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Abstract

In [3], we introduced a technique to construct an information set for every semisimple abelian code over an arbitrary field,
solely in terms of its defining set. In this paper we apply the geometrical properties of those information sets to obtain sufficient
conditions for a t-error correcting abelian code to have a b-PD-set for every b < t. These conditions are simply given in terms
of the structure of the defining set of the code.

I. INTRODUCTION

Permutation decoding was introduced by F. J. MacWilliams in [14] and it is fully described in [9] and [15]. For a fixed
information set of a given linear code, this technique uses a special set of permutation automorphisms of the code called
PD-set.

The idea of permutation decoding is to apply the elements of the PD-set to the received vector until the errors are moved
out of the fixed information set. But, how can we determine when all errors have been moved out of the information positions?
Given a t-error correcting code with a fixed information set and parity check matrix in standard form, it is proved (see, for
example, [9, Theorem 8.1]) that a received vector has syndrome with weight less than or equal to ¢ if and only if all its
information symbols are correct.

Finding adequate information sets and PD-sets is not trival. Many authors have studied families of codes for which it is
possible to develop methods to find PD-sets with respect to certain types of information sets. in all cases the techniques used
depend on family which is being studied. We are interested in the family of abelian codes. Some important families of codes
are abelian, for instance: cyclic codes, Reed-Muller codes, extended Reed-Solomon codes and others.

The existence of PD-sets relies on the information set considered as reference. In fact, it may happen that for an error
correcting code the selection of the information set causes the non-existence of a PD-set. Hence the importance of methods
and algorithms to construct information sets. In the case of cyclic codes, McWilliams uses the well-known fact that for a cyclic
code of dimension k, any selection of k£ consecutive positions defines an information set. In [10], H. Imai gave a method to
obtain information sets for binary two dimensional cyclic (TDC) codes of odd area. Later, S. Sakata [16] gave an alternative
method for the same purpose. Imai’s algorithm relies on the structure of the roots of the code, while the algorithm of Sakata is
somehow based on the division algorithm for polynomials. Up to our knowledge, these are the sole techniques for TDC codes.
Following the ideas in the two papers mentioned above, H. Chabanne [7] gave a method to calculate syndromes by using
the division algorithm for polymonials in several variables and Groebner basis; by using it he generalized the McWilliam’s
permutation decoding procedure. The techniques used by Chabanne involve a generalization of the information sets obtained
by Sakata to binary abelian codes.

In [3] we presented a method for constructing information sets valid for every semisimple abelian code, not necessarily
binary. It is based on the computation of the cardinalities of certain cyclotomic cosets on different extensions of the ground
field and it generalizes Imai’s method in the case of TDC codes. Such cosets are completely determined by the structure of the
defining set of the code. This technique allows us to design codes with suitable information sets in order to use permutation
decoding (see [4]).

In this paper we find sufficient conditions for an abelian code, viewed as an ideal of a multivariate polynomial quotient
ring, to have a PD-set contained in the translations associated to each variable. Moreover, the goal of this paper is that such
conditions may be written solely in terms of the g-cyclotomic structure of the defining set of abelian codes (see below for all
definitions).

In Section II we review basic facts about abelian codes and permutation decoding. In Section III we reproduce without
proofs the construction of sets of check positions (and hence information sets) given in [3]. In Section IV, we apply the results
of the previous section to get sets of check positions for a code C and its dual C*. Then, as a first part of our main results, we
study the relationship between them, which we denote by I'(C) and T'(C*) respectively. More precisely, we show that there
exists a simple bijection from the complementary set I'(C)¢ to I'(C*) (Theorem 14). Among other applications, this allows
us to show that it is equivalent to use one or the other in order to determine a PD-set. We also show that the set I'(C*) may
be determined from the complement of the set of roots of C (Corollary 11). In Section V we include the second part of our
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main results, namely, we give sufficient conditions for a semisimple abelian code to have a partial PD-set in the set of those
translations associated to each variable. These conditions make use of the previous results about the dual code (Theorems 21,
22, 23 and Proposition 26). Finally, Section VI contains applications that show us how we may use the conditions obtained to
design and exhibit codes that improve the parameters of best known permutation decodable abelian codes for certain lengths.

II. PRELIMINARIES

Throughout F denotes the field with ¢ elements where ¢ is a power of a prime p. Let C be a linear code of dimension k,
and length [ over the field T, that is, a subspace of F! with dimension k. We call the elements of C codewords. An information
set for C is a set of positions {i1,...,it} C {1,...,1} such that restricting the codewords to these positions we get the whole
space [F*. For every codeword the symbols in the positions corresponding to an information set are called information symbols
and the other [ — k positions are called check positions [13]. A generator matrix for C is a k& x [ matrix G whose rows form
a basis for C. We say that G is in standard form if it is of the form [I | A], where I}, is the identity matrix of order k.
We denote by C the dual code of C under the ordinary inner product, that is, C* = {v € F' | u-v =0 forall u € C}. A
parity check matrix for C is a generator matrix for C. If G is a generator matrix in standard form, it is easy to check that
H = [-AT | I,_4] is a parity check matrix. In this case we say that H is also in standard form.

As usual, for any codeword ¢ € C we denote its support by supp(c); that is, the set of its non-zero entries. We consider the
parameter ¢ = L%J, where d is the minimum distance of C, that measures the error-correction capability of C. Then we say
that C is an [l, k] t-error-correcting code.

We see the group of permutations on [ symbols, S, acting on F' via o(c1,...,¢;) = (¢o-1(1),---,Co-10)) With o € 5.
Then the permutation automorphism group of C is

PAut(C) ={oc € S, |o(C) =C}.

Two linear codes C and C’ are said to be permutation equivalent if there exists o € S; such that o(C) = C’. It is easy to see
that any linear code is permutation equivalent to a code which has a generator matrix in standard form.

Now, we recall some basic facts about the family of abelian codes and their permutation automorphisms (the reader may
see [1] for details).

A. Abelian codes

An abelian code is an ideal of a group algebra FG, where G is an abelian group. It is well-known that a decomposition
G ~Cy x---xC,, , with C,, the cyclic group of order r;, induces a canonical isomorphism of F-algebras from FG to

F[X1,...,Xn]/ (X" —1,..., X" —1).

We denote this quotient algebra by A(ry,...,7,). So, we identify the codewords with polynomials P(Xj, ..., X,,) such that
every monomial satisfy that the degree of the indeterminate X; is in Z,, the set of non negative integers less than ;. We
write the elements P € A(ry,...,r,) as P = P(Xy,...,X,) = Y. a;XJ, where j = (j1,...,jn) € Zp, X -+ X Z,, and
X3 = X{'... XJn. We deal with abelian codes in the semisimple case, that is, we always assume that ged(r;, q) = 1 for every
t=1,...,n.

