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Abstract. In this paper we study the family of cyclic codes such that its
minimum distance reaches the maximum of its BCH bounds. We also show a

way to construct cyclic codes with that property by means of computations of

some divisors of a polynomial of the form xn − 1. We apply our results to the
study of those BCH codes C, with designed distance δ, that have minimum

distance d(C) = δ. Finally, we present some examples of new binary BCH

codes satisfying that condition. To do this, we make use of two related tools:
the discrete Fourier transform and the notion of apparent distance of a code,

originally defined for multivariate abelian codes.

1. Introduction

The computation of the minimum distance of a cyclic code, or a lower bound for
it, is one of the main problems on abelian codes (see, for example, [3, 6, 7]). The
oldest lower bound for the minimum distance of a cyclic code is the BCH bound [5,
p. 151]. The study of this bound and its generalizations is a classical topic which
includes the study of the very well-known family of BCH codes. In particular, an
interesting problem is to determine when the maximum of the BCH bounds of a
given cyclic code equals its minimum distance (see [2, 6]). This is our interest.

In this paper we deal with three problems related to the study of the BCH
bound. The first one is how to give necessary and sufficient conditions for a cyclic
code to insure that the maximum of its BCH bounds equals its minimum distance.
The second problem is how to construct such cyclic codes. Our third problem is
related to construction techniques of BCH codes for which its designed distance, its
maximum BCH bound and its minimum distance coincide.

To solve our first problem, we make use of two related tools: the discrete Fourier
transform and the notion of apparent distance of a code, originally defined for
multivariate abelian codes in [1]. These tools and the notation needed are given in
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Section 2. In Section 3, we characterize those cyclic codes for which its minimum
distance reaches the maximum of its BCH bounds (problem 1). Then we study how
to construct cyclic codes with that property by means of computations of divisors
of a polynomial of the form xn − 1 (problem 2). Section 4 is devoted to solve our
third problem. We apply our results to the study of those BCH codes C, with
designed distance δ, that have minimum distance d(C) = δ (see [6, Section 9.2]). In
this paper, some examples of construction techniques and examples of new binary
BCH codes whose minimum distance equals its designed distance are presented. We
point out that all computations were done by using the GAP4r7 program [4] with
the cooperation of Alexander Konovalov. The authors are indebted to him.

2. Notation and preliminaries

We will use standard terminology from coding theory (see for example [6, Chapter
7] or [2, Section 2]). We denote by q a power of the prime number p and by Fq the
field of q elements. Let n be a positive integer which is coprime to q. We denote by
Rn the set of n-th roots of unity and by Un the set of primitive n-th roots of unity.

We denote by Fq[x] the ring of polynomials with coefficients in Fq. For any
g = g(x) ∈ Fq[x] we denote by deg(g) its degree, by supp(g) its support and by
ω(g) = |supp(g)| its weight. For any positive integer n, we consider the quotient
ring Fq[x]/(xn − 1) which will be denoted by Fq(n). As usual, we identify the
elements g ∈ Fq(n) with polynomials; so we may take g ∈ Fq(n) and then write

g ∈ Fq[x] (where deg(g) < n). For any f ∈ Fq[x] we denote by f its image under
the canonical projection onto Fq(n).

As in [7], a cyclic code C of length n in the alphabet Fq will be identified with
the corresponding ideal in Fq(n) (up to permutation equivalence). Then, by a
cyclic code we mean an ideal of Fq(n). It is well known that if gcd(n, q) = 1
then the quotient ring Fq(n) is semisimple and then every cyclic code has a unique
monic generator polynomial [6, Theorem 7.1] and a unique idempotent generator
[6, Theorem 8.1]. We always assume that gcd(n, q) = 1.

We denote by Zn the integers modulo n and we identify any class in Zn with
its canonical representative. It is well-known that every cyclic code C in Fq(n)
is totally determined by its set of zeros (or its root set), which is defined as
Z(C) = {α ∈ Rn | c(α) = 0, for all c ∈ C}; thus, for any polynomial f ∈ Fq(n),
we have that f ∈ C if and only if f(α) = 0 for all α ∈ Z(C). Fixed α ∈ Un, we
denote the defining set of C with respect to α as Dα(C) =

{
i ∈ Zn | αi ∈ Z(C)

}
(see [6, p. 199]). It is well-known that, when gcd(n, q) = 1, defining sets are
partitioned in q-cyclotomic cosets modulo n [6, p. 104], which are defined as fol-
lows: given any element a ∈ Zn, the q-cyclotomic coset of a modulo n is the set
Cq(a) = {a, qa, . . . , qna−1a}(modn), where na is the smallest positive integer such
that qnaa ≡ a mod n. We recall that the notions of set of zeros and defining set
are also applied to polynomials in Fq(n) in the obvious way.

For any code C, we denote its minimum distance by d(C). The BCH bound
states that for any cyclic code in Fq(n) that has a string of δ−1 consecutive powers
of some α ∈ Un as zeros, the minimum distance of the code is at least δ [6, Theorem
7.8]. In terms of defining sets, if there is a string of δ−1 consecutive integers modulo
n in Dα(C), for some α ∈ Un, then d(C) ≥ δ. Note that different roots of unity may
yield different defining sets and consequently different lower bounds. For any cyclic
code C the maximum of its BCH bounds will be denoted by ∆(C). Sometimes it
is called the BCH (lower) bound of the code (see [1, p. 22] and [2, p. 984]).
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The following Remark shows that in order to compute the maximum ∆(C) we
do not need to consider all the elements in Un. This fact will be used later.

Remark 1. Let Cq(a1), . . . , Cq(ah) be the q-cyclotomic cosets modulo n and fix a
complete set of representatives {a1, . . . , ah}. Suppose we have chosen α ∈ Un to get
a defining set Dα(C). We want to identify the elements β ∈ Un satisfying Dβ(C) 6=
Dα(C). Then, β must satisfy the equality βaiq

j

= α for some representative ai with
gcd(n, ai) = 1 and j ∈ Z. In this case Dβ(C) = ai ·Dα(C), where the multiplication
has the obvious meaning. We define

(F. 1) A(n) = {ai | gcd(ai, n) = 1}.

It is easy to see that On(q) = |Cq(ai)| for any ai ∈ A(n). In addition, since
Dβai (C) = D

βaiq
j (C) = D

βaiq
j′ (C) (j, j′ ∈ Z), we conclude that we have to consider

at most φ(n)
On(q) distinct defining sets or elements in Un to get ∆(C).

