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Metacyclic Groups

Definition

A group G is metacyclic if G contains a cyclic normal subgroup H

such that the factor group G/H is also cyclic.

The dihedral groups and groups all whose Sylow subgroups are

cyclic are examples of such groups.
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Metacyclic Groups

Let G be a metacyclic group, H = 〈a〉 its cyclic normal subgroup,

and set G/H = 〈bH〉. Then G has the following presentation

G =
〈
a, b | am = 1, bn = as , bab−1 = ar

〉
and the integers m,n,s, r satisfy the relations

s | m, m | s(r − 1) , r < m, gcd(r ,m) = 1.

When s = m, we say G is split. In this case, G = 〈a〉o 〈b〉.
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Group Codes

Definition

A group code over a field F is any ideal I of the group algebra FG

of a finite group G . A code is said to be metacyclic, abelian, or

dihedral in case the given group G is of that kind. If I is two-sided,

then it is called a central code. A minimal code is an ideal I

(left, two-sided) which is minimal in the set of all (left, two-sided)

ideals of FG .
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Group Codes

The weight of an element α =
∑

g∈G αgg is

w(α) =| {g | αg 6= 0, g ∈ G} |

that is, the number of elements of the support of α. The weight

of an ideal I is

w(I ) = min{w(α) | α 6= 0, α ∈ I}.
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Metacyclic Codes

Definition

Let G1 and G2 be finite groups of the same order and let F be a

field. Let FG1 and FG2 be the corresponding group algebras. A

combinatorial equivalence is a linear isomorphism

φ : FG1 −→ FG2 induced by a bijection φ : G1 −→ G2. Codes

C1 ⊂ FG1 and C2 ⊂ FG2 are combinatorially equivalent if there

exists a combinatorial equivalence φ : FG1 −→ FG2 such that

φ(C1) = C2.
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Metacyclic Codes

Theorem (Sabin and Lomonaco)

Metacyclic Central Codes are combinatorially equivalent to abelian

codes.
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Metacyclic Codes

Let Fq be a finite field. For a subgroup S of a group G such that

gcd(q, | S |) = 1, we set

Ŝ = 1
|S|

∑
x∈S

x .

Then Ŝ is an idempotent of FqG and is central if and only if S is a

normal subgroup.
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Metacyclic Codes

Let G be a split metaclyclic group of order pm`n with presentation

G =
〈
a, b | apm = 1 = b`

n
, bab−1 = ar

〉
and Fq be a finite field with q elements such that

gcd(q, pm`n) = 1. In this case, the group algebra FqG is

semisimple and it can be decomposed as direct sum of simple rings.
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Metacyclic Codes

Set H = 〈a〉 and let

H = H0 ⊇ H1 ⊇ · · · ⊇ Hm = {1}

be the descending chain of all subgroups of H, i.e.,

Hj = 〈apj 〉, 0 ≤ j ≤ m. Consider the idempotents

e0 = Ĥ and ej = Ĥj − Ĥj−1, 1 ≤ j ≤ m,

which are central in FqG .
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Metacyclic Codes

Write Ĥ = â and 〈̂b〉 = b̂, so the elements b̂ej , 1 ≤ j ≤ m, are non

central idempotents of FqG .

Proposition

Let e be a central idempotent. Then the left ideal FqG · b̂e is

minimal if and only if the ideal FqG · e is minimal as a two-sided

ideal.

Proposition

The left codes FqG · b̂ej and FqG · (1− b̂)ej are combinatorially

equivalent to cyclic codes.
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Metacyclic Codes

Lemma

For all j , 1 ≤ j ≤ m, the elements αj = ej + b̂a(1− b̂)ej are units

inside the ideals FqG · ej .

So, we can construct non central idempotents using the units αj as

follows αj

(
b̂ej

)
α−1
j and α−1

j

(
b̂ej

)
αj .
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Metacyclic Codes

The non central idempotents are

(b̂ ± b̂a(1− b̂))ej , 1 ≤ j ≤ m.

The dimension of FqG · b̂ej over Fq is pj − pj−1 = ϕ(pj), where ϕ

denotes Euler’s totient function. Hence the dimension of

FqG · (b̂ ± b̂a(1− b̂))ej over Fq is also ϕ(pj).
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Metacyclic Codes

Proposition

Write f = (b̂ + b̂a(1− b̂))ej . If ej is a central primitive idempotent

of Fq 〈a〉, then the set

B = {f , af , a2f , · · · , aϕ(pj )−1f }

is a basis of the left ideal FqG · f over Fq.
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Examples

Example 1: Set G =
〈
a, b | a7 = 1 = b3, bab−1 = a2

〉
.

Central primitive idempotents over F5:

f1 = b̂â, f2 = (1− b̂)â, e1 = 1− â;

F5G ∼= F5 ⊕ F25 ⊕M3(F25).

f = (b̂ + b̂a(1− b̂))e1;

B = {f , af , a2f , a3f , a4f , a5f } basis of the left ideal F5G · f .

We have found a minimal [21,6,10] left code.
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Examples

Example 2: Set G =
〈
a, b | a7 = 1 = b3, bab−1 = a2

〉
.

Central primitive idempotents over F2:

f1 = b̂â, f2 = (1− b̂)â,

f3 =
1

7

(
3 + (ξ + ξ2 + ξ4)Γa + (ξ3 + ξ5 + ξ6)Γa3

)
,

f4 =
1

7

(
3 + (ξ3 + ξ5 + ξ6)Γa + (ξ + ξ2 + ξ4)Γa3

)
, where ξ is a

primitive 7th root of unity;

F2G ∼= F2 ⊕ F4 ⊕M3(F2)⊕M3(F2).
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Examples

Take e1 = 1 + â which is not a central primitive idempotent and

f = (b̂ + b̂a(1 + b̂))e1;

B = {f , af , a2f , a3f , a4f , a5f } basis of the left ideal F2G · f .

This is a [21,6,8]-code, which is not minimal and it has the same

weight of the best known [21,6]-code.
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Dihedral Codes

D =
〈
a, b | apm = 1 = b2, bab = a−1

〉
.

Suppose that U(Zpm) = 〈q〉. The elements

e11 =
(

1+b
2

)
e, e12 =

(
1+b

2

)
a
(

1−b
2

)
e,

e21 = 4((a− a−1)e)−2
(

1−b
2

)
a
(

1+b
2

)
e, e22 =

(
1−b

2

)
e.

form a set of matrix units for (FD)e.
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Dihedral Codes

Example 3: Let D9 be dihedral group of order 18, set

e = e1 = Ĥ1 − Ĥ0, f = e11 − e22.

The set {f , af } is a basis of the minimal left ideal I = FqD9 · f .

If the characteristic of Fq is different from 2,3,5 and 7, the weight

of I of weight 15 and it is the same as that of the best known code

of same dimension and this code is not equivalent to any abelian

code.
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Dihedral Codes

Example 4: Let D6 be dihedral group of order 6.

Set e = 1− â and set f = e11 − e12.

The set {f , af } is a basis of the minimal left ideal I = FqD6 · f .

If the characteristic of Fq is different from 2,3,5 and 7, the weight

of I of weight 5 and it is the same as that of the best known code

of same dimension.
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