Our construction makes use of the structure of roots of the ideals in A(r1,...,7,); so let us recall some basic facts about
it. For a fixed primitive 7;-th root of unity «; in some extension of F, ¢ = 1,...,n, every abelian code C in A(ry,...,r,) is
totally determined by its root set,

ZC) = {(af,....a0") | P(af,...,aw) =0 for all
P(Xy,...,X,)€C}.
The defining set of C with respect to « = {ay,...,a,} is
D, (C) = {(a1,...,an) EZLyp, X -+ XLy, |
(a7, ...,apm) e Z(C)}.
Given an abelian code C C A(ry,...,r,) with defining set D,(C) if one chooses different primitive roots of unity, say
B ={b1,...,0.}, then the set Dg(C) detemines a new code, say C’, which is permutation equivalent to C. So, for the sake

of brevity, we refer to abelian codes without any mention to the primitive roots that we are using as reference, and we denote
the defining set of C by D(C).
Recall that, for v € N, the ¢”-cyclotomic coset of an integer a modulo 7 is the set

Cigrmy(@)={a-q"" | ieN} CZ,.

We extend the concept of g-cyclotomic coset of an integer to several components.



Definition 1. Given an element (ay,...,an) € Zy, X -+ X Ly, , we define its g-orbit modulo (r1,...,r,) as

Q(ala"wan) = {(al'qiv"'van‘qi) |Z€I\I}g
Ly, X v+ X Ly,

1

It is easy to see that for every abelian code C C A(ry,...,7,), D (C) is closed under multiplication by ¢ in Z,, x - - X Z,._,
and then D(C) is necessarily a disjoint union of g-orbits modulo (r1,...,7,). Conversely, every union of g-orbits modulo
(r1,...,ry,) defines an abelian code in A(ry,...,r,). For the sake of simplicity we only write g-orbit, and the tuple of integers
will be clear from the context. The structure of g-orbits of the defining set is the essential ingredient for our algorithm of
construction of information sets, which will be described in Section III.

B. Permutation decoding

This decoding algorithm was introduced by F. J. MacWilliams in [14]. The method is described fully in [15] and [9]. For
a fixed information set of a given linear code C, this technique uses a special set of permutation automorphisms of the code
called PD-set.

Definition 2. Let C be an [l, k] t-error-correcting code. Let T be an information set for C. For s < t a s-PD-set for C and
Z is a subset P C PAut(C) such that every set of s coordinate positions is moved out of T by at least one element of P. In
case s =t, we say that P is a PD-set (see [12], [14]).

Given a t-error-correcting code with a PD-set with respect to some information set, the idea of permutation decoding is
to apply the elements of the PD-set to the received vector until the errors are moved out of the fixed information set. The
following theorem shows how to check that the information symbols of a vector with weight less or equal than t are correct.
We denote the Hamming weight of a vector v € F! by wt(v).

Theorem 3 ([9], Theorem 8.1). Let C be an [l, k] t-error-correcting code with parity check matrix H in standard form. Let
r = c+ e be a vector, where ¢ € C and wt(e) < t. Then the information symbols in r are correct if and only if wt (H’/‘T> <t

Once we have found a PD-set P C PAut(C) for the given code C with respect to the information set Z, the algorithm of
permutation decoding is as follows: take a parity check matrix H for C in standard form. Suppose that we receive a vector
r = ¢+ e, where ¢ € C and e represents the error vector and satisfies that wt(e) < ¢. Then we calculate the syndromes
H (7(r))", with 7 € P, until we obtain a vector H (7(r))” with weight less than or equal to ¢. By the previous theorem, the
information symbols of the permuted vector 7(r) are correct, so by using the parity check equations we get the redundancy
symbols and then we can construct a codeword ¢’ € C. Finally, we decode to 771(c/) = c.

In general to find ¢-PD-sets for a given t-error correcting code is not at all an easy problem. It depends on the chosen
information set. Moreover, it is clear that the algorithm is more efficient when the PD-set is small.

We denote the permutation group on Z,, X -+ X Z, by S, x..xr, and we consider it acting on A(ry,...,r,) via

T (ZJ anj> =2 4X () From this point of view the permutation automorphism group of an abelian code C in A(r1, ..., 7,)
may be described as
PAwt(C) = {7 € Sy, x...xr,, | 7(C) =C}.

Let T; be the transformation from A(rq,...,r,) into itself, given by T;(P) = X, - P, for j = 1,...,n. Then it is clear
that T; induces a permutation in S;, x...xr, ., which we also denote by T}, via T} (i1,...,%,) = (é1,...,%; +1,...,%,). Then
({T;}}—;) may be viewed as a subgroup of permutation automorphisms for every abelian code in A(ry,...,7,). We shall

look for PD-sets contained in the subgroup ({7} };‘:1>.

III. INFORMATION SETS IN ABELIAN CODES

In this section we describe the method for the construction of sets of check positions for abelian codes (not necessarily
binary) given in [4]. It depends solely on the defining set of the code. The reader may see the mentioned paper for details.

Let us consider the algebra A(ry,...,r,) under the assumptions ged(r;,q) = 1, foralli =1,...,n, and n > 2. Let D be a
union of g-orbits modulo (71, ...,7,) (see Definition 1). For each i = 1,...,n let D; denotes the projection of the elements
of D onto the first i-coordinates. Then, given e = (eq, ... ,ej) € Dj, with 1 < 5 < n, we define

(e) = 1Q(e)]
and

m(e) = [Clgry ()]s (1)

where ¢’ = ¢, in case j = 1, and ¢/ = ¢?(¢1:¢-1) otherwise.



As we have noted, in the semisimple case every defining set of an abelian code in A(ry,...,r,) is a union of g-orbits
modulo (ry,...,r,). Our construction is based on the computation of the parameters (1) on a special set of representatives
of the g-orbits. In fact, the representatives must satisfy the conditions given by the following definition.

Definition 4. Let D be a union of q-orbits modulo (r1, . ..,r,) and fix an ordering X;, < --- < X; . A set D of representatives
of the q-orbits of D is called a restricted set of represantives, with respect to the fixed ordering, if for every e = (e1,...,€n)
and €' = (€},...,e},) in D one has that, for all j = 1,...,n, the equality Q(ei,, ... e;;) = Q(e},,... €} ) implies that
(€iyy--oreyy) = (6217~-~7€§j)-

One can prove that restricted sets of representatives of a union of g-orbits always exist. Moreover, the construction of
the information set does not depend on the selection on the representatives (see [4]). However, different orderings on the
indeterminates may yield different information sets. From now on we consider as default ordering the following one: X; <
e < Xn

Now we describe our construction. Let C C A(ry,...,r,) be an abelian code with defining set D(C). Let D(C) be a
restricted set of representatives of the g-orbits in D(C), with respect to the default ordering on the indeterminates. As before,
for each 1 < i < n, we denote by D;(C) and D;(C) the projection onto the first i-coordinates of D(C) and D(C) respectively.

Given e € D;(C), let

R(e) ={a € Zy, | (e;a) € Di1(C)}, 2)

where (e, a) has the obvious meaning; that is, if e = (eq,...,e;) then (e,a) = (e, ..., €;,a).
For the algorithm we need to calculate n families of sequences of natural numbers. For each e € D,,_1(C), we define

M(e) = Z m (e, a) 3)

a€R(e)
and consider the set {M(e)}.cp, | (c)- Then we denote the different values of the M (e)’s as follows,
fm = max {M(e)} and
e€eD,_1(C)
fia = max {M(e) | M(e) < fli -1}
e€D,_1(C)
So, we obtain the sequence
S>> fls1 > 0= fls+1], 4)

that is, we denote by f[s] the minimun value of the parameters M(-) and we set f[s+1] = 0 by convention. Note that
M(e) > 0, for all e € D,,_1(C), by definition.