For example, set n = 41 and q = 2. The 2-cyclotomic cosets are C2(0), C2(1)
and C2(3). So A(41) = {1, 3}. For a fixed α ∈ U41, let C be the cyclic code with
defining set Dα(C) = C2(1). Some BCH bounds for C with respect to α are δ1 = 3
by considering {1, 2} ⊂ Dα(C), and δ2 = 4 by considering {8, 9, 10} ⊂ Dα(C). Now
we also have to consider Dβ(C) = 3·Dα(C) = C2(3) and compute the corresponding
BCH bounds. We find δ3 = 6 by considering {11, 12, 13, 14, 15} ⊂ Dβ(C). In this
case, ∆(C) = 6. It is worth to mention that in the binary and ternary cases for

n ≤ 70 we have that φ(n)
On(q) ≤ 6 and for n ≤ 90 we have that φ(n)

On(q) ≤ 8.

A cyclic code C in Fq(n), with generator polynomial g(x), is a BCH code of
designed distance δ if there exists α ∈ Un and b ∈ {0, . . . , n−1} such that g(x) is the
polynomial with the lowest degree over Fq such that

{
αb+j | j = 0, . . . , δ − 2

}
⊆

Z(C) (see [6, p. 202]). Equivalently, C is a BCH code if for any cyclotomic coset
Q ⊆ Dα(C) we have that Q ∩ {b+ j | j = 0, . . . , δ − 2} 6= ∅. As it is known, this
implies that C is the cyclic code with highest dimension such that its set of zeros
satisfies the inclusion of the subset of zeroes mentioned above. We denote such a
code by Bq(α, δ, b). The Bose distance of a BCH code C = Bq(α, δ, b) is defined as
the largest δ′ such that C = Bq(α

′, δ′, b′), for some b′ ∈ {0, . . . , n − 1} and some
α′ ∈ Un. We note that for a BCH code it may happen that its Bose distance is less
than ∆(Bq(α, δ, b)), as we shall see in the next example.

Let L|Fq be an extension field. For any element a ∈ L we denote by minq(a) the
minimal polynomial of a in Fq[x]. In the case q = 2 we only write min(a).

Example 1. Set q = 2, n = 21 and fix α ∈ U21 such that min(α) = x6+x5+x4+x2+
1. Let C = B2(α, 4, 6) be the BCH code generated by lcm{min(α),min(α3),min(α7)}.
Consider the 2-cyclotomic cosets modulo 21, C2(0) = {0}, C2(1) = {1, 2, 4, 8, 11, 16},
C2(3) = {3, 6, 12}, C2(5) = {5, 10, 13, 17, 19, 20}, C2(7) = {7, 14} and C2(9) =
{9, 15, 18}. One may check that the defining set of the code C with respect to
α is Dα(C) = C2(1) ∪ C2(3) ∪ C2(7) = C2(6) ∪ C2(7) ∪ C2(8). In this case
A(21) = {1, 5} so we also have to consider the element β ∈ U21 such that β5 = α.
Then Dβ(C) = 5 · Dα(C) = C2(5) ∪ C2(7) ∪ C2(9). One may see that the Bose
distance is δ = 4, given by considering {6, 7, 8} ⊂ Dα(C) and {13, 14, 15} ⊂ Dβ(C).
However ∆(C) = 5, because {1, 2, 3, 4} ⊂ Dα(C) and {17, 18, 19, 20} ⊂ Dβ(C). But
{1, 2, 3, 4} ⊂ C2(1) ∪ C2(3) and {17, 18, 19, 20} ⊂ C2(5) ∪ C2(9), so that C cannot
be a BCH code of designed distance δ = 5. Hence the Bose distance is less than the
maximum of all possible BCH bounds (or simply the BCH bound, ∆(C)).
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Let L|Fq be an extension field such that Un ⊆ L and fix α ∈ Un. The (discrete)
Fourier transform of a polynomial f ∈ Fq(n) with respect to α (also called the
Mattson-Solomon polynomial), that we denote by ϕα,f is defined as

ϕα,f (x) =

n−1∑
j=0

f(αj)xj .

Clearly, ϕα,f ∈ L(n); moreover, the function Fourier transform may be viewed as an
isomorphism of algebras ϕα : L(n) −→ (Ln, ?), where the multiplication “?” in Ln
is defined coordinatewise (see [1, Section 2.2] or [6, § 8.6]). Then we may see ϕα,f
as a vector in Ln or as a polynomial in L(n). The inverse of the Fourier transform

is given by ϕ−1
α,g(x) = 1

n

∑n−1
i=0 g(α−i)xi, where g ∈ L(n) (see for example [1, 2, 6]).

For any i ∈ {0, . . . , n− 1} we denote ϕα,f [i] = f(αi), the coefficient (or coordinate)
corresponding to xi.

Remark 2. For any α ∈ Un, f ∈ Fq(n) and g ∈ L(n) we have that:

1. supp (ϕα,f ) =
{
i ∈ {0, . . . , n− 1} | f

(
αi
)
6= 0
}

and hence Zn\supp (ϕα,f ) =
Dα(f), the defining set of f .

2. Since f = ϕ−1
α,ϕα,f

(x) then supp(f) =
{
i ∈ {0, . . . , n− 1} | ϕα,f

(
α−i

)
6= 0
}

,

so that |supp(f)| = n− |Z (ϕα,f ) |.
3. ϕ−1

α,g ∈ Fq(n) if and only if
(
g
(
αj
))q

= g
(
αj
)

for any j ∈ {0, . . . , n− 1}.
4. ϕ−1

α,g ∈ Fq(n) if and only if ϕ−1
β,g ∈ Fq(n) for all β ∈ Un.

The first two assertions come directly from the definition of the discrete Fourier
transform together with the fact that it is an isomorphism. The third one comes
directly from the well-known property that an element a ∈ L satisfies that a ∈ Fq if
and only if aq = a. Finally to see the last assertion observe that if we take another
primitive root of unity β 6= α the coefficients of ϕ−1

β,g are obtained by permuting

those of ϕ−1
α,g.

The following lemma, related with the discrete Fourier transform, will play an
important role later. We recall from Section 2 that the notions of set of zeros and
defining set are also applied to polynomials in Fq(n) and that their defining sets are
also partitioned in q-cyclotomic cosets modulo n.

Lemma 1. Let g ∈ L(n). If ϕ−1
α,g ∈ Fq(n) for any α ∈ Un then supp(g) is a union

of cyclotomic cosets. If g is an idempotent in (Ln, ?) the converse holds; that is, if
supp(g) is union of q-cyclotomic cosets then ϕ−1

α,g ∈ Fq(n).

