Left Metacyclic Ideals

Samir Assuena
Centro Universitário da FEI
Joint work with César Polcino Milies
samir.assuena@fei.edu.br

CIMPA RESEARCH SCHOOL
ALGEBRAIC METHODS IN CODING THEORY
Metacyclic Groups

Definition

A group \(G \) is **metacyclic** if \(G \) contains a cyclic normal subgroup \(H \) such that the factor group \(G/H \) is also cyclic.

The dihedral groups and groups all whose Sylow subgroups are cyclic are examples of such groups.
Let G be a metacyclic group, $H = \langle a \rangle$ its cyclic normal subgroup, and set $G/H = \langle bH \rangle$. Then G has the following presentation

$$G = \langle a, b \mid a^m = 1, b^n = a^s, bab^{-1} = a^r \rangle$$

and the integers m, n, s, r satisfy the relations

$$s \mid m, \quad m \mid s(r - 1), \quad r < m, \quad \gcd(r, m) = 1.$$

When $s = m$, we say G is *split*. In this case, $G = \langle a \rangle \rtimes \langle b \rangle$.

A group code over a field \mathbb{F} is any ideal I of the group algebra $\mathbb{F}G$ of a finite group G. A code is said to be metacyclic, abelian, or dihedral in case the given group G is of that kind. If I is two-sided, then it is called a central code. A minimal code is an ideal I (left, two-sided) which is minimal in the set of all (left, two-sided) ideals of $\mathbb{F}G$.
Group Codes

The **weight** of an element $\alpha = \sum_{g \in G} \alpha g g$ is

$$w(\alpha) = | \{g \mid \alpha_g \neq 0, \ g \in G\} |$$

that is, the number of elements of the support of α. The **weight** of an ideal I is

$$w(I) = \min \{w(\alpha) \mid \alpha \neq 0, \ \alpha \in I\}.$$
Metacyclic Codes

Definition

Let G_1 and G_2 be finite groups of the same order and let \mathbb{F} be a field. Let $\mathbb{F}G_1$ and $\mathbb{F}G_2$ be the corresponding group algebras. A **combinatorial equivalence** is a linear isomorphism $\phi : \mathbb{F}G_1 \rightarrow \mathbb{F}G_2$ induced by a bijection $\phi : G_1 \rightarrow G_2$. Codes $C_1 \subset \mathbb{F}G_1$ and $C_2 \subset \mathbb{F}G_2$ are **combinatorially equivalent** if there exists a combinatorial equivalence $\phi : \mathbb{F}G_1 \rightarrow \mathbb{F}G_2$ such that $\phi(C_1) = C_2$.
Theorem (Sabin and Lomonaco)

Metacyclic Central Codes are combinatorially equivalent to abelian codes.
Let \mathbb{F}_q be a finite field. For a subgroup S of a group G such that $gcd(q, |S|) = 1$, we set

$$\hat{S} = \frac{1}{|S|} \sum_{x \in S} x.$$

Then \hat{S} is an idempotent of \mathbb{F}_qG and is central if and only if S is a normal subgroup.
Let G be a split metacyclic group of order $p^m \ell^n$ with presentation

$$G = \langle a, b \mid a^{p^m} = 1 = b^{\ell^n}, bab^{-1} = a^r \rangle$$

and \mathbb{F}_q be a finite field with q elements such that $\gcd(q, p^m \ell^n) = 1$. In this case, the group algebra $\mathbb{F}_q G$ is semisimple and it can be decomposed as direct sum of simple rings.
Set $H = \langle a \rangle$ and let

$$H = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_m = \{1\}$$

be the descending chain of all subgroups of H, i.e., $H_j = \langle a^{p^j} \rangle$, $0 \leq j \leq m$. Consider the idempotents

$$e_0 = \widehat{H} \quad \text{and} \quad e_j = \widehat{H}_j - \widehat{H}_{j-1}, \quad 1 \leq j \leq m,$$

which are central in $\mathbb{F}_q G$.
Write $\hat{H} = \hat{a}$ and $\langle \hat{b} \rangle = \hat{b}$, so the elements $\hat{b}e_j$, $1 \leq j \leq m$, are non-central idempotents of $\mathbb{F}_q G$.

Proposition

Let e be a central idempotent. Then the left ideal $\mathbb{F}_q G \cdot \hat{b}e$ is minimal if and only if the ideal $\mathbb{F}_q G \cdot e$ is minimal as a two-sided ideal.