For any value of n, this is the initial family of sequences and it is always formed by a single sequence. Now, suppose that
n > 3. Then we continue as follows:

Given 1 < u < s, we define for every e € D,,_5(C)

Qu(e) = {a € Rle) | M(e,a) > flul}

and

ple) = 3 mlea).

a€y(e)

Observe that the set 2, (¢) may eventually be the empty set. In this case, the corresponding value p,(e) will be zero.
We define

flu,1 = max  {uu(e)} and
e€D,_2(C)

flu,il = max  {pu(e) |0 < py(e) < flu,i—11}.
e€D,_2(C)

We order the previous parameters and we get the sequence
flu, 11> - > flu,s(w)] > 0 = flu, s(u) + 11,

where f[u,s(u)] denotes the minimum value of the parameters f, () and flu,s(u) +1] = O by definition. So we obtain the
second family of sequences

{f[u,l] > > f[ms(u)] >0= f[u,s(u)+l] | u = 1,...78}.



In order to describe how to define a family of sequences from the previous ones, suppose that we have constructed the j-th
family, when n — 1 > j > 1. For the sake of brevity, in what follows we denote § = n — j + 2.

{flun, ..., us,11 > -+ > flun, ..., us, s(un, ..., us)] >

> 0= flun,...,us,s(un,...,us) +1] ‘ (un,. .. ,ug)
€ T;(C)}
where, for every ¢ =2,...,n,
T.(C) = {(un,. . ,tup_it2)|1<u, <sand %)
1 <us < s(up,...,usp1) for
d=n—1i+2,...,n—1}
For each (uy,...,un—j12) € T;(C) we take the corresponding sequence:

Flun, .. yus, 11> <+« > flun, ..., us,8(un, ..., us)] >
> 0= flun,...,us,s(un, ..., us) +1].

Letu € {1,...,5(tun, ..., Up—j+2)}. Then, for every e € D,,_;_1(C) we define

Qun;~~7u67u(e) = {a’ S R(e) | Mun,.“,u(g (670‘) 2 f[unv .. ,’LL(;,U]}

and

M, ..., ug,u(e) = Z m(e,a).

A€y, ug,ul€)
By ordering the different values p,, . u;.u(€), with e € D,,_;_1(C), we obtain
flun, .. us,u, 11 > oo > flun, ... us,u, $(tn, . . ., us, u)]
> 0= flun,...,us,u, 8(tun,...,usu) + 1],
where flun,...,us,u,s(un,...,us,u) +1]1 = 0 by convention. Then the (j + 1)-th family of sequences is

{flun, ... sus—1,11> -+ > flun, ..., us—1,8(un, ..., us—1)] >

> 0= flun,...,us_1,5(tn,...,us_1) + 1] ‘ (un, . ,U5_1)
€T}
We follow the previous process until we get n — 1 families of sequences. Finally, by using all the previous ones, we define,
for any value of n, the last family of sequences. For every (uy,...,us) € T, (C) we define
> mle) if n=2,
e€Dy(C)
M (€)= f[us]
[un, ... ,u2] = (6)
g ’ > m(e) if n> 2.
e€D1(C)
g, ug (€)>
flun,--., ug]

So the last family of sequences is
{glun, . us, 11 < - < glun, ... ug, s(un, ..., uz)] < (7)
< glun,...,us3, s(tn,...,us)] ‘ (um ... ,U3) S Tnfl(C)} .
The algorithm yields the following set
NC) = (1, in) €Ly, X -+ X Ly, | 8)
there exists (up,...,us) € T, (C) such that
f[u’!l7"'7uj +1] S Zj < f[un7"'7uj]7
for j=2,...,n, and 0 <41 < glun,...,ua2l}.
The following theorem, proved in [4], establishes that T'(C) is a set of check positions for C.

Theorem 5 ([4]). Let C be an abelian code in A(ry,...,ry,). Assume that ged(r;, q) =1, for everyi=1,...,n, and n > 2.
Then T'(C) is a set of check positions for C.

We conclude this section with an example which will be referred to later.



Example 6. Let ¢ =2, n =2, r; =7, 7o = 5, and consider the abelian code C with the following defining set with respect
to certain roots of unity:

D) = {(0,0), (1,1),(2,2),(4,4),(1,3),(2,1), (4,2)
(1,4),(2,3),(4,1),(1,2),(2,4),(4,3) }.

We choose D(C) = {(0,0), (1,1)} as a complete set of restricted representatives (see Definition 4). Then, by following (1)
and (3) we compute M (0) =1, M(1) = 4 and m(0) = 1, m(1) = 3. Using these values we may get the sequences

flil=4> fz1=1> f131=0

and
gi=3<gr21=4

which correspond to (4) and (6) respectively. We use them to produce the marks in the following picture.
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So, a set of check positions for C is (see (8))

I'(¢) = {(0,0),(0,1),(0,2),(0,3), (1,0), (1, 1), (1,2),
(17 3)7 (27 0)7 (27 1)7 (27 2)7 (27 3)7 (47 O)}
IV. DUAL CODE
For any abelian code C in A (r1,...,7,), we denote by C* its dual code. By the previous section, we know that I' (CJ-)

and the complementary set I'(C) C [];_, Z,, are information sets for C. In this section, we will see that these information
sets may be identified; that is, we will prove that there is a permutation K € Sy, x...xr, such that for any abelian code C,
r € PAut(C) and, furthermore,  (I'(C)) = I' (C*)°. Using this, we will conclude that, in order to apply the permutation
decoding algorithm, both sets are equivalent. This fact will be used in the following section.

Now, to relate information sets of abelian codes and their duals we need to determine both sets of check positions with
some notational compatibility. For this reason, we are going to add to the construction of I'(C) some “trivial” values of the
parameters used. As the reader will see, they do not imply any changes in the information sets obtained. We note that this
variant in the definition of the set of check positions will be used exclusively in this section.

So we begin by considering an abelian code C with defining set D(C) with respect to certain primitive roots of unity. To
avoid any confusion with the original definition of I'(C) we will make a change on the symbols used to determine it. The new
set determined by the new parameters will be denoted by f(C) Later, we will see that they coincide.

Now we choose a set of restricted representatives D of the g-orbits of the whole set D = Z,., x ... x Z,.as in Definition 4.
Then, in order to construct I'(C), we take the set D(C) = D N D(C) as our set of restricted representatives of the g-orbits
of D(C). Recall that we are considering as default ordering that given by X; < --- < X,,. For every i € {1,...,n — 1}, let
us denote by D; and D;(C), the image of the projection onto the first i-coordinates of D and D(C), respectively. For any
1<i<n-—1ande e D,, we define

Ro(e) = {a€Z,, | (e;a) €Dip1} and
R(e) = {a€Z,,, | (e,a) €Dis1(C)}.

Under this notation, e € D;(C) if and only if () # R(e), and in this case R(e) = R(e), where R(e) has been defined in (2).
Again, the algorithm is based on the computation of n families of sequences of natural numbers. For each e € D,,_, set



]\/4\(6): Z m(e,a).

acR(e)

Note that, from (3) we have that e € D,,_1(C) if and only if 0 # M (e) = M(e). Then, we order the different values M ()
and we define

fll =  max {J/\Z(e)} and
ecD, 1
fll = max {M(e) | M(e) < fli —11}.
e€D,_1
So we obtain a sequence as in (4)
e = f101 > fi11> > fin > flie+11=0, ©)

where ]?[0] =ry, and f[t +1] = 0 by definition. In this case, ¢ = s if and only if D,,_; = D,,_1(C) and t = s + 1, otherwise,
that is, if and only if, there exists ¢ € D,,_1 \ D,,_1(C) for which ]/\4\(6) =0.