Proof. First, suppose that ϕ−1
α,g ∈ Fq(n). Observe that for any f(x) ∈ Fq(n),

ϕqβ,f (x) =
∑n−1
j=0

(
f
(
βj
))q

xj =
∑n−1
j=0 (f (βq))

j
xj = ϕβq,f (x). So the defining set

of ϕ−1
α,g is a union of cyclotomic cosets. Since supp(g) = Zn \Dα(ϕ−1

α,g) we are done.
We first note that any idempotent in (Ln, ?) verifies that its coordinates (or

coefficients) are only 1 or 0. Now, suppose that g ∈ (Ln, ?) is an idempotent and
supp(g) is a union of q-cyclotomic cosets. Then there exists an idempotent e ∈ Fq(n)
such that Dα(e) = Zn \ supp(g); in fact, e is the idempotent generator of the code
over Fq with defining set Zn \supp(g) with respect to α. Since e is an idempotent in
Fq(n) we have that ϕα,e is an idempotent in (Ln, ?) and also supp(ϕα,e) = supp(g).
Then ϕα,e = g and hence ϕ−1

α,g ∈ Fq(n).
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Let us recall some definitions in [1, Chapter 3] related to the computation of the
BCH bound. The context of these definitions is the study of multivariate polyno-
mials. We only need the univariate polynomials version.

Definition 1. Let L be a field. For any element g ∈ L(n) we define the apparent
distance of g, that we denote by d∗(g), as follows

1. If g = 0 then d∗(0) = 0.
2. If g 6= 0 then

d∗(g) = max
{
n− deg

(
xhg

)
| 0 ≤ h ≤ n− 1

}
.

It is easy to see that one may compute the apparent distance of a polynomial
0 6= g ∈ L(n) as follows. Suppose that g =

∑
aix

i. If we associate to the polynomial
its coefficient vector M(g) = (a0, . . . , an−1) then the apparent distance d∗(g) is the
length of the biggest chain of consecutive zeros (modulo n) in M(g) plus 1.

Example 2. Let f = 1 + x + x4 ∈ F2(5). Compute x0f = 1 + x + x4, xf =

1 + x + x2; x2f = x + x2 + x3; x3f = x2 + x3 + x4; x4f = 1 + x3 + x4. Then
d∗(f) = 5− deg(xf) = 3.

If we take M(f) = (1 1 0 0 1) then d∗(f) = 2 + 1 = 3.

Let f ∈ L(n). It is clear that the polynomials f and xhf have the same set of

zeros (or root set). Hence, deg
(
xhf

)
≥ |Dα(f)|, for any α ∈ Un, where Dα(f)

denotes the defining set of f . Therefore d∗(f) ≤ n− |Dα(f)| for any α ∈ Un.
Now, by the definition of the inverse Fourier transform (see Remark 2), we have

that

(F. 2) ω(f) = n− |Dα(ϕα,f )|.
Hence,

(F. 3) d∗(ϕα,f ) ≤ n− |Dα(ϕα,f )| = ω(f), for all f ∈ Fq(n) and α ∈ Un.
This implies that the minimum of the apparent distances of the images of the

nonzero codewords of a cyclic code is a lower bound for its minimum distance.
Camion’s definition of apparent distance of an abelian code comes from these ideas.
In our case, we present that definition as follows.

Definition 2. Let C be a cyclic code in Fq(n) and consider α ∈ Un. The apparent
distance of C with respect to α is d∗α(C) = minc∈C, c6=0{d∗(ϕα,c)} and the apparent
distance of C is

d∗(C) = max
α∈Un

{d∗α(C)}.

We also define the set of optimal roots of C as

R(C) =
{
β ∈ Un | d∗β(C) = d∗(C)

}
.

From the paragraph prior Definition 2 we have that d∗(C) ≤ d(C) for any cyclic
code C. In [1, p. 22] Camion shows that for any cyclic code C the equality d∗(C) =
∆(C) holds.

Note that the value d∗(ϕα,c) depends on the support of ϕα,c; that is, it depends on
the distribution of the zeros of c with respect to α; so, the minimum d∗α(C) depends
on the distribution of Dα(C). Hence, in order to compute the maximum d∗(C) we
need to look at the different defining sets of C, for each α ∈ Un. As we have seen
in Remark 1, if we fix α ∈ Un and {a1, . . . , ah}, a complete set of representatives
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of the q-cyclotomic cosets modulo n, to consider the different defining sets of C we
only need to consider the roots β ∈ Un such that βai = α for some ai coprime with
n. Then, for any α ∈ Un we define the set

(F. 4) Rα = {β ∈ Un | βa = α, a ∈ A(n)}.

where A(n) was defined in (F. 1).
Therefore, in practice, to compute the apparent distance of a cyclic code C in

Fq(n) it is enough to fix α ∈ Un and compute d∗(C) = max{d∗β(C) | β ∈ Rα}.
Let e, g ∈ C be the idempotent generator and the generator polynomial of C,

respectively. If f, h ∈ Fq(n) then supp (ϕβ,fh) ⊆ supp (ϕβ,f ) because ϕβ,fh =
ϕβ,f ? ϕβ,h, and then, for any c ∈ C, and any β ∈ Un, we have that supp (ϕβ,c) ⊆
supp (ϕβ,g) = supp (ϕβ,e); so that, d∗ (ϕβ,g) = d∗ (ϕβ,e) ≤ d∗ (ϕβ,c). Hence,
d∗β(C) = d∗ (ϕβ,e) and

(F. 5) ∆(C) = d∗(C) = d∗ (ϕβ,e) = d∗ (ϕβ,g) ≤ d(C), ∀β ∈ R(C).

(see [1, p. 22]).

Example 3. Set q = 2, n = 17 and take a1 = 0, a2 = 1, a3 = 3 as representatives
of the 2-cyclotomic cosets in Z17. Then A(17) = {1, 3}. Let C be the cyclic code
with defining set Dα(C) = C2(1) = {1, 2, 4, 8, 9, 13, 15, 16} with respect to α ∈ U17,
such that min(α) = x8 + x7 + x6 + x4 + x2 + x + 1. The reader may check that
e = x16 +x15 +x13 +x9 +x8 +x4 +x2 +x+1 is the idempotent generator of C, and
M(ϕα,e) = (1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0). Then d∗ (ϕα,e) = 3. Taking β such that
β3 = α, one may check that d∗ (ϕβ,e) = 4. Hence ∆(C) = d∗(C) = d∗ (ϕβ,e) = 4.

As an immediate consequence of (F. 5) we have the following corollary.

Corollary 1. Let C be a cyclic code in Fq(n) and let e, g ∈ C be the idempotent
generator and the generator polynomial of C, respectively. For f ∈ {e, g} we have
that if d∗(ϕα,f ) = ω(f) for some α ∈ Un then d(C) = ∆(C) and α ∈ R(C).

Proof. By hypothesis, d∗(ϕα,f ) = ω(f) ≥ d(C). Now, if β ∈ R(C) then d∗(ϕα,f ) ≤
d∗(ϕβ,f ) and so (F. 5) gets us the result.

In the following table we list non trivial cyclic codes of length at most 31, satifying
the conditions of the corollary above; that is, d∗ (ϕα,f ) = ω(f) for some α ∈ Un.

Here, D(C) = Zn \D(C). Computations were done by using GAP4r7.

