf{n}):=\left\{\left(p_{1}, \ldots, p_{m}\right) \in H\left(P_{1}, \ldots, P_{m}\right) ; p_{i}=n_{i}\right\}$.
$H\left(P_{1}, P_{2}\right)=\left\{\operatorname{lub}(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in \Gamma\left(P_{1}, P_{2}\right) \cup\left(H\left(P_{1}\right) \times\{0\}\right) \cup\left(\{0\} \times H\left(P_{2}\right)\right)\right\}$.

Discrepancy

Duursma and Park introduced the concept of discrepancy as follows.

Discrepancy

Duursma and Park introduced the concept of discrepancy as follows.

Definition

A divisor $A \in \operatorname{Div}(\mathcal{X})$ is called a discrepancy for two rational points P and Q on \mathcal{X} if $\mathcal{L}(A) \neq \mathcal{L}(A-P)=\mathcal{L}(A-P-Q)$ and $\mathcal{L}(A) \neq \mathcal{L}(A-Q)=\mathcal{L}(A-P-Q)$.

Discrepancy

Duursma and Park introduced the concept of discrepancy as follows.

Definition

A divisor $A \in \operatorname{Div}(\mathcal{X})$ is called a discrepancy for two rational points P and Q on \mathcal{X} if $\mathcal{L}(A) \neq \mathcal{L}(A-P)=\mathcal{L}(A-P-Q)$ and $\mathcal{L}(A) \neq \mathcal{L}(A-Q)=\mathcal{L}(A-P-Q)$.

The next result relates the concept of discrepancy with the set $\Gamma\left(P_{1}, \ldots, P_{m}\right)$.

Discrepancy

Duursma and Park introduced the concept of discrepancy as follows.

Definition

A divisor $A \in \operatorname{Div}(\mathcal{X})$ is called a discrepancy for two rational points P and Q on \mathcal{X} if $\mathcal{L}(A) \neq \mathcal{L}(A-P)=\mathcal{L}(A-P-Q)$ and $\mathcal{L}(A) \neq \mathcal{L}(A-Q)=\mathcal{L}(A-P-Q)$.

The next result relates the concept of discrepancy with the set $\Gamma\left(P_{1}, \ldots, P_{m}\right)$.

Lemma

Let $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in H\left(P_{1}, \ldots, P_{m}\right)$. Then $\mathbf{n} \in \Gamma\left(P_{1}, \ldots, P_{m}\right)$ if and only if the divisor $A=n_{1} P_{1}+\cdots+n_{m} P_{m}$ is a discrepancy with respect to P and Q for any two rational points $P, Q \in\left\{P_{1}, \ldots, P_{m}\right\}$.

Weierstrass Semigroup $H\left(P_{1}, \ldots, P_{m}\right)$

- Consider a curve \mathcal{X} over \mathbb{F}_{q} given by affine equation

$$
f(y)=g(x)
$$

Weierstrass Semigroup $H\left(P_{1}, \ldots, P_{m}\right)$

- Consider a curve \mathcal{X} over \mathbb{F}_{q} given by affine equation

$$
f(y)=g(x)
$$

- $\operatorname{deg}(f(y))=a$ and $\operatorname{deg}(g(x))=b$, with $\operatorname{gdc}(a, b)=1$, and genus $g=(a-1)(b-1) / 2$.

Weierstrass Semigroup $H\left(P_{1}, \ldots, P_{m}\right)$

- Consider a curve \mathcal{X} over \mathbb{F}_{q} given by affine equation

$$
f(y)=g(x)
$$

- $\operatorname{deg}(f(y))=a$ and $\operatorname{deg}(g(x))=b$, with $\operatorname{gdc}(a, b)=1$, and genus $g=(a-1)(b-1) / 2$.
- Let $P_{1}, P_{2}, \ldots, P_{a+1}$ be $a+1$ distinct rational points such that

$$
\begin{equation*}
a P_{1} \sim P_{2}+\cdots+P_{a+1}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
b P_{i} \sim b P_{j}, \text { for all } i, j \in\{1,2, \ldots, a+1\}, \tag{2}
\end{equation*}
$$

- Note that $H\left(P_{1}\right)=\langle a, b\rangle$.
- Let $1 \leq m \leq a+1 \leq q$. For

$$
\begin{equation*}
t+\sum_{j=2}^{m} s_{j}=a+1-m, \quad 0<i a<t b, \quad s_{j} \geq 0 . \tag{3}
\end{equation*}
$$

- Let $1 \leq m \leq a+1 \leq q$. For

$$
\begin{equation*}
t+\sum_{j=2}^{m} s_{j}=a+1-m, \quad 0<i a<t b, \quad s_{j} \geq 0 \tag{3}
\end{equation*}
$$

