Left Metacyclic Ideals

Samir Assuena
Centro Universiário da FEI
Joint work with César Polcino Milies
samir.assuena@fei.edu.br
CIMPA RESEARCH SCHOOL ALGEBRAIC METHODS IN CODING THEORY

Metacyclic Groups

Definition

A group G is metacyclic if G contains a cyclic normal subgroup H such that the factor group G / H is also cyclic.

The dihedral groups and groups all whose Sylow subgroups are cyclic are examples of such groups.

Metacyclic Groups

Let G be a metacyclic group, $H=\langle a\rangle$ its cyclic normal subgroup, and set $G / H=\langle b H\rangle$. Then G has the following presentation

$$
G=\left\langle a, b \mid a^{m}=1, b^{n}=a^{s}, b a b^{-1}=a^{r}\right\rangle
$$

and the integers m, n, s, r satisfy the relations

$$
s|m, \quad m| s(r-1) \quad, \quad r<m, \quad \operatorname{gcd}(r, m)=1
$$

When $s=m$, we say G is split. In this case, $G=\langle a\rangle \rtimes\langle b\rangle$.

Group Codes

Definition

A group code over a field \mathbb{F} is any ideal I of the group algebra $\mathbb{F} G$ of a finite group G. A code is said to be metacyclic, abelian, or dihedral in case the given group G is of that kind. If I is two-sided, then it is called a central code. A minimal code is an ideal I (left, two-sided) which is minimal in the set of all (left, two-sided) ideals of $\mathbb{F} G$.

Group Codes

The weight of an element $\alpha=\sum_{g \in G} \alpha_{g} g$ is

$$
w(\alpha)=\left|\left\{g \mid \alpha_{g} \neq 0, g \in G\right\}\right|
$$

that is, the number of elements of the support of α. The weight of an ideal $/$ is

$$
w(I)=\min \{w(\alpha) \mid \alpha \neq 0, \alpha \in I\} .
$$

Metacyclic Codes

Definition

Let G_{1} and G_{2} be finite groups of the same order and let \mathbb{F} be a field. Let $\mathbb{F} G_{1}$ and $\mathbb{F} G_{2}$ be the corresponding group algebras. A combinatorial equivalence is a linear isomorphism
$\phi: \mathbb{F} G_{1} \longrightarrow \mathbb{F} G_{2}$ induced by a bijection $\phi: G_{1} \longrightarrow G_{2}$. Codes
$C_{1} \subset \mathbb{F} G_{1}$ and $C_{2} \subset \mathbb{F} G_{2}$ are combinatorially equivalent if there exists a combinatorial equivalence $\phi: \mathbb{F} G_{1} \longrightarrow \mathbb{F} G_{2}$ such that $\phi\left(C_{1}\right)=C_{2}$.

Metacyclic Codes

Theorem (Sabin and Lomonaco)

Metacyclic Central Codes are combinatorially equivalent to abelian codes.

Metacyclic Codes

Let \mathbb{F}_{q} be a finite field. For a subgroup S of a group \mathcal{G} such that $\operatorname{gcd}(q,|S|)=1$, we set

$$
\widehat{S}=\frac{1}{|S|} \sum_{x \in S} x
$$

Then \widehat{S} is an idempotent of $\mathbb{F}_{q} \mathcal{G}$ and is central if and only if S is a normal subgroup.

Metacyclic Codes

Let G be a split metaclyclic group of order $p^{m} \ell^{n}$ with presentation

$$
G=\left\langle a, b \mid a^{p^{m}}=1=b^{\ell^{n}}, b a b^{-1}=a^{r}\right\rangle
$$

and \mathbb{F}_{q} be a finite field with q elements such that $\operatorname{gcd}\left(q, p^{m} \ell^{n}\right)=1$. In this case, the group algebra $\mathbb{F}_{q} G$ is
semisimple and it can be decomposed as direct sum of simple rings.