The sequence given in (9) is the initial one for any value of n and it defines the first family. Now, suppose that n > 3.
Then, for each 0 < u < ¢ and e € D,,_o we define

ﬁo(e) = ®7
Que) = {aeRo(e) | M\(e,a)ZJ?[U]}’

whenever u # 0, and

Note that fig(e) = 0 and fi(e) = r,_1, for all e € D,,_», and it may happen that Ji,,(¢) = 0 even if e € D,,_5(C).
Then we define

flu1l = max {fiu(e)} and
e€D,_o
fuit = max {fu(e) | fule) < flui— ).
e€Dy 2
Then we obtain the family of sequences (one for each u € {0, ...,t})

{ r-1= Fluw,01 > flu, 11> -+ > flu,t(u)] >
flu,tw)+11=0]0<u<t },
where f[u,t(u)] denotes the minimum value of the parameters fi,,(-) and the equalities f[u,t(u) +1] = 0, f[u,()] = r,_1 are
given by definition.

In a similar way to Section III we describe how to define a family of sequences from the previous ones. Suppose that we
have constructed the j-th family, when n — 1 > j > 1. For the sake of brevity, in what follows we denote  =n — j + 2.

£7“5—1 = flun,...,us,00 > flun,...,us, 11> ...

f[un,‘..,u(;,t(un,..‘,u(;)] >0= J/c\[un,.‘.,u[;,t(un,‘..,u(g)+1]
| (unv"'7u5) € T](C)}v

where, for every ¢ =2,...,n,
TiC) = {(un,.-  Un_is2)|0<u, <tand (10)
0<us < t(una cee 7u5+1) for
d=n—i+2,...,n—1}.
For every (un,...,Un—jt2) € '/fj (C) we take the corresponding sequence

T&*l = f[u"L7"'7u570] Z f[u7l7"'7u571] > A
f[’U»nv---7“67t(un7---1u6)] >0= f[una"'vu(svt(unv"'?u(s)+1]-



Take u € {0,...,t(up,...,us)}. Then, for every e € D,,_;_1 we define

whenever u # 0, and

um»--»ua,O(G) = (Z)v
IR () {a € Ro(e) | fiu,....us (€, 0) (1)
> flun, ... us,ul},

[e)je)

Fup,...ousu(€) = Z m(e,a).

aEQuh ...... u(g,u(e)

By ordering the values above, we get

Tn—j = f[un7-~~7u6:u70] > f[un,...,U5,u,1] >
Slun, o t(un, - w)] > flun, .. u, t(un, .. u) + 11 = 0,

with the first and last equalities given by definition. Then we obtain the (5 + 1)-th family of sequences

{

Trn—j = flun, ... un—j+1,01 > flun, ..., un—jr1,11> ...
f[“nyu-»un7j+1>t(un,~-~7'Ufn7j+1)] >

f[u”""?un—j-&-lvt(um coup—j41) +11 =10,
| (una"'vun—j+1) S T]+1(C) }

We follow the previous process until to get n — 1 families of sequences. Then, by using all the previous ones, we define

the last family. For every (up,...,us

-~

glun, .

) € T,(C) we set

0 ifUQ:O

Z m(e) ifn=2, and uy # 0
e€Dq
cuz] = M (e)> f[us) (12)

> mle) ifn>2 anduy #0

e€Dq
Pup,ug (&)
flun,-.., ug]
Finally, as in Section III, we define
TC) = {(i1,... in) € Lo, X - X Ly, | (13)
there exists (up,...,us) € Tp,(C) such that

flun, . ouy + 11 < 45 < flun, ..., uj,
for j =2,...,n, and 0 <4y < glun,...,uzl}.

Example 7. Let ¢ = 2, n = 2, r; = 7, 7o = b5, and consider the abelian code C given in Example 6. In this case we

choose D = {(0,0),(0,1),(1,0),(1

:1),(3,0),(3,1)} as restricted representatives of the 2-orbits of D = Z7 x Zsz. Then

D(C) = {(0,0), (1,1)}. Then we compute M(0) =1, M(1) = 4, Z/\4\(3) =0 and m(0) = 1, m(1) = 3, m(3) = 3. Using
these values we get the new sequences

and

floo=5> fiil=4> f21=1> f[31 =0 = f14]

gio1=0<gn1=3<gr21=4<gB1=".

Now, following (13), we get the picture
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The reader may check that even though we have added four marks, all of them are superfluos, that is, this picture is the
same as that of Example 6.

Now we shall see that, in fact, the sets I'(C) and T'(C) are the same. Let us recall that the values #(-) and s( -) represent the
lengths of the sequences involved in the construction of I'(C).

Lemma 8. Let C be an abelian code in A(r1,...,1y). Let (Vn,...,v2) € T (C) (see (5)). Then
a) t=sors+1and flo,] = flon] # 0,
and for every j = 2,...,n — 1, the following conditions hold:
b) t(vn,...,vj41) = 8(Vn, ..., vj41) OF $(Vpn,. .., vj41) + 1,
~ Vnyees 011 (€ ifee D;_1(C
C) fho,,..., Vi1 (6) — { Hoy,, ’OJ+1( ) if J= 1( )

ife€Dj_1\D;j_1(C),
d) flvn,....0)1 = flon,..., 01 # 0.
Moreover,

e) glon,...,v2l = Glum,...,va] # 0.

Proof: Let D(C) denote the defining set of C. Take D a restricted set of representatives of the g-orbits of Z, X - -+ X Z,,.
Then we choose D(C) = D N D(C) as a set of restricted representatives of the g-orbits of D(C).

First, note that given e € D,,_1, we have that e € D,,_1(C) if and only if M( ) # 0, and in this case M( ) = M(e). This
implies that t = s if and only if D,,_1 = D,,_1(C) and t = s+ 1 otherwise. Moreover, in the former case, f [t] = f t+11=0.
So, for all w € {1,...,s} one has that 0 # flu] = f[u] and flu+1] = f[u+ 1]. This gives us a).

Now, take (vp, ..., v2) € T, (C). We are going to prove that b), c) and d) hold for every j = 2,. — 1. We use induction
on n — j. First, we prove the case j = n — 1. As we have seen, f[vn] flvnl # 0, and so, for every e€ D, _o, ﬁvn (e)=10
in case e € D,,_5 \ D,,_2(C) and ﬁvn (e) = Q,,(e) in case e € D,,_5(C). That is, fi,,(e) = 0 if e € D,,_5 \ D,,_2(C)
and fiy, (€) = iy, (€) if e € D,,_2(C). Then, for all u € {1,. ;8(vp)} one has that flon,ul = Flvm,ul # 0; in particular,
Sflon,vn_1] = f[vn,vn 1] # 0. Moreover, t(v,,) = s(v,) if and only if Q (e) # 0 for every e € D,,_o, and t(v,) = s(v,) + 1
otherwise. This shows the case j =n — 1.