Length D(C) dimF(C) d(C)
7 C2(3) 3 4

C2(1) 3 4
C2(0) ∪ C2(3) 4 3
C2(0) ∪ C2(1) 4 3

9 C2(3) 2 6
C2(0) ∪ C2(3) 3 3

C2(1) 6 2

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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Lenght D(C) dimF(C) d(C)
15 C2(5) 2 10

C2(0) ∪ C2(5) 3 5
C2(1) 4 8
C2(7) 4 8

C2(0) ∪ C2(3) 5 3
C2(0) ∪ C2(7) 5 7
C2(0) ∪ C2(1) 5 7
C2(3) ∪ C2(5) 6 6

C2(0) ∪ C2(5) ∪ C2(7) 7 5
C2(1) ∪ C2(3) 8 4
C2(3) ∪ C2(7) 8 4
C2(3) ∪ C2(7) 8 4

C2(1) ∪ C2(5) ∪ C2(7) 10 2
21 C2(7) 2 14

C2(3) 3 12
C2(9) 3 12

C2(0) ∪ C2(7) 3 7
C2(0) ∪ C2(3) 4 9
C2(0) ∪ C2(9) 4 9
C2(3) ∪ C2(7) 5 10
C2(7) ∪ C2(9) 5 10

C2(0) ∪ C2(3) ∪ C2(9) 7 3
C2(1) ∪ C2(7) 8 6
C2(5) ∪ C2(7) 8 6
C2(1) ∪ C2(9) 9 4
C2(3) ∪ C2(5) 9 4

C2(0) ∪ C2(5) ∪ C2(9) 10 5
C2(0) ∪ C2(1) ∪ C2(3) 10 5
C2(5) ∪ C2(7) ∪ C2(9) 11 6

C2(0) ∪ C2(1) ∪ C2(7) ∪ C2(9) 12 3
25 C2(3) ∪ C2(5) 5 5
27 C2(9) 2 18

C2(3) 5 6
C2(1) 18 2

C2(0) ∪ C2(9) 3 9
31 C2(1) 5 16

C2(5) 5 16
C2(15) 5 16

C2(0) ∪ C2(1) 6 15
C2(0) ∪ C2(15) 6 15
C2(3) ∪ C2(7) 10 6
C2(5) ∪ C2(11) 10 10

C2(1) ∪ C2(3) ∪ C2(15) 15 6
C2(1) ∪ C2(5) ∪ C2(11) 15 6
C2(1) ∪ C2(7) ∪ C2(15) 15 6
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Lenght D(C) dimF(C) d(C)
31 (cont.) C2(5) ∪ C2(9) ∪ C2(15) 15 6

C2(0) ∪ C2(1) ∪ C2(3) ∪ C2(7) 16 5
C2(0) ∪ C2(1) ∪ C2(11) ∪ C2(15) 16 5
C2(0) ∪ C2(1) ∪ C2(5) ∪ C2(15) 16 5
C2(0) ∪ C2(3) ∪ C2(5) ∪ C2(11) 16 5
C2(0) ∪ C2(5) ∪ C2(7) ∪ C2(11) 16 5
C2(0) ∪ C2(3) ∪ C2(5) ∪ C2(11) 16 5

Let us comment how these results allow us to construct cyclic codes and to
compute their apparent distance (or the BCH bound). First, let us observe that for
any cyclic code C generated by e = e2 ∈ Fq(n) one has that ϕα,e is an idempotent
in (Ln, ?). So, ϕα,e[i] = e(αi) = 0 if i ∈ Dα(C) and 1 otherwise.

Now, let {a1, . . . , ah} be a complete set of representatives of the q-cyclotomic
cosets modulo n. For each choice D = ∪tj=1Cq(aij ), with ij ∈ {1, . . . , h} and
1 ≤ t ≤ h, we denote by FD ∈ Fnq the vector such that FD[i] = 0 if i ∈ D and
1 otherwise. Then FD may be viewed as the image under the Fourier transform
of the idempotent generator of a cyclic code C in Fq(n) such that D = Dα(C)
with respect to some α ∈ Un. That is, if C is the cyclic code with defining set
Dα(C) = D, with respecct to α ∈ Un, and e2 = e is its idempotent generator then
we have that FD = ϕα,e ∈ Fnq . To compute the apparent distance d∗(C) we first
consider the set A(n) = {ai1 , . . . , aik} ⊆ {a1, . . . , ah}. Then, for every j = 1, . . . , k,

let βj ∈ Un be such that β
aij
j = α; recall that this implies Dβj (C) = aij ·Dα(C).

The apparent distance of ϕβj ,e is the length of the biggest chain of consecutive zeros
(modulo n) in FDβj (C) plus 1. So, d∗(C) = max

j=1,...,k
d∗(FDβj (C)).

Example 4. Set n = 21, q = 2 and A(21) = {1, 5}. Consider the 2-cyclotomic
cosets: C2(0), C2(1), C2(3), C2(5), C2(7), C2(9) listed in Example 1. Choose
D = C2(1) ∪ C2(3) ∪ C2(7). Then

FD = (1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1) .

Let C = 〈e〉 be the cyclic code such that Dα(C) = D for some α ∈ U21. Then
d∗(ϕα,e) = 5. We only need to consider β ∈ U21 such that β5 = α. In that case,
Dβ(C) = 5 ·Dα(C) = C2(5) ∪ C2(9) ∪ C2(7). Then

FDβ(C) = (1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0) .

So d∗(FDβ(C)) = 5 too. Hence d∗(C) = 5 and R(C) = {β, β5}. The reader may
check that C has four BCH bounds, δ = 2, 3, 4, 5.

3. The minimum distance and the BCH bound

For an arbitrary element g ∈ L(n), which we may view as a polynomial with
deg(g) ≤ n− 1, it is easy to see that the equality gcd(g, xn − 1) = gcd(xhg, xn − 1)
holds for any h ∈ {0, . . . , n− 1} as xh and xn − 1 are relatively prime polynomials;
so, we may write

(F. 6) mg = gcd(xhg, xn − 1)

as mg does not depend on h. For any h ∈ {0, . . . , n− 1} we also write

(F. 7) xhg = (xn − 1)fg,h + xhg
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where 0 ≤ deg(xhg) < n. Note that if g 6= 0 then xhg 6= 0 because deg(g) < n.
By using results in [1] and [3] (see also [6, Theorem 8.6.31]) we obtain the following
result.

Lemma 2. Consider g ∈ L(n) and let mg be as above. Then

1. d∗(g) ≤ n− deg(mg).
2. If g | xn − 1 then d∗(g) = n− deg(g).

Proof. (1) It comes from the fact that mg | xhg for any 0 ≤ h ≤ n − 1, and from
Definition 1. (2) By the definition of d∗(g) we have that d∗(g) ≥ n − deg(g). To
get the converse inequality note that g = smg, for some s ∈ Fq, and apply (1).

