Left Metacyclic Ideals

Samir Assuena

Centro Universiário da FEI

Joint work with César Polcino Milies

samir.assuena@fei.edu.br

CIMPA RESEARCH SCHOOL

ALGEBRAIC METHODS IN CODING THEORY

Definition

A group G is **metacyclic** if G contains a cyclic normal subgroup H such that the factor group G/H is also cyclic.

The dihedral groups and groups all whose Sylow subgroups are cyclic are examples of such groups.

ww.fei.edu

Let G be a metacyclic group, $H = \langle a \rangle$ its cyclic normal subgroup, and set $G/H = \langle bH \rangle$. Then G has the following presentation

$${\mathcal{G}}=\left\langle {\mathsf{a}},{\mathsf{b}}\mid{\mathsf{a}}^m=1,{\mathsf{b}}^n={\mathsf{a}}^{\mathsf{s}},{\mathsf{b}}{\mathsf{a}}{\mathsf{b}}^{-1}={\mathsf{a}}^r
ight
angle$$

and the integers m, n, s, r satisfy the relations

$$s \mid m, m \mid s(r-1)$$
, $r < m$, $gcd(r, m) = 1$.

When s = m, we say G is *split*. In this case, $G = \langle a \rangle \rtimes \langle b \rangle$.

universitário

Group Codes

Definition

A group code over a field \mathbb{F} is any ideal I of the group algebra $\mathbb{F}G$ of a finite group G. A code is said to be metacyclic, abelian, or dihedral in case the given group G is of that kind. If I is two-sided, then it is called a central code. A minimal code is an ideal I (left, two-sided) which is minimal in the set of all (left, two-sided) ideals of $\mathbb{F}G$.

Group Codes

The weight of an element $\alpha = \sum_{g \in G} \alpha_g g$ is

$$w(\alpha) = |\{g \mid \alpha_g \neq 0, g \in G\}|$$

that is, the number of elements of the support of α . The **weight** of an ideal *I* is

$$w(I) = \min\{w(\alpha) \mid \alpha \neq 0, \ \alpha \in I\}.$$

Definition

Let G_1 and G_2 be finite groups of the same order and let \mathbb{F} be a field. Let $\mathbb{F}G_1$ and $\mathbb{F}G_2$ be the corresponding group algebras. A combinatorial equivalence is a linear isomorphism $\phi : \mathbb{F}G_1 \longrightarrow \mathbb{F}G_2$ induced by a bijection $\phi : G_1 \longrightarrow G_2$. Codes $C_1 \subset \mathbb{F}G_1$ and $C_2 \subset \mathbb{F}G_2$ are combinatorially equivalent if there exists a combinatorial equivalence $\phi : \mathbb{F}G_1 \longrightarrow \mathbb{F}G_2$ such that $\phi(C_1) = C_2.$

Theorem (Sabin and Lomonaco)

Metacyclic Central Codes are combinatorially equivalent to abelian

codes.

www.fei.edu.br

< 合礼

• • = • • = •

æ

Let \mathbb{F}_q be a finite field. For a subgroup S of a group \mathcal{G} such that $gcd(q, \mid S \mid) = 1$, we set

$$\widehat{S} = \frac{1}{|S|} \sum_{x \in S} x.$$

Then \widehat{S} is an idempotent of $\mathbb{F}_q \mathcal{G}$ and is central if and only if S is a normal subgroup.

Let G be a split metaclyclic group of order $p^m \ell^n$ with presentation

$$G = \left\langle a, b \mid a^{p^m} = 1 = b^{\ell^n}, bab^{-1} = a^r
ight
angle$$

and \mathbb{F}_q be a finite field with q elements such that $gcd(q, p^m \ell^n) = 1$. In this case, the group algebra $\mathbb{F}_q G$ is semisimple and it can be decomposed as direct sum of simple rings.

Set $H = \langle a \rangle$ and let

$$H = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_m = \{1\}$$

be the descending chain of all subgroups of H, i.e.,

 $H_j = \langle a^{p^j}
angle, \ 0 \leq j \leq m$. Consider the idempotents

$$e_0 = \widehat{H}$$
 and $e_j = \widehat{H_j} - \widehat{H_{j-1}}$, $1 \le j \le m$,

which are central in $\mathbb{F}_q G$.

www.fei.edu.br

- A - E - M

э

Write $\widehat{H} = \widehat{a}$ and $\langle \widehat{b} \rangle = \widehat{b}$, so the elements $\widehat{b}e_j$, $1 \leq j \leq m$, are non central idempotents of $\mathbb{F}_q G$.