Assume that we have proved b), ¢) and d) for some j € {3,...,n — 1}. Then, let us prove these conditions in the case
j — 1. Applying ¢) and d) with j, we have that flvm._?vi(e) =y, .0, (e) for every e € Ej_g(C), and ﬁvn,...,vj(e) =0 if
e € Dj_3\ Dj2(C). Hence, we obtain that fiy,,...v,(€) = fiu,...., (€), for every e € D;_»(C) and Jiy,,....,(e) = 0 if e €

EJ,Q\EJ,Q(C). Then flvn,...,vj,ul = flon,...,vj,ul # 0, for any u € {1,...,s(vp,...,v;)}; in particular, flon,...,v;_1] =
flon,...,vj_11 # 0. This shows b), ¢) and d). In addition, we have obtalned that the equality t(vy,...,v;) = $(vn,...,v))
holds if and only if Qvn v, (€) # 0 for every e € D;_5 and t(vy,...,v;) = s(vn,...,v;) + 1 otherwise.

Finally d) follows from the definitions (12) and (6) and from c) and d) with j = 2 (1f n = 2, we use that M (e)=M(e) #0
if and only if e € D,,_1(C)). [ |

Proposition 9. Let C be an abelian code in A(r1,...,ry,). Let T'(C) and L(C) the sets of check positions defined in (8) and
(13) respectively. Then T'(C) = T'(C).

Proof: Let D(C) be the defining set of C. Recall that the set I'(C) does not depend on the choice of the restricted set of
representatives of the g-orbits of D(C). Take D a restricted set of representatives of the g-orbits of Z,, X - -+ x Z,., - Then we
choose D(C) = D N D(C) as a set of restricted representatives of the g-orbits of D(C) and we construct I‘(C) and F(C)

First, let us note that by using a) and b) in Lemma 8 we have that T,,(C) C T,,(C). Indeed, if (v,,...,vs) € T, (C) then
0<wv,<s<tand0<wv; <s(vp,...,0i+1) < t(Vpn,...,0i41), Wwithi = 2,... n—1. This implies that (v, ...,v2) € Y‘n(C)



Now, we are going to prove that I'(C) € T'(C). To do this we take (i1, ... ,i,) € ['(C). Then there exists (vp, . .. ,v2) € Tp(C)
such that
flon, ..., 01 > %5 2 flon,...,v; + 1],
for every j =2,...,n, and

0 <1 < glvn,...,val.

So, by the previous paragraph, (vy,...,v) € T, (C). By applying a), d) and e) in Lemma 8 we have that Flvm, .. Ll >0 >
flon,...,vj + 11, for every J=2,...,n,and 0 <43 < glon, sv2]. Therefore, (i1,...,i,) € T'(C). R
Let us see the inclusion T'(C) C T'(C). Let (41,...,4,) € I'(C). Then there exists (vy,...,v2) € Tp(C) such that

Flon, vl > 15 > flon,..v; +11,
for every j =2,...,n, and
0 <41 < gln,...,val.

We will prove that (v,,...,v2) € YT,(C). We claim that v; # 0 for every j = 2,...,n. Assume that this is not true
and let jo be the minimum in {2,...,n} such that v;, = 0. Since 0 < i1 < Glvn,...,v2] and glv,...,vs,0] = 0, by the
definition (12), we have that jy, > 2. Then, by using (11) we have that ﬁvm,,_,vjﬁho(e) =0, for every e € 5j0_2, and hence
t(Vn, ..., Vjo+1,0) = 1. So we get the following sequence

Tjo—1 = flon, -, 0jg+1,0,01 > flop, ..., vjo41,0,1] =

= flon,...,vj041,0,2] = 0.

This implies that f[vn,...,vja+1,0, 11 <djo—1 < f[vn,...,vjﬁl,o, 0] an so vj,—1 = 0. This contradicts the minimality of jo.
Then our claim is proved.

Finally we are going to show that v,, # s+ 1 and v; # s(vy,...,vj41) + 1, for every j = 2,...,n. Suppose that there
exists jo the minimum in {2,...,n} such that eihter v, = s + 1, in case jo = n, or vj, = s(vn,...,Vjy41) + 1. If jo =n
tBen v, =85+1 Aand so, by using Lemma 8 a), we have that v,, =t and 0 = f[t +1] = f[t]. This is a contradiction because
fit+1 <, < ft1 = fls+11 = 0. Let us assume that jo < n, then vj, = s(vpn,...,Vjo+1) + 1 = t(vn,...,vj,41). Hence
0= f[vn,...,vjoﬂ,t(vn, s Vit )] = floms .o, vjg41,t(vn, - ., vjo+1) + 11. This contradicts that

~

Jlon, oo t(on, - vje41) +11 S gy <
flon, .. t(on, ..., vjo+1)1 = flvn, ..., 8(vn, ..., vjo+1) + 11 = 0.

Thus, we have proved that (vy,,...,v2) € T,,(C). Now, by applying a), d) and e) in Lemma 8 we have that flvn,...,v;] >

ij > flon,...,v; +11, for every j = 2,...,n, and 0 < i3 < g[vn,...,v2]. This implies that (i1,...,%,) € I'(C) and we are
done. [ ]

Let C be an abelian code in A(rq,...,r,) with defining set D(C) with respect to certain choice of roots of unity. Then we
define

—D({C)={(r1 —e1,...,rn—eyn) | (e1,...,en) € D(C)},

and we denote by C~! the code with defining set —D(C) with respect to the same set of roots of unity, that is, D(C~!) = —D(C).
One may check that D(C) and —D(C) have the same g-orbits structure, and so they yield the same parameters m(-) (see (1)).
Therefore, T'(C) = T'(C~1) (see (8)).

The following lemma is well known. It establishes the relationship between the defining sets of C~! and C* respectively.
The reader may find a proof in [13, p. 836].

Lemma 10. Ler & = (ay,...,ay) be a choice of primitive roots of unity. Let C be an abelian code in A(ry,. .., r,) with
defining set Dgz(C), and let C*+ denote the dual code. Then

D5(CH) = (Zp, x -+ xZy,, )\ Dz(C™Y).

Given C an abelian code in A(rq,...,r,) with defining set D(C) with respect to certain roots of unity, we denote by C’
the abelian code with defining set D(C') = (Z,, X --- X Z,.,) \ D(C) with respect to the same choice of roots of unity. The
following result follows from Lemma 10 and what we have mentioned above about C~1.

Corollary 11. Let C be an abelian code in A(ry,...,r,) and let C+ be its dual code. For a fixed set of primitive roots of
unity we have that
rch) =1(C).

__ The two previous results say that in order to study the relationship between [(C) and T'(C*) we can use the sets T'(C) and
['(C"). The advantage of using the code C’ instead of C* relies on the fact that we can compute the defining set of C’ and C
at the same time. This allows us to easily relate the respective sets of check positions.



Let us denote by f'[-1, ¢'L1, ]/W\’(-), ﬁ’(-), p(+), t' and ¢'(-), the parameters used in the construction of ['(C"). The Lemma 13
establishes the relationship between these new parameters and that used in the construction of T'(C). First, we need to introduce
the following recursive notation.

Notation 12. Given (uy,...,us) € Tn(C) (see (10)) we define

w1 (Uun) =t — up.