Now let C be a cylic code in Fq(n) and let c ∈ C be any codeword. By (F. 3) we
have that d∗(ϕα,c) ≤ ω(c). We wonder if the equality may occur. The next result
will be helpful to find an answer (see [1, Theorem 4.1] and [3, Theorem 2]).

Lemma 3. Let C be a cyclic code in Fq(n) and c ∈ C. Then n−deg
(
mϕα,c

)
= ω(c),

for all α ∈ Un.

Proof. We have that n − deg
(
mϕα,c

)
= |{αj | ϕα,c(αj) 6= 0}|. By Remark 2 and

(F. 2) we are done.

Note that by Lemma 2 we have that the apparent distance of any f ∈ L(n) is
less than or equal to the number of nonzeros of mf . The following result shows us
when the equality holds.

Proposition 1. Consider f ∈ L(n) and let mf be as in (F. 6). Then d∗(f) =

n − deg(mf ) if and only if there exists h ∈ {0, . . . , n − 1} such that xhf | xn − 1

(equivalently, xhf and mf are associated polynomials in L[x]).

Proof. Suppose first that the equality holds. By definition of apparent distance we

know that there exists h ∈ {0, . . . , n− 1} such that d∗(f) = n− deg
(
xhf

)
. Hence

deg
(
xhf

)
= deg (mf ). By (F. 6) and (F. 7) we have that mf and xhf have exactly

the same set of zeros and hence they are associated polynomials, or equivalently,

xhf | xn − 1.

Conversely, suppose that there exists h ∈ {0, . . . , n − 1} such that xhf | xn −
1. Again by (F. 7) and (F. 6), xhf and mf must be associated polynomials. By

definition of apparent distance we have that d∗(f) = d∗
(
xhf

)
and by Lemma 2(2),

d∗
(
xhf

)
= n− deg

(
xhf

)
. The result follows immediately.

Now we deal with our first problem. We are going to present some results that
give theoretical characterizations for a given cyclic code to satisfy the equality
d(C) = ∆(C).

Theorem 1. Let n be a positive integer, p a prime number and q a power of p.
Assume that gcd(n, q) = 1. Consider the field Fq and an extension L|Fq such that
Un ⊆ L. Let C be a cyclic code in Fq(n). Then d(C) = ∆(C) if and only if there
exists a polynomial f ∈ L(n), such that

1. d∗(f) = d∗(C).
2. d∗(f) = n− deg(mf ).

3. ϕ−1
α,f ∈ C, for some α ∈ R(C).
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Moreover, in this case, there exists h ∈ {0, . . . , n− 1} such that xhf | xn − 1.

Proof. First, suppose that d(C) = ∆(C). Then we have that d(C) = d∗(C). Let
c ∈ C such that ω(c) = d(C), consider α ∈ R(C) and set, as in (F. 6), mϕα,c =
gcd(ϕα,c, x

n−1). By definition of apparent distance and by applying results above,
we have that

ω(c) ≥ d∗(ϕα,c) ≥ d∗α(C) = d∗(C) = d(C) = ω(c) = n− deg
(
mϕα,c

)
.

Hence d∗(ϕα,c) = d∗(C), since d∗ (ϕα,c) = n − deg
(
mϕα,c

)
. So, f = ϕα,c satisfies

all required conditions.
Conversely, suppose there exists f ∈ L(n) satisfying conditions (1 – 3) of the

statement. By Lemma 3 and the definition of minimum distance, we have that
d∗(f) = ω(ϕ−1

α,f ) ≥ d(C). Then by Condition (1), d∗(C) ≥ d(C), and hence by

(F. 5), ∆(C) = d(C).
The final assertion follows directly from Proposition 1.

So, to check if a code satisfies the conditions in the theorem above, Proposition
1 shows us that we have to focus on properties of some divisors of xn − 1. After
Corollary 3 we will make some comments about complexity in order to consider
those divisors.

Corollary 2. Let C be a cyclic code in Fq(n). Then d(C) = ∆(C) if and only if
there exist k ∈ {0, . . . , n − 1} and a divisor g | xn − 1, in L[x], such that setting

f = xkg, the following conditions hold

1. d∗(f) = d∗(C) .
2. ϕ−1

α,f ∈ C, for some α ∈ R(C).

Proof. Set h = n− k. Then g = xhf and the result follows from Proposition 1 and
the theorem above.

We note that, in the setting of the previous corollary, it may happen that there
exist α, β ∈ Un such that ϕ−1

α,f ∈ C but ϕ−1
β,f /∈ C.

We may rewrite the condition (3) in Theorem 1 or (2) in Corollary 2, as follows.

Corollary 3. Let C be a cyclic code in Fq(n). Then d(C) = ∆(C) if and only if
there exist k ∈ {0, . . . , n−1} and a divisor g | xn−1, in L[x], such that the following
conditions hold.

1. d∗(g) = d∗(C), and setting f = xkg,
2. supp(f) ⊆ Zn \Dα(C), for some α ∈ R(C),
3. (f(αj))q = f(αj), for any j ∈ {0, . . . , n− 1}.

Proof. From Remark 2, it comes immediately that condition (2) in Corollary 2
holds if and only if conditions (2)+(3) of this corollary hold.

Given a linear code C of length n, we wonder about how difficult is it to check
the equality ∆(C) = d(C); in other words, using our previous results, how difficult
is it to find a polynomial satisfying the required conditions?

To apply any of the corollaries above we have to compute the divisors g | xn − 1
in L[x] with deg(g) = n − ∆(C). This means that we have to check at most
h ·
(

n
n−∆(C)

)
polynomials, where h = |A(n)|. Clearly, if ∆(C) is not a “big” number

we may check all divisors in L[x]. In case that ∆(C) was a “big” number, we could
reduce it by taking an intermediate field, Fq ⊂ K ⊂ L, where the number of divisors
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of xn − 1 (in K[x]) is smaller. However, in that case, our searching of codes would
not be exhaustive.

For example, consider the binary cyclic code C of length 45 with Dα(C) =
C2(3) ∪ C2(5), for some α ∈ U45. One may see that ∆(C) = 3 and dim(C) = 35.
Consider A(45) = {1, 7}. To check any of our corollaries above we have to consider
2
(

45
42

)
-polynomials (note that 214 < 2

(
45
42

)
< 215) so our method works. On the other

hand, for codes with apparent distance greater than 5, we might choose to consider
the factors of x45 − 1 in an intermediate ring. For example, in F24 [x] there are
15 factors of degree 1 and 10 factors of degree 3. No more than 50 computations.
Essentially the same happens in F26 [x].

Now we give another sufficient condition to characterize cyclic codes whose ap-
parent distance reaches its minimum distance.