Proposition

Let e be a central idempotent. Then the left ideal $\mathbb{F}_q G \cdot \widehat{b}e$ is

minimal if and only if the ideal $\mathbb{F}_q G \cdot e$ is minimal as a two-sided ideal.

Proposition

The left codes $\mathbb{F}_q G \cdot \widehat{b}e_j$ and $\mathbb{F}_q G \cdot (1 - \widehat{b})e_j$ are combinatorially

equivalent to cyclic codes.

Metacyclic Codes

Lemma

For all j, $1 \le j \le m$, the elements $\alpha_j = e_j + \widehat{b}a(1 - \widehat{b})e_j$ are units inside the ideals $\mathbb{F}_q G \cdot e_j$.

So, we can construct non central idempotents using the units α_j as follows $\alpha_j \left(\widehat{b} e_j \right) \alpha_j^{-1}$ and $\alpha_j^{-1} \left(\widehat{b} e_j \right) \alpha_j$.

Samir Assuena Left Metacyclic Ideals

The non central idempotents are

$$(\widehat{b}\pm \widehat{b}a(1-\widehat{b}))e_j, \ 1\leq j\leq m.$$

The dimension of $\mathbb{F}_q G \cdot \hat{b} e_j$ over \mathbb{F}_q is $p^j - p^{j-1} = \varphi(p^j)$, where φ denotes Euler's totient function. Hence the dimension of $\mathbb{F}_q G \cdot (\hat{b} \pm \hat{b} a(1-\hat{b})) e_j$ over \mathbb{F}_q is also $\varphi(p^j)$.

Metacyclic Codes

Proposition

Write $f = (\hat{b} + \hat{b}a(1 - \hat{b}))e_j$. If e_j is a central primitive idempotent of $\mathbb{F}_q \langle a \rangle$, then the set

$$\mathcal{B} = \{f, af, a^2f, \cdots, a^{\varphi(p^j)-1}f\}$$

is a basis of the left ideal $\mathbb{F}_q G \cdot f$ over \mathbb{F}_q .

Example 1: Set $G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.

< 🗗 🕨 < 🖹 🕨 🔹

Example 1: Set
$$G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$$
.

Central primitive idempotents over \mathbb{F}_5 :

$$f_1 = \widehat{b}\widehat{a}, \quad f_2 = (1 - \widehat{b})\widehat{a}, \quad e_1 = 1 - \widehat{a};$$

$$\mathbb{F}_5 G \cong \mathbb{F}_5 \oplus \mathbb{F}_{25} \oplus M_3(\mathbb{F}_{25}).$$

___ ▶ <

Example 1: Set
$$G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$$
.

Central primitive idempotents over \mathbb{F}_5 :

$$f_1=\widehat{b}\widehat{a}, \quad f_2=(1-\widehat{b})\widehat{a}, \quad e_1=1-\widehat{a};$$

$$\mathbb{F}_5 G \cong \mathbb{F}_5 \oplus \mathbb{F}_{25} \oplus M_3(\mathbb{F}_{25}).$$

 $f = (\widehat{b} + \widehat{b}a(1 - \widehat{b}))e_1;$

- ● ● ●

Example 1: Set
$$G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$$
.

Central primitive idempotents over \mathbb{F}_5 :

$$f_1 = \widehat{b}\widehat{a}, \quad f_2 = (1 - \widehat{b})\widehat{a}, \quad e_1 = 1 - \widehat{a};$$

$$\mathbb{F}_5 G \cong \mathbb{F}_5 \oplus \mathbb{F}_{25} \oplus M_3(\mathbb{F}_{25}).$$

$$f = (\widehat{b} + \widehat{b}a(1 - \widehat{b}))e_1;$$

 $\mathcal{B} = \{f, af, a^2f, a^3f, a^4f, a^5f\}$ basis of the left ideal $\mathbb{F}_5 G \cdot f$.

伺 ト く ヨ ト く ヨ ト

Example 1: Set
$$G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$$
.

Central primitive idempotents over \mathbb{F}_5 :

$$f_1 = \widehat{b}\widehat{a}, \quad f_2 = (1 - \widehat{b})\widehat{a}, \quad e_1 = 1 - \widehat{a};$$

$$\mathbb{F}_5 G \cong \mathbb{F}_5 \oplus \mathbb{F}_{25} \oplus M_3(\mathbb{F}_{25}).$$

$$f = (\widehat{b} + \widehat{b}a(1 - \widehat{b}))e_1;$$

 $\mathcal{B} = \{f, af, a^2f, a^3f, a^4f, a^5f\}$ basis of the left ideal $\mathbb{F}_5G \cdot f$.

We have found a minimal [21,6,10] left code.

Example 2: Set $G = \langle a, b | a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.

(本部) (本語) (本語)

3

Example 2: Set $G = \langle a, b | a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.