Suppose that we have defined w;_1(up, ..., Up—it2), With 2 < ¢ < n. Then we write (6 =n — i + 2)
wi(un, e ,u(;_l) =
[wifl(un7 B 7u5)atl (wifl(u’na v 7u5)) - uﬁfl] .
We also set
w;‘r(uﬂm M 7u671) - wl(un7 AR 7u17u671 - 1)
= [wic1 (U, ... us), t' (Wim1 (Un, - -, us5)) — us—1

+1].
Lemma 13. Let C be an abelian code in A(r1,...,ry,). Then, for every (up,...,us) € '?n(C) we have that

a) t = t'y t(un,...,uilzt’(wn_iﬂ(un,...,ui)), withi=3,...,n,
b) flun,...,uw;l =1; — f/[w:_i+1(un,...,ui)], withi=2,...,n,
) Glun, ... u2l =11 — §'lwn—1(tn,...,u2)l

Proof: Let & = (a1, ..., ayp) be a choice of primitive roots of unity. Let us denote D(C) = D5(C) and D(C') = D5(C’),
the defining sets of C and C’ respectively, with respect to &. Let D be a set of restricted representatives of the g-orbits of
Ly, X -+ X Ly, . Take

D(C)=DnD(C) and D(C')= DN D(C")

as sets of restricted representatives of the g-orbits of D(C) and D(C’) respectively. Then one has that D(C) U D(C') = D,
where the union is disjoint. Let us recall that for every i € {1, Y 1}, the images of the projections onto the first ¢
coordinates of D, D(C) and D(C’) are denoted by D;, D;(C) and D;(C’), respectively.

_ Then for every ¢ € Dy,—1, we have that M(e) + M'(e) = 5. This implies that ¢ = ¢" and so, by the definitions of f11 and
f'I-1, we obtain b) in case i = n.

In order to prove the remaining cases in a) and b), we use induction on n—i. The key is to prove that for every i € {3,...,n},
(Un,...,u;) € Yy_yj12(C) and e € D;_o the following condition holds

//’Zum---,ui (6) + lll/\,wn,prl(un,“.,ui)(e) =Ti—1. (14)

Take (up,...,us) € Tn(C) We are going to prove (14) in case ¢ = n and consequently we will obtain b) with i =n — 1

and a) with i = n. Let e € D,,_». First, suppose that u,, # 0. For every a € Roy(e), we have that a € Ry(e) \ (ﬁun(e))
if and only if M\(e,a) < Flun]. Since we have proved b) in case i = n, we have that a € Ro(e) \ (ﬁun(e)) if and only if
J\/J\’(e, a) > f’[w{r(un)]. This last inequality is equivalent to a € @wl(un)(e) because f’[wl(un)] > f/[wj(un)] = f’[wl (un) +11.
80, Ro(e) \ (Qu, (€)) = Doy (©):

Now, suppose that u,, = 0. Then Qo(e) = 0 and w; (0) = t = t’. By the definition of ', we have that J\//_T’(e, a) > f'1e'] for
every a € Ro(e). So Ry(e) \ (ﬁo(e)) = Ry(e) = ﬁ\/wl(o) (e). This implies that for every u, € {0,...,t} and e € D,,_5 the
condition (14) with ¢ = n holds. Hence

t(un) = t' (w1 (un))

and

f[unyunfl] + f/[W;(Unyunfl)] =Tp-1-

This gives us a) with ¢ = n and b) with i =n — 1.
Suppose that we have proved (14) for ¢ = ig + 1, where 2 < iy < n. Then

Fltn oo suigl + Pty sy uig)] = Tig (15)

and
t(un, . ,ui0+1) = t'(wn_io (’U,n, . ,uiO_H)), (16)

that is, we have b) with ¢ = iy and a) for i = 79 + 1.
Let us prove (14) with ¢ = iy and we will obtain b) with ¢ = ¢y — 1 and a) with ¢ = i,.



Take e € D;,_». We distinguish in two cases again. First, suppose that u;, # 0. Then a € Ry(e) \ (ﬁunum (e)) if and
only if R
ﬂun,~~~,ui0+1 (6, a’) < f[um cees uio]a

By using (14), with © = 79 + 1, and (15), this is equivalent to
,U'/un_io (Wn e Uig 1) (67 a) > f’[w:{_igﬂ(um c )],
and this occurs if and only if a € fl\’%moﬂ(umm,uio)(e), because

Frlwon—igr1 (uny o suig)] > Pl (s g1
Now, suppose that u;, = 0. Then, ﬁumwuioﬂ,o(e) = () and

Wn—ig4+1(Un, -+ s Uig41,0) =

[Wn—io (Wns -+ oy Uig1), t (Wn—ip (Uns - -+ Uig41))] -
By the definition of ¢ (wy—o (Un, - .., uig+1)), for every a € Ry(e) we have that

"
lliwn_,;o (un,...,u,;O_H) (65 a) Z

fl[wnfio (u7L7 ey ui0+1)7t/(wn7io (Um ey ui(,+1))];
SO

Bo(@\ (Qu. iy 0(0) ) = Role) =

—

Q/wn—i0+1(un ----- Uig+1,0) (6)

Therefore, we conclude that for every e € ﬁio,g we have that

ﬁunvnvuio (6) + M/wn_io_*_l(u,,,,...,uio)(6) = Tip—1
and then
t(un, e ,uio) = tl(u)n,ioJrl(ul, N ,uio))

and
flun, .. uig—11+ f/[w,f,i0+2(un7 co U —1)] = T 1.

This proves (14), a) and b).
To finish the proof let us deal with ¢). From the previous paragraphs,

ﬁun ----- U3(e)+/u‘lwn_2(un ..... U3)(e) = 72 and
flun, w2l + fllwf (un,...u2)] = T2,
then
r = Zm(e):
6651
= > ma+ > me
{e€D1 | {e€Dq|
Bug,...,ug (€)> Bup,...,ug(e)<
Flun,.. ua]} Flun,..yual}
D VR C R SRS
{e€Dy| {e€D;|
Fun,..ug ()2 a1 (un e ug) (92

Flun, o ual} Flon_1(un.un)l}

- ?[uny .. 7“2] + é\/[wn—l(um .. '1u2)]-

So we are done.

The following theorem is the main result of this section. It gives us the relationship between I'(C) and T'(C*).

Theorem 14. Let C be an abelian code in A(ry, ..., ry). Let & : [ Zy, — T[]}, Z,, be the bijection given by k(i1, ..., in) =
(ri—i1—1,...,7p —in — 1). Then
K (D(C)) = (Zny % -+ % Ly, ) \T(CT).



~

Proof: Let (i1,...,i,) € T'(C) =T'(C). Then, there is a list (uy, ..., u2) € T, (C) satisfying that
f[un,...,uj+1]:ﬁun,...,ujJrl] <i; <
Slun, - ugl = flun, ... w0,

for j =2,...,n, and
0 <11 < Glun, ..., u2l = Glun, ..., us2l.

For every j = 2,...,n we write x;(i;) =r; —i; — 1. Then
T; —J/c\[un,...,uj]—l < Iij(ij) < —ﬁun,...,uj+l]—1

and
71 7?]\[un,...,u2] —1< Hl(il) <r —1.