Metacyclic Codes

Set $H=\langle a\rangle$ and let

$$
H=H_{0} \supseteq H_{1} \supseteq \cdots \supseteq H_{m}=\{1\}
$$

be the descending chain of all subgroups of H, i.e.,
$H_{j}=\left\langle a^{p^{j}}\right\rangle, 0 \leq j \leq m$. Consider the idempotents

$$
e_{0}=\widehat{H} \quad \text { and } \quad e_{j}=\widehat{H_{j}}-\widehat{H_{j-1}}, \quad 1 \leq j \leq m
$$

which are central in $\mathbb{F}_{q} G$.

centro

universitário
ज्ञ̄̃

Metacyclic Codes

Write $\widehat{H}=\widehat{a}$ and $\widehat{\langle b\rangle}=\widehat{b}$, so the elements $\widehat{b} e_{j}, 1 \leq j \leq m$, are non central idempotents of $\mathbb{F}_{q} G$.

Proposition

Let e be a central idempotent. Then the left ideal $\mathbb{F}_{q} G \cdot \widehat{b} e$ is minimal if and only if the ideal $\mathbb{F}_{q} G \cdot e$ is minimal as a two-sided ideal.

Proposition

The left codes $\mathbb{F}_{q} G \cdot \widehat{b} e_{j}$ and $\mathbb{F}_{q} G \cdot(1-\widehat{b}) e_{j}$ are combinatorially equivalent to cyclic codes.

Metacyclic Codes

Lemma

For all $j, 1 \leq j \leq m$, the elements $\alpha_{j}=e_{j}+\widehat{b} a(1-\widehat{b}) e_{j}$ are units inside the ideals $\mathbb{F}_{q} G \cdot e_{j}$.

So, we can construct non central idempotents using the units α_{j} as follows $\alpha_{j}\left(\widehat{b} e_{j}\right) \alpha_{j}^{-1}$ and $\alpha_{j}^{-1}\left(\widehat{b} e_{j}\right) \alpha_{j}$.

Metacyclic Codes

The non central idempotents are

$$
(\widehat{b} \pm \widehat{b} a(1-\widehat{b})) e_{j}, \quad 1 \leq j \leq m
$$

The dimension of $\mathbb{F}_{q} G \cdot \widehat{b} e_{j}$ over \mathbb{F}_{q} is $p^{j}-p^{j-1}=\varphi\left(p^{j}\right)$, where φ denotes Euler's totient function. Hence the dimension of
$\mathbb{F}_{q} G \cdot(\widehat{b} \pm \widehat{b} a(1-\widehat{b})) e_{j}$ over \mathbb{F}_{q} is also $\varphi\left(p^{j}\right)$.

Metacyclic Codes

Proposition

Write $f=(\widehat{b}+\widehat{b} a(1-\widehat{b})) e_{j}$. If e_{j} is a central primitive idempotent of $\mathbb{F}_{q}\langle a\rangle$, then the set

$$
\mathcal{B}=\left\{f, a f, a^{2} f, \cdots, a^{\varphi\left(p^{j}\right)-1} f\right\}
$$

is a basis of the left ideal $\mathbb{F}_{q} G \cdot f$ over \mathbb{F}_{q}.

Examples

Example 1: Set $G=\left\langle a, b \mid a^{7}=1=b^{3}, b a b^{-1}=a^{2}\right\rangle$.

Examples

Example 1: Set $G=\left\langle a, b \mid a^{7}=1=b^{3}, b a b^{-1}=a^{2}\right\rangle$.
Central primitive idempotents over \mathbb{F}_{5} :
$f_{1}=\widehat{b} \hat{a}, \quad f_{2}=(1-\widehat{b}) \hat{a}, \quad e_{1}=1-\hat{a} ;$

$$
\mathbb{F}_{5} G \cong \mathbb{F}_{5} \oplus \mathbb{F}_{25} \oplus M_{3}\left(\mathbb{F}_{25}\right)
$$