Corollary 4. Let C be a cyclic code in Fq(n) with generator idempotent e ∈ C. If

there exist h ∈ {0, . . . , n−1} and α ∈ Un such that xhϕα,e | xn−1 then d(C) = ∆(C)
and α ∈ R(C).

Proof. From Proposition 1 and Lemma 3 we may deduce that d∗ (ϕα,e) = n −
deg

(
mϕα,e

)
= ω(e). So, the result follows directly from Corollary 1.

The previous results give us conditions for a cyclic code C to satisfy the equality
d(C) = ∆(C). Now we deal with our second problem, that is, the construction of
such kind of codes.

Corollary 5. Consider an intermediate field Fq ⊆ K ⊆ L, let g ∈ K[x] be a divisor

of xn−1 and β ∈ Un. If ϕ−1
β,
xkg

belongs to Fq(n), for some k ∈ {0, . . . , n−1}, then the

family of permutation equivalent cyclic codes
{
Cα =

(
ϕ−1
α,
xkg

)
| α ∈ Un

}
satisfies

∆(Cα) = d(Cα) for all α ∈ Un. Moreover, in this case, dimFq (Cα) = |supp(g)|, for
all α ∈ Un.

Proof. Fix α ∈ Un. Set f = xkg and let e ∈ Fq(n) be the idempotent generator

of the ideal C =
(
ϕ−1
α,f

)
in Fq(n) (see Remark 2(4)). It is easy to check that

supp(ϕα,e) = supp(f) = Zn\Dα(C) and hence, d∗(ϕα,e) = d∗(f). On the one hand,

by Proposition 1 and Lemma 3 one has that d∗(f) = n − deg(mf ) = ω
(
ϕ−1
α,f

)
≥

d(C). On the other hand, by (F. 5), d∗(f) = d∗ (ϕα,e) ≤ d∗α(C) ≤ d∗(C) ≤ d(C).
So we are done.

Then, in order to construct codes with the desired property we need to find a
divisor g of xn− 1 satisfying the condition (2) in Corollary 2. However, in the case
K = F2, it is clear that g ∈ (Fn2 , ?) is always an idempotent, and so, we only have
to check that supp(g) is union of 2-cyclotomic cosets (see Lemma 1).

Let us show by an example how the combination of Corollary 3 and Corollay 5
works.

Example 5. Set q = 2, n = 45. In this case A(45) = {1, 7}. Take g = x40 + x39 +
x38 + x36 + x35 + x32 + x30 + x25 + x24 + x23 + x21 + x20 + x17 + x15 + x10 + x9 +
x8 +x6 +x5 +x2 + 1. One may check that g | x45− 1 in F2[x] (so that K = F2). To
find the parameter k mentioned in the corollary above, we may analize the vector
M(g) or we may fix β ∈ U45 (as instance, such that min(β) = x12 + x3 + 1) and
compute g(1) and g(β3), because Dβ(g) = Z45 \ (C2(0) ∪ C2(3)). Let us choose the
last alternative. Since g(1) = 1 and g(β3) = β30 then k = 5 will work because
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setting f = x5g we have that f(1) = 1, f
(
β3
)

= (β3)5β30 = β45 = 1 and then

f
(
β6
)

= f
(
β12
)

= f
(
β24
)

= 1, as C2(3) = {3, 6, 12, 24}. So, ϕ−1
α,f ∈ F2(45), for all

α ∈ U45. Now set C = (ϕ−1
β,f ). Then Dβ(C) = C2(1) ∪ C2(3) ∪ C2(9) ∪ C2(21) =

Z45 \ supp(M(f)) and, by analizing M(g) or M(f) = FDβ(C) as in Example 4, we
have that 5 = d(C) = ∆(C) and dim(C) = 21.

As supp(x5g) = Z45 \ Dβ(C), one may see that there are three subsets that
determines d∗(C); to wit, {1, 2, 3, 4}, {16, 17, 18, 19} and {31, 32, 33, 34}. We choose
{1, 2, 3, 4} ⊂ Dβ(C) and construct the code C ′ such that Dβ(C ′) = Dβ(C)\C2(21).
Note that C is a subcode of C ′, because Dβ(C ′) ⊂ Dβ(C). Now one has that C ′

satisfies the conditions in Corollary 2, because d∗(C) = 5 = d∗(f) and ϕ−1
α,f ∈ C ⊂

C ′, so that 5 = d(C ′) = ∆(C ′) and dim(C ′) = 25, that is, C ′ has better parameters
than C.

In the next section (see, as instance, Example 8) we will refine this type of
construction to obtain BCH codes C such that ∆(C) = d(C). Now we continue
with the construction of codes C satisfying that ∆(C) = d(C).

Corollary 6. Consider an intermediate field Fq ⊆ Fq′ ⊆ L, let h be an irreducible
factor of xn − 1 in Fq′ [x] with defining set Dα(h) for some α ∈ Un. Set g = (xn −
1)/h. If there are positive integers j, t such that g(αj) = αt and gcd

(
j, n

gcd(q−1,n)

)
|

t then there exists a q-ary code of length n whose BCH bound equals its minimum
distance.

Proof. By hypothesis, the congruence (in X),

q − 1

gcd(q − 1, n)
jX ≡ − q − 1

gcd(q − 1, n)
t mod

n

gcd(q − 1, n)

has a solution X = k, with 0 ≤ k ≤ n
gcd(q−1,n) . Then (q − 1)(jk + t) ≡ 0 mod n,

which means that q(jk + t) ≡ jk + t mod n, and hence xkg(αj) = αjk+t ∈ Fq.
Clearly, for any jq′a ∈ Dα(h) we have jq′ak + tq′a ≡ q′a(jk + t) ≡ jk + t mod n,

so that xkg(αjq
′a

) ∈ Fq. As xkg(αi) = 0 for all i ∈ Zn \ Dα(h), we may apply

Corollary 5 to get the desired result. More precisely, the code C =
(
ϕ−1

α,xkg

)
⊆ Fq(n)

satisfies the required conditions.

Corollary 7. Let n = 2m − 1, for some m ∈ N. There exist at least φ(n)
m binary

codes of length n whose BCH bound equals its minimum distance.

Proof. We are going to apply the corollary above with 2 = q = q′. Take L = F2m .
For each 0 < j < n, coprime with n, we consider the 2-cyclotomic coset C2(j),
which has exactly m elements. Consider α ∈ Un. Let h|xn − 1 be the polynomial
in F2[x], such that Dα(h) = C2(j) and gj = (xn − 1)/h. By hypothesis, α is a
primitive element for L, so that gj(α

j) = αk for some k ∈ Zn. The condition
gcd (j, n) | k holds obviously. So, there exists a binary code of length n whose
BCH bound equals its minimum distance. Moreover, by Corollary 5 the family of

codes {Cj =
(
ϕ−1

α,xkgj

)
| gcd(j, n) = 1} satisfies d(Cj) = ∆(Cj) for any j. To

compute the number of different codes in that family we consider the set B =

{C2(j) | j ∈ Zn, gcd(j, n) = 1}. One may check that |B| = φ(n)
m . Let Cq(j) 6=

Cq(j
′) ∈ B. If α ∈ Un and h, h′ are the divisors of xn − 1 with Dα(h) = Cq(j)

and Dα(h′) = Cq(j
′) then gj = (xn − 1)/h and gj′ = (xn − 1)/h′ have the same
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degree, and hence supp(gj) 6= supp(gj′) because they are binary polynomials. Since

D(Cj) = supp(xkgj) the result comes immediately.