Then, by applying Lemma 13 we have that for each 2 < j < n,
,]/c\’[w;‘;_j+1(un, cou)] < Hj(ij) < J/c\'[w;f_j+1(un, oo u + 1)1, (17)

and R
G lwn—1(tn,...,u2)l < K1(i1) < 71. (18)

Now, note that w;_jjl(un, ooty + 1) = waejp1(Un, .. u5). So, by (17) and (13), (ki(i1),. .., kn(in)) € f(CJ-) if
and only if s1(i1) < ¢'lwn_1(un,...,u)]l. But this contradicts (18). Hence x (I'(C)) C I'(C*)¢. Finally, from the fact that
IT(C)| = |D(C)| (see [3]) and Corollary 11 we have that

[D(CH)e] = r(e)e) = _Hm —|D(C")] =

= HTi - (Hm - ID(C)> = [L(C)],

i=1
which yields the reverse inclusion. [ ]
Note that the bijection x may be extended to a bijection of A(ry,...,ry) via &(P(X1,...,X,)) = Y a,—1(5 X3, for every
P (Xy,...,X,) =3 a;X). We also denote by « this extension. It is clear that & is exactly the composition 7" ' o---oT7n~1

(see Section II for notation) and so it belongs to the permutation automorphism group of every abelian code. Then, Theorem 14
implies that we can use equivalently I'(C)¢ or I'(C1) in order to apply the algorithm of permutation decoding. Indeed, the
reader may check that P C (T; | i = 1,...,n) is a partial PD-set for C and the information set I'(C*)¢ if and only if
koPor~!is a partial PD-set for C* and the information set I'(C*).

V. PARTIAL PD-SETS FOR ABELIAN CODES

In the following two sections we study how to apply the permutation decoding algorithm to abelian codes by taking as
reference the information sets given in the previous sections. Since these information sets depends only on their defining sets,
we may construct good abelian codes (in order to apply the permutation decoding algorithm) from a suitable choice of their
defining sets (see Section VI). We shall show sufficient conditions to find (partial) PD-sets contained in the subgroup of the

permutation automorphisms of any abelian code, generated by the translations T} (i1,...,4,) = (i1,...,%; + 1,...,iy), for
7 =1,...,n, which were introduced in Section II.
As we have seen, for a given abelian code C in A(rq,...,r,) both sets I' (C)“ and I' (C*) (= ' (C’)) are information sets

that we may use equivalently. We prefer to make use of the set I' (C’) because, on the one hand, we think that in this context
the proofs may be written in a simpler form and on the other hand, examples may be also constructed in an easier way, as
the reader may check in next section. As we have noted in the previous section, we can compute the defining sets of C’ and
C simultaneously; we can take one or the other as it suits us.

We denote by f'[1, ¢'[-1, M'(+), (-), p/(-), s’ and s'(-), the parameters used in the construction of I'(C’). It may be
necessary to revise this construction in Section III, more precisely the definitions from (4) to (8).

Let C be an abelian t-error-correcting code in A(rq,...,7,) with defining set D(C) and information set I'(C’). Let b < ¢
a natural number and let e € A(rq,...,r,) an error vector with supp(e) = {p1,...,pp} C Zy, X -+ X Zy,,. We set p; =
(p,...,p}) for j =1,...,b. We are going to use the subgroup <{TJ};L:1> to move supp(e) outside of I'(C’). Following the
notation in Section I, if p; € T'(C’), for some 1 < j < b, then there exists (u,, ..., us) € Y, (C’) satisfying f'[un,...,u; +1] <
p; < f'lun,...,u;l, forevery : = 2,...,n, and ¢'[un,...,u2] > pjl- > 0. Therefore, in order to move p; outside of I'(C’), we look
for a suitable T' € <{TJ}?:1> such that T'(p;) ¢ I'(C’); that is, such that for T'(p;) there no exist (up, ..., u2) satisfying the
conditions mentioned above. (For instance, the existence of 7 € {1,...,n} and a € N such that f'[un,...,u;] < p} +a mod 7;
implies that T)*(p;) ¢ T'(C’).)



Remark 15. As we have seen in Section III, our information sets depend on the chosen ordering in the indeterminates
X1,...,X,. In this section we will use the default ordering, that is, X; < --- < X,,. The reader may check that all the results
can be adapted to any other ordering.

First, we need some technical results and some additional notation. All throughout C will be an abelian code in A (r1,...,7,)
with defining set D(C) and information set I'(C’).

Notation 16. Let v = (v,,,...,v;) € Tp_j12(C’), with j € {2,...,n}. We define
o SO(v) =,
o S(v)=(v,8'(v) = (vn,..., 05,8 (Vn,...,v5)) (f n>3),
and if we assume that S*(v) is defined, where 0 < i < j — 2, we set
o ST (v) = (5%(v), s (S'(v))).
Finally we define S™!(v) = (vp,...,v;41), in case j < n, and S~1(v,,) = 0.
Lemma 17. Let h,j € N such that 2 < h < j < n. Then for every (un,...,us) € T, (C') and an integer w, such that
uj <w < 8 (Un,...,uj41), we have that:
a) flun, .. unirsunl < FIIST170 (up, o ujgn, w) , 1,
b) g'lun,...,u2l < g'18772 (un, ..., ujs1,w)l.
Proof: Let D(C’) be a restricted set of representatives of D(C’). In order to avoid the distinction in cases, we will assume
that, for every e € Dy,1(C’), iy, ., (€) = M'(e), when i = n and pj(e) = M'(e).
Let (up,...,u2) € T,,(C’). Let ¢ and j be natural numbers such that 2 < ¢ < j <n and w € {uj,...,s" (upn,...,uj41)}
We are going to prove the following claim:

if e is an element of D; 1(C’) such that

/”Ls,l‘n,..47u7j+1 (6) > f/[“n’ o ]
then (19)

!
/’l’ijlii(unv“-vuj*’l’w) (e) Z
FIU87= (s g, w)l

The condition (19) will be used repeatedly through the proof. First, in case ¢+ = j we have that

/ _ /
Hsj’l”"(umm,uwrhw)(6) = My, (6) 2
/ . !
Flluns . ujpr, w51 > flun,. . ujpr,w] =

F'189 7 (- . ujy1, w)]

becasuse w > u;j. Assume that i < j (note that this implies i < n) and that there exists e € D;_1(C’) such that P .. wist (e) >

f'lun, .. uql. Then gig, . () # 0, and so there exists a1 € R(e) verifying that i, ... (e,a1) > f'lun, .., uit1l.