Examples

Example 1: Set $G=\langle a, b| a^{7}=1=b^{3}$, $\left.b a b^{-1}=a^{2}\right\rangle$.
Central primitive idempotents over \mathbb{F}_{5} :
$f_{1}=\widehat{b} \widehat{a}, \quad f_{2}=(1-\widehat{b}) \hat{a}, \quad e_{1}=1-\hat{a} ;$
$\mathbb{F}_{5} G \cong \mathbb{F}_{5} \oplus \mathbb{F}_{25} \oplus M_{3}\left(\mathbb{F}_{25}\right)$.
$f=(\widehat{b}+\widehat{b} a(1-\widehat{b})) e_{1} ;$

Examples

Example 1: Set $G=\langle a, b| a^{7}=1=b^{3}$, $\left.b a b^{-1}=a^{2}\right\rangle$.
Central primitive idempotents over \mathbb{F}_{5} :
$f_{1}=\widehat{b} \widehat{a}, \quad f_{2}=(1-\widehat{b}) \hat{a}, \quad e_{1}=1-\hat{a} ;$

$$
\mathbb{F}_{5} G \cong \mathbb{F}_{5} \oplus \mathbb{F}_{25} \oplus M_{3}\left(\mathbb{F}_{25}\right)
$$

$f=(\widehat{b}+\widehat{b} a(1-\widehat{b})) e_{1} ;$
$\mathcal{B}=\left\{f, a f, a^{2} f, a^{3} f, a^{4} f, a^{5} f\right\}$ basis of the left ideal $\mathbb{F}_{5} G \cdot f$.

Examples

Example 1: Set $G=\langle a, b| a^{7}=1=b^{3}$, $\left.b a b^{-1}=a^{2}\right\rangle$.
Central primitive idempotents over \mathbb{F}_{5} :
$f_{1}=\widehat{b} \widehat{a}, \quad f_{2}=(1-\widehat{b}) \hat{a}, \quad e_{1}=1-\hat{a} ;$

$$
\mathbb{F}_{5} G \cong \mathbb{F}_{5} \oplus \mathbb{F}_{25} \oplus M_{3}\left(\mathbb{F}_{25}\right)
$$

$f=(\widehat{b}+\widehat{b} a(1-\widehat{b})) e_{1} ;$
$\mathcal{B}=\left\{f, a f, a^{2} f, a^{3} f, a^{4} f, a^{5} f\right\}$ basis of the left ideal $\mathbb{F}_{5} G \cdot f$.

We have found a minimal $[21,6,10]$ left code.

Examples

Example 2: Set $G=\langle a, b| a^{7}=1=b^{3}$, $\left.b a b^{-1}=a^{2}\right\rangle$.

Examples

Example 2: Set $G=\left\langle a, b \mid a^{7}=1=b^{3}, b a b^{-1}=a^{2}\right\rangle$.
Central primitive idempotents over \mathbb{F}_{2} :
$f_{1}=\widehat{b} \widehat{a}, \quad f_{2}=(1-\widehat{b}) \widehat{a}$,
$f_{3}=\frac{1}{7}\left(3+\left(\xi+\xi^{2}+\xi^{4}\right) \Gamma_{a}+\left(\xi^{3}+\xi^{5}+\xi^{6}\right) \Gamma_{a^{3}}\right)$,
$f_{4}=\frac{1}{7}\left(3+\left(\xi^{3}+\xi^{5}+\xi^{6}\right) \Gamma_{a}+\left(\xi+\xi^{2}+\xi^{4}\right) \Gamma_{a^{3}}\right)$, where ξ is a primitive 7th root of unity;

$$
\mathbb{F}_{2} G \cong \mathbb{F}_{2} \oplus \mathbb{F}_{4} \oplus M_{3}\left(\mathbb{F}_{2}\right) \oplus M_{3}\left(\mathbb{F}_{2}\right)
$$

Examples

Take $e_{1}=1+\widehat{a}$ which is not a central primitive idempotent and $f=(\widehat{b}+\widehat{b} a(1+\widehat{b})) e_{1} ;$
$\mathcal{B}=\left\{f, a f, a^{2} f, a^{3} f, a^{4} f, a^{5} f\right\}$ basis of the left ideal $\mathbb{F}_{2} G \cdot f$.