Example 6. Set q = 2, n = 15. Then A(15) = {1, 7}. By Corollary 7 there exist
at least two codes such that its BCH bound equals its minimum distance (they will
be determined by the polynomials g3 and g4 defined below). Denote the irreducible
factors of x15 − 1 in F2[x], by h1 = Φ2, h2 = Φ3, h3 = x4 + x+ 1, h4 = x4 + x3 + 1

and h5 = Φ5, where Φj denotes the j-th cyclotomic polynomial. Setting gi = xn−1
hi

,

i = 1, . . . , 5, we apply the corollaries above (with K = F2) as follows.
Consider the factor g2. Then one may check that in this case ϕ−1

α,xg2
= x10 +

x5 ∈ F2(15), for all α ∈ U15. The cyclic code C generated by x10 + x5 satisfies
dim(C) = 10 and ∆(C) = 2 = d(C). Now let us fix α ∈ U15 such that h3 = min(α)
and h4 = min(α13), where min(αt) denotes the minimal polynomial of αt in F2[x].
Then ϕ−1

α,xg3
= x14 +x13 +x11 +x7 ∈ F2(15) and ϕ−1

α,x3g4
= x8 +x4 +x2 +x ∈ F2(15).

This gives us the table

Generator Dimension ∆ = d

ϕ−1
α,xg2

10 2

ϕ−1
α,xg3

8 4

ϕ−1

α,x3g4
8 4

The polynomial g1 gets an improper code. In the case of g5, as Dα(g5) = Z15 \
C2(3), it happens that, g5

(
α3
)

= α14, so the conditions of Corollary 6 are not
satisfied.

After inspecting the divisors of x15 − 1 in F2[x] we find more interesting codes.
For instance, one may check that the polynomial h2h3h5 satisfies the conditions of
Corollary 5, with k = 0, and hence it yields a code, say C ′, such that ∆(C ′) =
d(C ′) = 5 and dim(C ′) = 7.

Example 7. Set q = 2 and n = 21. Denote the irreducible factors of x21 − 1 in
F2[x] by h1 = Φ2, h2 = Φ3, h3 = x3+x+1, h4 = x3+x2+1, h5 = x6+x4+x2+x+1
and h6 = x6 + x5 + x4 + x2 + 1.

Set gi = xn−1
hi

, i = 1, . . . , 6, and fix α ∈ U21 such that min(α) = h6. We apply

Corollary 6 as above (with K = F2) to get the following table of binary codes
of length 21 whose BCH bound equals its minimum distance. We complete with
another one satisfying the conditions of Corollary 5.

Generator Dimension ∆ = d

ϕ−1
α,xg2

14 2

ϕ−1
α,g3 12 3

ϕ−1

α,x3g4
12 3

ϕ−1
α,xg5

8 6

ϕ−1

α,x5g6
8 6

ϕ−1

α,h1h3h5h6
10 5
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4. Applications: Constructing BCH codes whose minimum distance
equals their apparent distance

The following result allows us to construct BCH codes Bq(α, δ, b) for which
d(Bq(α, δ, b)) = ∆(Bq(α, δ, b)) = δ. We recall that the ideal generated by a polyno-
mial g ∈ Fq(n) is denoted by (g).

Theorem 2. Let n be a positive integer, p a prime number, q a power of p and
Un the set of primitive n-th roots of unity. Assume that gcd(n, q) = 1. Consider
the fields Fq ⊆ K ⊆ L such that Un ⊂ L. Let g ∈ K[x] be a divisor of xn − 1. If

there exist k ∈ {0, . . . , n− 1} and β ∈ Un such that ϕ−1

β,xkg
∈ Fq(n) then there exists

a family of permutation equivalent BCH codes {Cα = Bq(α, δ, b) | α ∈ Un} with

δ = n− deg(g) and b ∈ Zn, such that δ = ∆(Cα) = d(Cα) and ϕ−1

α,xkg
∈ Cα.

Proof. Set g =
∑n−1
i=0 aix

i and suppose that there there exist k ∈ {0, . . . , n − 1}
and β ∈ Un such that ϕ−1

β,xkg
∈ Fq(n). Let f = xkg and consider α ∈ Un. By

Lemma 2, d∗(g) = n − deg(g). Clearly mf = g and d∗(f) = d∗(g). We collect

T =
⋃n+k−1
j=deg(g)+k+1 Cq(j), where j is the canonical representative of j module n,

and ε =
∑n−1
i=0 rix

i such that ri = 0 if i ∈ T and 1, otherwise.
We claim that d∗(g) = d∗(ε). From the definition of ε one has that d∗(g) ≤ d∗(ε).

We are going to see the reverse inequality. By Remark 2(3), as ϕ−1
β,f ∈ Fq(n) we

have supp (f) is union of q-cyclotomic cosets modulo n. So, for any j ∈ {deg(g) +
k+1, . . . , n+k−1} we have that Cq(j)∩supp (f) = ∅ and hence T ⊆ Zn \supp (f),
which means that supp (f) ⊆ supp (ε) and hence d∗(g) = d∗(f) ≥ d∗(ε).

By construction, supp(ε) is union of q-cyclotomic cosets, so ϕ−1
α,ε ∈ Fq(n) (see

Lemma 1). We set C =
(
ϕ−1
α,ε

)
in Fq(n). We are going to see that C satisfies the

conditions (1) and (2) of Corollary 2.
(1) We have already seen that d∗(f) = d∗(g) = d∗(ε). Now, by Proposition 1

and Lemma 3 one has d∗(f) = n − deg(mf ) = ω
(
ϕ−1
α,f

)
≥ d(C). On the other

hand, by (F. 5), d∗(f) = d∗(ε) = d∗
(
ϕα,ϕ−1

α,ε

)
≤ d∗α(C) ≤ d∗(C) ≤ d(C). Therefore

d∗(C) = d∗(f).
(2) Since supp(f) ⊆ supp(ε), we have that f ? ε = f , and then ϕ−1

α,f · ϕ−1
α,ε =

ϕ−1
α,f , which means ϕ−1

α,f ∈ (ϕ−1
α,ε) = C (see also Remark 2(4)). So, conditions of

Corollary 2 are satisfied, and hence d(C) = ∆(C).
Finally, to see that C is a BCH code with designed distance δ = ∆(C), we note

that, any q-cyclotomic coset Q ⊆ supp(ε) = Dα(C) satisfies Q ∩ {deg(g) + k +
1, . . . , n+k−1} 6= ∅. So, as we mentioned in Section 2, this means that C is a BCH
code with b = deg(g) + k + 1 and designed distance δ = ∆(C) = n− deg(g).