- Equivalence of the divisors and the before conditions, we have

$$
(t b-i a) P_{1}+(s b+i) P_{2}+i\left(P_{3}+\cdots+P_{m}\right) \sim \sum_{j=m+1}^{a+1}(b-i) P_{j}(4)
$$

- Let $1 \leq m \leq a+1 \leq q$. For

$$
\begin{equation*}
t+\sum_{j=2}^{m} s_{j}=a+1-m, \quad 0<i a<t b, \quad s_{j} \geq 0 \tag{3}
\end{equation*}
$$

- Equivalence of the divisors and the before conditions, we have

$$
\begin{equation*}
(t b-i a) P_{1}+(s b+i) P_{2}+i\left(P_{3}+\cdots+P_{m}\right) \sim \sum_{j=m+1}^{a+1}(b-i) P_{j} \tag{4}
\end{equation*}
$$

Proposition

Let $a, b, t, i, s_{2}, \ldots, s_{m}$ be as above. Then, the divisor $(t b-i a) P_{1}+\sum_{j=2}^{m}\left(s_{j} b+i\right) P_{j}$ is a discrepancy with respect to P and Q for any two distinct points $P, Q \in\left\{P_{1}, \ldots, P_{m}\right\}$.

Main Theorem

Let \mathcal{X} and $P_{1}, P_{2}, \ldots, P_{a+1}$ be as above. For $2 \leq m \leq a+1$, let
$S_{m}=\left\{\left(t b-i a, s_{2} b+i, \ldots, s_{m} b+i\right) ; t+\sum_{j=2}^{m} s_{j}=a+1-m, 0<i a<t b, s_{j} \geq 0\right\}$
Then, $\Gamma\left(P_{1}, \ldots, P_{m}\right)=S_{m}$.

Kummer Extension

- Let a Kummer extensions over \mathbb{F}_{q}

$$
\begin{gathered}
y^{b}=g(x)=\prod_{i=1}^{a}\left(x-\alpha_{i}\right) \\
\operatorname{gcd}(a, b)=1 \text {, genus }(b-1)(a-1) / 2 . \\
\text { (1) }\left(x-\alpha_{i}\right)=b P_{i}-b P_{1} \text { for every } i, 2 \leq i \leq a+1, \\
\text { (2 }(y)=P_{2}+\cdots+P_{a+1}-a P_{1},
\end{gathered}
$$

- For $a=5$ and $b=7$ we have that

$$
\begin{aligned}
\Gamma\left(P_{1}, P_{2}\right)= & \begin{array}{l}
\{(23,1),(18,2),(13,3),(8,4),(3,5),(16,8), \\
(11,9),(6,10),(1,11),(9,15),(4,16),(2,22)\}
\end{array} \\
\Gamma\left(P_{1}, P_{2}, P_{3}\right) & = \\
& \begin{array}{l}
\{(2,8,8),(2,15,1),(2,0,15),(9,8,1),(9,1,8), \\
(4,9,2),(4,2,9),(16,1,1),(11,2,2),(6,3,3),(1,4,4)\} .
\end{array} \\
\Gamma\left(P_{1}, P_{2}, P_{3}, P_{4}\right)= & =\{(2,8,1,1),(2,1,8,1),(2,1,1,8),(9,1,1,1),(4,2,2,2)\} . \\
\Gamma\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right)= & \{(2,1,1,1,1)\} .
\end{aligned}
$$

Other Applications

We apply the same idea in:
The $G K$ curve over $\mathbb{F}_{q^{2}}$ is the curve of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)$ with affine equations

$$
\left\{\begin{array}{l}
Z^{n^{2}-n+1}=Y h(X) \tag{5}\\
X^{n}+X=Y^{n+1}
\end{array}\right.
$$

where $h(X)=\sum_{i=0}^{n}(-1)^{i+1} X^{i(n-1)}$.

Other Applications

We apply the same idea in:
The $G K$ curve over $\mathbb{F}_{q^{2}}$ is the curve of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)$ with affine equations

$$
\left\{\begin{array}{l}
Z^{n^{2}-n+1}=Y h(X) \tag{5}\\
X^{n}+X=Y^{n+1}
\end{array}\right.
$$

where $h(X)=\sum_{i=0}^{n}(-1)^{i+1} X^{i(n-1)}$.

$$
H\left(P_{\infty}\right)=\left\langle n^{3}-n^{2}+n, n^{3}, n^{3}+1\right\rangle
$$

Bibliography

E. I. Duursma and S. Park, Delta sets for divisors supported in two points, Finite Fields and Their Applications, 18 (5), 2012, 865-885.

R A.S. Castellanos and G. Tizziotti, On Weierstrass semigroup at m points on curves of the type $f(y)=g(x)$. To appear in Journal Pure on Applied Algebra (2017).

Muchas Gracias !!!

 Muito Obrigado !!!

 Muito Obrigado !!!}

God Bless You