Examples

Take $e_{1}=1+\widehat{a}$ which is not a central primitive idempotent and $f=(\widehat{b}+\widehat{b} a(1+\widehat{b})) e_{1} ;$
$\mathcal{B}=\left\{f, a f, a^{2} f, a^{3} f, a^{4} f, a^{5} f\right\}$ basis of the left ideal $\mathbb{F}_{2} G \cdot f$.

This is a $[21,6,8]$-code, which is not minimal and it has the same weight of the best known [21,6]-code.

Dihedral Codes

$$
D=\left\langle a, b \mid a^{p^{m}}=1=b^{2}, b a b=a^{-1}\right\rangle
$$

Dihedral Codes

$$
D=\left\langle a, b \mid a^{p^{m}}=1=b^{2}, \quad b a b=a^{-1}\right\rangle .
$$

Suppose that $\mathcal{U}\left(\mathbb{Z}_{p^{m}}\right)=\langle\bar{q}\rangle$. The elements

$$
\begin{array}{ll}
e_{11}=\left(\frac{1+b}{2}\right) e, & e_{12}=\left(\frac{1+b}{2}\right) a\left(\frac{1-b}{2}\right) e, \\
e_{21}=4\left(\left(a-a^{-1}\right) e\right)^{-2}\left(\frac{1-b}{2}\right) a\left(\frac{1+b}{2}\right) e, & e_{22}=\left(\frac{1-b}{2}\right) e .
\end{array}
$$

form a set of matrix units for $(\mathbb{F} D) e$.

Dihedral Codes

Example 3: Let D_{9} be dihedral group of order 18, set $e=e_{1}=\widehat{H_{1}}-\widehat{H_{0}}, f=e_{11}-e_{22}$.

Dihedral Codes

Example 3: Let D_{9} be dihedral group of order 18, set $e=e_{1}=\widehat{H_{1}}-\widehat{H_{0}}, f=e_{11}-e_{22}$.

The set $\{f, a f\}$ is a basis of the minimal left ideal $I=\mathbb{F}_{q} D_{9} \cdot f$.

Dihedral Codes

Example 3: Let D_{9} be dihedral group of order 18, set
$e=e_{1}=\widehat{H_{1}}-\widehat{H_{0}}, f=e_{11}-e_{22}$.

The set $\{f, a f\}$ is a basis of the minimal left ideal $I=\mathbb{F}_{q} D_{9} \cdot f$.

If the characteristic of \mathbb{F}_{q} is different from 2,3,5 and 7, the weight of I of weight 15 and it is the same as that of the best known code of same dimension and this code is not equivalent to any abelian code.

Dihedral Codes

Example 4: Let D_{6} be dihedral group of order 6.

Dihedral Codes

Example 4: Let D_{6} be dihedral group of order 6.
Set $e=1-\hat{a}$ and set $f=e_{11}-e_{12}$.

Dihedral Codes

Example 4: Let D_{6} be dihedral group of order 6.
Set $e=1-\widehat{a}$ and set $f=e_{11}-e_{12}$.

The set $\{f, a f\}$ is a basis of the minimal left ideal $I=\mathbb{F}_{q} D_{6} \cdot f$.

Dihedral Codes

Example 4: Let D_{6} be dihedral group of order 6.
Set $e=1-\widehat{a}$ and set $f=e_{11}-e_{12}$.

The set $\{f, a f\}$ is a basis of the minimal left ideal $I=\mathbb{F}_{q} D_{6} \cdot f$.

If the characteristic of $\mathbb{F}_{\boldsymbol{q}}$ is different from 2,3,5 and 7 , the weight of I of weight 5 and it is the same as that of the best known code of same dimension.

Thank you!!!!