The theorem above gives us a method to transform a given cyclic code C = (g),
with d(C) = ∆(C) into another code with higher dimension; in fact, we can get
a new BCH code. The key idea is to consider as generator ε instead of g via the
definition of T . This definition may be done in different ways that can drive us to
different BCH codes. All these ideas are shown in the next example.

Example 8. We continue with the code C showed in Example 5. Recall that q = 2,
n = 45 and C is the cyclic code with Dβ(C) = C2(1)∪C2(3)∪C2(9)∪C2(21), where
β ∈ U45 is such that min(β) = x12 + x3 + 1. Following the proof of the previous
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theorem we have that T = C2(1) ∪ C2(3) and set ε =
∑
i6∈T x

i. Then C ′′ =
(
ϕ−1
β,ε

)
has Dβ(C ′′) = C2(1) ∪ C2(3); so that it is the BCH code B2(β, 5, 1) of dimension
29 such that d(C ′′) = ∆(C ′′) = 5. This code has even better parameters than C ′

(see Example 5).
It is also possible to obtain, from the code C ′, the BCH code B2(β, 5, 16) with

d(B2(β, 5, 16)) = ∆(B2(β, 5, 16)) = 5 and dimension 29, by taking T ′ = C2(1) ∪
C2(9).

The following theorem is a classical result on the theory of BCH codes.

Theorem 3 ([6]). Let h,m ∈ N. A BCH code C of length n = qm−1 and designed
distance δ = qh − 1 over Fq satisfies d(C) = ∆(C).

Now let us show some examples of construction of new BCH codes.

Example 9. Set q = 2 and n = 15. Consider the polynomial g = g3 in Example 6;
that is g = x11 + x8 + x7 + x5 + x3 + x2 + x+ 1. Then, its coefficient vector is

M(g) = (1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0)

and we may check that d∗(g) = 4. We know that ϕ−1
α,g 6∈ F2(n) for all α ∈ U15,

because C2(7) is not contained in supp(g) (see Lemma 1). However, the polynomial
xg with coefficient vector

M(xg) = (0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0)

satisfies ϕ−1
α,xg ∈ F2(n) for all α ∈ U15. Let us fix α ∈ U15. Then C = (ϕ−1

α,xg ) is a

binary code with d(C) = d∗(C) = 4 and dimF2(C) = 8 (see Corollary 5). But, C
is not a BCH code. Following the ideas in Theorem 2 we may replace 0’s by 1’s in
the suitable places to get the vector

M(ε) = (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0)

such that C ′ =
(
ϕ−1
α,ε

)
is a BCH code in F2(n), with d(C ′) = d∗(C ′) = δ = 4 and

dimF2
(C ′) = 10. Clearly, this code cannot be considered in Theorem 3.

We finish by extending Corollary 6 to BCH codes.

Corollary 8. Consider an intermediate field Fq ⊆ Fq′ ⊆ L, let h be an irreducible
factor of xn−1 in Fq′ [x] with defining set Dα(h) for some α ∈ Un and g = (xn−1)/h.

If there are positive integers j, t such that g(αj) = αt and gcd
(
j, n

gcd(q−1,n)

)
| t

then there exists a BCH code of designed distance δ, C = Bq(α, δ, b), such that
δ = ∆(C) = d(C) = deg(h), for certain b ∈ Zn.

Proof. Comes immediately from Corollary 6 together with Theorem 2.

Example 10. We continue with the codes determined by the polynomials g2, g3

and g4 in Example 6. Recall that in this case α ∈ U15 satisfies min(α) = h3.
By applying the ideas contained in the proof of Theorem 2, one may obtain the
following BCH codes whose minimum distance equals the maximum of their BCH
bounds.

It is possible to modify the defining set, w.r.t. α, of a cyclic code in order to
obtain a defining set for a new code with higher dimension. In this case we will
say that the original one was dimensional-extended to the new one. For example,(
ϕ−1
α,xg2

)
in Fq(15) has dimension 10 and it can be dimensional-extended to the

codes B2(α, 2, 0) of dimension 14 and B2(α, 2, 3t) of dimension 11, for t = 1, 2, 3.
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The cyclic code determined by g3, that is
(
ϕ−1
α,xg3

)
in Fq(15), has dimension 8

and it may be dimensional-extended to B2(α, 4, 13) of dimension 10. Finally, from(
ϕ−1

α,x3g4

)
, with dimension 8, we get B2(α, 4, 0) of dimension 10.

Note that the dimensional-extended BCH codes associated to g2, g3 and g4 are
not considered in the classical result 3. There is another interesting code which has

not been considered: the code
(
ϕ−1

α,h1h2h3h5

)
, where h1, h2, h3, h5 were defined in

Example 6, is the code B2(α, 5, 11) of dimension 10.

Example 11. We also show how to extend the dimension of the codes in Example 7.
We recall that q = 2, n = 21 and α satisfies min(α) = h6. In this case, we have the
following BCH codes whose minimum distance and apparent distance coincide.

It is possible to modify the set Dα

(
ϕ−1
α,xg2

)
in three different ways. The biggest

dimensional-extended code that we can obtain is B2(α, 2, 0) of dimension 20. In
the case of

(
ϕ−1
α,g3

)
, it determines two BCH codes. The first one is B2(α, 3, 19) of

dimension 15 and the second one is B2(α, 3, 12) of dimension 12. The code
(
ϕ−1

α,x3g4

)
may be dimensional-extended to B2(α, 3, 15) of dimension 12, and B2(α, 3, 1) of

dimension 15. The code
(
ϕ−1
α,xg5

)
may be dimensional-extended to B2(α, 6, 17) of

dimension 11. In the case of
(
ϕ−1

α,x5g6

)
, we obtain B2(α, 6, 0) of dimension 11.

Finally,
(
ϕ−1

α,h1h3h5h6

)
is the BCH code B2(α, 10, 17) of dimension 10.

We finish with an example of a binary BCH code of length 33 whose minimum
distance equals the maximum of their BCH bounds. We have not found in the
literature any binary BCH code satisfying that condition and having this length
and dimension.

Example 12. Set q = 2, n = 33 and α ∈ U33 such that min(α) = x10 + x7 +
x5 + x3 + 1 and g = min(α)min(α3)min(α5). One may check that g satisfies the
conditions of Theorem 2 with k = 0 and T = C2(1); in fact ϕ−1

α,g = x22 + x11 + 1.
Hence, it determines B2(α, 3, 31) of dimension 23.
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