Proposition

The left codes $\mathbb{F}_q G \cdot \hat{b}e_j$ and $\mathbb{F}_q G \cdot (1 - \hat{b})e_j$ are combinatorially equivalent to cyclic codes.
For all j, $1 \leq j \leq m$, the elements $\alpha_j = e_j + \hat{b}a(1 - \hat{b})e_j$ are units inside the ideals $\mathbb{F}_q G \cdot e_j$.

So, we can construct non central idempotents using the units α_j as follows $\alpha_j \left(\hat{b}e_j \right) \alpha_j^{-1}$ and $\alpha_j^{-1} \left(\hat{b}e_j \right) \alpha_j$.
The non central idempotents are

\[(\hat{b} \pm \hat{b}a(1 - \hat{b}))e_j, \ 1 \leq j \leq m.\]

The dimension of \(\mathbb{F}_q G \cdot \hat{b}e_j\) over \(\mathbb{F}_q\) is \(p^j - p^j - 1 = \varphi(p^j)\), where \(\varphi\) denotes Euler’s totient function. Hence the dimension of \(\mathbb{F}_q G \cdot (\hat{b} \pm \hat{b}a(1 - \hat{b}))e_j\) over \(\mathbb{F}_q\) is also \(\varphi(p^j)\).
Proposition

Write $f = (\hat{b} + \hat{b}a(1 - \hat{b}))e_j$. If e_j is a central primitive idempotent of $\mathbb{F}_q \langle a \rangle$, then the set

$$B = \{ f, af, a^2 f, \ldots, a^{\varphi(p^j)} f \}$$

is a basis of the left ideal $\mathbb{F}_q G \cdot f$ over \mathbb{F}_q.
Examples

Example 1: Set $G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.
Example 1: Set $G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.

Central primitive idempotents over \mathbb{F}_5:

$f_1 = \hat{b}a, \quad f_2 = (1 - \hat{b})\hat{a}, \quad e_1 = 1 - \hat{a};$

$$\mathbb{F}_5 G \cong \mathbb{F}_5 \oplus \mathbb{F}_{25} \oplus M_3(\mathbb{F}_{25}).$$
Example 1: Set $G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.

Central primitive idempotents over \mathbb{F}_5:

$f_1 = \hat{b}\hat{a}, \quad f_2 = (1 - \hat{b})\hat{a}, \quad e_1 = 1 - \hat{a};$

$$\mathbb{F}_5 G \cong \mathbb{F}_5 \oplus \mathbb{F}_{25} \oplus M_3(\mathbb{F}_{25}).$$

$f = (\hat{b} + \hat{ba}(1 - \hat{b}))e_1;$
Example 1: Set \(G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle \).

Central primitive idempotents over \(\mathbb{F}_5 \):

\[
f_1 = \hat{b}\hat{a}, \quad f_2 = (1 - \hat{b})\hat{a}, \quad e_1 = 1 - \hat{a};
\]

\[
\mathbb{F}_5 G \cong \mathbb{F}_5 \oplus \mathbb{F}_{25} \oplus M_3(\mathbb{F}_{25}).
\]

\[
f = (\hat{b} + \hat{b}a(1 - \hat{b}))e_1;
\]

\(\mathcal{B} = \{ f, af, a^2f, a^3f, a^4f, a^5f \} \) basis of the left ideal \(\mathbb{F}_5 G \cdot f \).
Example 1: Set $G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.

Central primitive idempotents over \mathbb{F}_5:

$f_1 = \hat{b}\hat{a}$, $f_2 = (1 - \hat{b})\hat{a}$, $e_1 = 1 - \hat{a}$;

$$\mathbb{F}_5 G \cong \mathbb{F}_5 \oplus \mathbb{F}_{25} \oplus M_3(\mathbb{F}_{25}).$$

$f = (\hat{b} + \hat{ba}(1 - \hat{b}))e_1$;

$\mathcal{B} = \{f, af, a^2f, a^3f, a^4f, a^5f\}$ basis of the left ideal $\mathbb{F}_5 G \cdot f$.

We have found a minimal $[21,6,10]$ left code.
Example 2: Set $G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.
Example 2: Set $G = \langle a, b \mid a^7 = 1 = b^3, bab^{-1} = a^2 \rangle$.