Central primitive idempotents over \mathbb{F}_2 :

$$\begin{split} f_1 &= \widehat{b}\widehat{a}, \qquad f_2 = (1 - \widehat{b})\widehat{a}, \\ f_3 &= \frac{1}{7} \left(3 + (\xi + \xi^2 + \xi^4)\Gamma_a + (\xi^3 + \xi^5 + \xi^6)\Gamma_{a^3} \right), \\ f_4 &= \frac{1}{7} \left(3 + (\xi^3 + \xi^5 + \xi^6)\Gamma_a + (\xi + \xi^2 + \xi^4)\Gamma_{a^3} \right), \text{ where } \xi \text{ is a} \end{split}$$

primitive 7th root of unity;

$$\mathbb{F}_2 G \cong \mathbb{F}_2 \oplus \mathbb{F}_4 \oplus M_3(\mathbb{F}_2) \oplus M_3(\mathbb{F}_2).$$

www.fei.edu.br

4 3 b

э

Take $e_1 = 1 + \hat{a}$ which is not a central primitive idempotent and $f = (\hat{b} + \hat{b}a(1 + \hat{b}))e_1;$

 $\mathcal{B} = \{f, af, a^2f, a^3f, a^4f, a^5f\} \text{ basis of the left ideal } \mathbb{F}_2G \cdot f.$

Take $e_1 = 1 + \hat{a}$ which is not a central primitive idempotent and $f = (\hat{b} + \hat{b}a(1 + \hat{b}))e_1;$

 $\mathcal{B} = \{f, af, a^2f, a^3f, a^4f, a^5f\}$ basis of the left ideal $\mathbb{F}_2G \cdot f$.

This is a [21,6,8]-code, which is not minimal and it has the same weight of the best known [21,6]-code.

Dihedral Codes

$$D = \langle a, b \mid a^{p^m} = 1 = b^2, \ bab = a^{-1} \rangle.$$

æ

$$D = \langle a, b \mid a^{p^m} = 1 = b^2, \ bab = a^{-1} \rangle.$$

Suppose that $\mathcal{U}(\mathbb{Z}_{p^m}) = \langle \overline{q} \rangle$. The elements

$$\begin{split} e_{11} &= \left(\frac{1+b}{2}\right) e, & e_{12} &= \left(\frac{1+b}{2}\right) a \left(\frac{1-b}{2}\right) e, \\ e_{21} &= 4((a-a^{-1})e)^{-2} \left(\frac{1-b}{2}\right) a \left(\frac{1+b}{2}\right) e, & e_{22} &= \left(\frac{1-b}{2}\right) e. \end{split}$$

form a set of matrix units for $(\mathbb{F}D)e$.

www.fei.edu.br

æ

Example 3: Let D_9 be dihedral group of order 18, set $e = e_1 = \widehat{H_1} - \widehat{H_0}$, $f = e_{11} - e_{22}$.

- **→** → **→**

Example 3: Let D_9 be dihedral group of order 18, set $e = e_1 = \widehat{H_1} - \widehat{H_0}$, $f = e_{11} - e_{22}$.

The set $\{f, af\}$ is a basis of the minimal left ideal $I = \mathbb{F}_q D_9 \cdot f$.

Example 3: Let D_9 be dihedral group of order 18, set $e = e_1 = \widehat{H_1} - \widehat{H_0}, f = e_{11} - e_{22}.$

The set $\{f, af\}$ is a basis of the minimal left ideal $I = \mathbb{F}_q D_9 \cdot f$.

If the characteristic of \mathbb{F}_q is different from 2,3,5 and 7, the weight of I of weight 15 and it is the same as that of the best known code of same dimension and this code is not equivalent to any abelian code.

Example 4: Let D_6 be dihedral group of order 6.

Example 4: Let D_6 be dihedral group of order 6.

Set $e = 1 - \hat{a}$ and set $f = e_{11} - e_{12}$.

Example 4: Let D_6 be dihedral group of order 6. Set $e = 1 - \hat{a}$ and set $f = e_{11} - e_{12}$.

The set $\{f, af\}$ is a basis of the minimal left ideal $I = \mathbb{F}_q D_6 \cdot f$.

Example 4: Let D_6 be dihedral group of order 6. Set $e = 1 - \hat{a}$ and set $f = e_{11} - e_{12}$.

The set $\{f, af\}$ is a basis of the minimal left ideal $I = \mathbb{F}_q D_6 \cdot f$.

If the characteristic of \mathbb{F}_q is different from 2,3,5 and 7, the weight of I of weight 5 and it is the same as that of the best known code of same dimension.

Thank you!!!!

æ

Э

合 ▶ ◀