Central primitive idempotents over \mathbb{F}_2:

\[f_1 = \hat{b}\hat{a}, \quad f_2 = (1 - \hat{b})\hat{a}, \]
\[f_3 = \frac{1}{7} (3 + (\xi + \xi^2 + \xi^4)\Gamma_a + (\xi^3 + \xi^5 + \xi^6)\Gamma_a^3), \]
\[f_4 = \frac{1}{7} (3 + (\xi^3 + \xi^5 + \xi^6)\Gamma_a + (\xi + \xi^2 + \xi^4)\Gamma_a^3), \]

where ξ is a primitive 7th root of unity;

\[\mathbb{F}_2 G \cong \mathbb{F}_2 \oplus \mathbb{F}_4 \oplus M_3(\mathbb{F}_2) \oplus M_3(\mathbb{F}_2). \]
Examples

Take $e_1 = 1 + \hat{a}$ which is not a central primitive idempotent and $f = (\hat{b} + \hat{ba}(1 + \hat{b}))e_1$;

$\mathcal{B} = \{f, af, a^2f, a^3f, a^4f, a^5f\}$ basis of the left ideal $\mathbb{F}_2G \cdot f$.
Examples

Take $e_1 = 1 + \hat{a}$ which is not a central primitive idempotent and $f = (\hat{b} + \hat{ba}(1 + \hat{b}))e_1$;

$\mathcal{B} = \{f, af, a^2f, a^3f, a^4f, a^5f\}$ basis of the left ideal $\mathbb{F}_2 G \cdot f$.

This is a $[21,6,8]$-code, which is not minimal and it has the same weight of the best known $[21,6]$-code.
Dihedral Codes

\[D = \langle a, b \mid a^{p^m} = 1 = b^2, \ bab = a^{-1} \rangle. \]
Dihedral Codes

\[D = \langle a, b \mid a^{p^m} = 1 = b^2, \ bab = a^{-1} \rangle. \]

Suppose that \(\mathcal{U}(\mathbb{Z}_{p^m}) = \langle \bar{q} \rangle \). The elements

\[
\begin{align*}
e_{11} & = \left(\frac{1+b}{2} \right) e, & e_{12} & = \left(\frac{1+b}{2} \right) a \left(\frac{1-b}{2} \right) e, \\
e_{21} & = 4((a - a^{-1})e)^{-2} \left(\frac{1-b}{2} \right) a \left(\frac{1+b}{2} \right) e, & e_{22} & = \left(\frac{1-b}{2} \right) e.
\end{align*}
\]

form a set of matrix units for \((\mathbb{F}D)e\).
Example 3: Let D_9 be dihedral group of order 18, set

$$e = e_1 = \widehat{H_1} - \widehat{H_0}, f = e_{11} - e_{22}.$$
Example 3: Let D_9 be dihedral group of order 18, set
\[e = e_1 = \hat{H}_1 - \hat{H}_0, \quad f = e_{11} - e_{22}. \]

The set \(\{ f, af \} \) is a basis of the minimal left ideal \(I = \mathbb{F}_q D_9 \cdot f \).
Example 3: Let D_9 be dihedral group of order 18, set

\[e = e_1 = \widehat{H_1} - \widehat{H_0}, \quad f = e_{11} - e_{22}. \]

The set \(\{ f, af \} \) is a basis of the minimal left ideal \(I = \mathbb{F}_q D_9 \cdot f \).

If the characteristic of \(\mathbb{F}_q \) is different from 2, 3, 5 and 7, the weight of \(I \) of weight 15 and it is the same as that of the best known code of same dimension and this code is not equivalent to any abelian code.
Example 4: Let D_6 be dihedral group of order 6.
Example 4: Let D_6 be dihedral group of order 6.

Set $e = 1 - \hat{a}$ and set $f = e_{11} - e_{12}$.
Example 4: Let D_6 be dihedral group of order 6.

Set $e = 1 - \hat{a}$ and set $f = e_{11} - e_{12}$.

The set $\{f, af\}$ is a basis of the minimal left ideal $l = \mathbb{F}_q D_6 \cdot f$.
Example 4: Let D_6 be dihedral group of order 6.

Set $e = 1 - \hat{a}$ and set $f = e_{11} - e_{12}$.

The set $\{f, af\}$ is a basis of the minimal left ideal $I = \mathbb{F}_q D_6 \cdot f$.

If the characteristic of \mathbb{F}_q is different from 2, 3, 5 and 7, the weight of I of weight 5 and it is the same as that of the best known code of same dimension.
Thank you!!!!