Hence (17, ..,,(€,a1) # 0. By repeating this argument j — i times we get j — i natural numbers a1 € R(e),...,a;—; €
R(e,a1,...,aj—;—1)suchthatu;, .. (e;a1,...,a;-3) > f'lun, . ousl. So, g (€@, s aj—i) > fllun, . ujen, wl
because w > u;. Then one follows that
/
Pty (€5 Q1 -5 @j—i—1) 7 0,
and hence
N;Ln,...,uj+1,w(ev ag,... 7aj*7i*1) > f/[S(uTw cee vuj+17w)J'
Therefore, ug(uww%ﬂ’w)(e, Aty ... 7aj,i,2) # 0. Now, we repeat this process j — ¢ times and we remove the numbers a;,

with ¢ =1,...,7 — 4, until to get

Mfs‘ff'i’l(umm,ujﬂ,w)(e) > f/[Sj_i(unv cs Ui, w)l

This proves (19).
Let us prove a). Let h be a natural number with 2 < h < j < n. If h = j, then the proof of a) is straightforward. So
suppose that & < j. Then one has

! !
Flunsooupg,un] < flun, . ung, 11 =
’ _
_max uun,...,uh+1(e)} =
e€Dp_1(C’

_max g m(e,a)
e€Dy_1(C)
0y, (@)



Recall that

/

Qi (€) ={a € R(e) [ iy, i, (e50) =

fl[una ce 7uh+1]}'
On the other hand,

FIIST 7 (s ugg, w) 1] =

max U , e } —
e€Dy_1(C") {MSJ (e u_,+1,w)( )

_max > m(e,a) o,
e€Dyp_1(C") '
aerj—l—h(un ..... uj+1,'w)(e)

where

g'jflf"(un,...,uj_'_l,u)) (6) -
{a’ € R(@) | u{sjfth(un,__,7uj+l7'w)(e’ a’) Z
f/[Sj_l_h(un,~~7uj+17w)]}-

Now, by applying (19) with i = h + 1 we have a).
Finally let us prove b). By definition,

9'lun, ... uzl = > m(e).
ll‘{u/”,.,.."u,s (e)zf/[uﬂv'“?uﬂ
Then by taking v = (un, ..., uj+1,w) we have that
915772 (0)] = > m(e).
Wiy (@2 F18772(v)]

Therefore, by (19) with ¢ = 2 we obtain b). [ |
Now we present some definitions that will be used in our main results.

Definition 18. Given v € {1,...,s'} we define
Aw)={ie{2,....,n}| f1s" 1), 1] < 14},
where, if i =n then f'[S~1(v),11 = f'[1]. From 7\(11) we define
Av) if 915" 2w =1
Av)=4¢ ~ ’
) { A(w)U {1} otherwise.

Now, for every i € A(v), we define

) r;
Ai(v) = max {A eN| fIsm=i-1(v),1] < }] } :
in case © > 1, and in case 1 = 1 we set

A1(v) = max {/\ eN| 15" %)) < {%-‘ } .

Note that, by Lemma 17, given v,v’ € {1,...,s’} we have that
if v > v’ then A(v) C A(v'). (20)
The following two lemmas will be used several times in the proofs of the subsequent results. Given r > 0 and x integers,
we denote by
[z]
the remainder of the division of = between r.

Lemma 19. Let v, h, x1, . .., be natural numbers such that 0 < x1 < o9 < --- < xp < r. Then there exists 3 € N verifying
that

E-‘ 1< [z + 6], <,

foreveryi=1,... h and [xj + 3], =1 —1 for some j € {1,...,h}.



Proof: For every i € {2,.. h} we denote d; = x; — x;_1 and we set dy = r — (xp, —x1). So r = Z?Zl d;. Suppose
that d; < { w for every i = 1,...,h. Then d; < 7, for every i = 1,...,h. Hence

h
r:deh-%:
=1

a contradiction. Therefore there exists k € {1,...,h} such that d, > [#].
Then, on the one hand, we have that x; + 0 < 2r, forevery i =1,...,

Take B = r — xp_1 — 1, where we assume zg = Tj,.
n the other hand, if k& # 1 then

H

r+pf=r—zp—14+r1=d1—1> [%1—1.

h.
2+ B>2B>xr — a1 — 12>

and if kK = 1 then

So, one has that
0<[F]-1<a+f<- <ampa+B=r—1<r<
r+[F]-1<ap+B<--<ap+ <2
and we are done. [ ]

Lemma 20. Let B be a subset of Z, X -+ X Z,, with cardinality b. Let A C B and {\;(u)}icr a set of integers, with
I C A(u) for certain uw € {1,...,s'}. For any non negative integer n such that n < |A| and

n+ Z Ai(u) >b
il
there exist J = {i1,...,in} C I and a family of sets {Xx}?_, (X} C Z,,) such that
B=AUB;U---UBy,
where the union is disjoint, and for each k € {1,...,h},
By :{:CGB\(AUBlLJ'“UBk,ﬂ |7Tik(l') GXk}.

Moreover, there exists a family of non negative integers {ﬁk}zzl verifying that for every k = 1,... h, given a € X and
v=(Un,.- s Vip4+1) € Tni,+1(C"), where v, < u, the following properties hold

a) [a—|—ﬁk] > flv, 10, si ik # 1,

b) [a+ By >g[v], siip = 1.

Proof: Suppose that we have A C B, {\;(u)}ier and 7 satisfying the conditions of the statement. First of all, note that
if A = B then the lemma follows strightforward by taking J = ). So, we assume that A # B.

We denote A;(u) = A;, for short, and the elements of I by I = {i1,...,%,}. We are going to construct J = {iy,...,ip},
where we will get h and the family of sets {X k}Z=1 as a consequence of a recursive procedure. To do this we will make use
of an intermediate family of sets {L;}!_,, with Ly C Z,,. For each k € {1,...,m} we define

Ly = T, [B\(AUBlLJ"'UBk_l)];
Y, - X C Ly such that | X| = X;,, if |Lg| > A,
o L if [Li| < Ay
and
B, = {33 € B\(AUBl U"'UBk_l) |7Tik(.i€) € Xk}

We set h = min{l < k <m | |Lg| < \;. }. Let us see that {1 < k < m | |Lg| < A\, } # 0, that is, let us check that h is
well defined. Suppose that this is not true. Then we have that |L,,| > X; . This implies that |[B\ (AU B;U---UB,,)| =
|B] = (|A| + X1 | Bk]) > 0, because | X,,| = X;,, < |Ly,|. So

Tm

R _|A|+Z|Bk|<|B|*b
k=1

k=1

a contradiction. Therefore |Lp| < A;,, and then X}, = L. Hence

- frem (0 ) i cn) -
- (U m)



and so B=AUB;U---UBy,.
Now, for every k € {1,...,h}, we use Lemma 19 applied to the elements of each X}, and r;,. Then we get 81,...,0, € N
such that

’V’I“ik-‘_lg ’V”k-‘_lg[a'f'ﬁk]mk <rik

Ai, | Xk

for all a € Xj. Note that | Xj| < A for every k = 1, ..., h. On the other hand, by using that i;, € A(u) forevery k =1,...,h,

and Lemma 17, we have that for every a € X}, and v = (vp, ..., Vi +1) € Tn_ip+1(C), with v, < u,
[+ Bilr, = f15" % (), 112 f'lv,11, 1)

in case iy # 1, and

la+ Bl > g'1S" ()] > ¢'1], (22)
in case ¢;, = 1. This finishes the proof. [ ]
Now, we are ready to present our first sufficient condition to have a (partial) PD-set contained in the group (7; | i = 1,...,n).
Given p in Z,, X -+ X Z,, , for every i = 1,...,n, we denote by m;(p) the i-th coordinate of p. In general, if B is a subset

of Zy, X -+ X Zy,, then m;(B) denotes the set of i-th coordinates of the elements of B.
Theorem 21. Let C be a t-error-correcting abelian code in A(ry,...,ry,). Let b a positive integer such that b < t. If there
exists a subset I C A(s") (see (18)) verifying

D (s = b

il

then the group (T; | i € I) is a b-PD-set for C with respect to the information set T'(C').

Proof: Let B a subset in Z,, X --- x Z, with cardinality b. Suppose that there exists I = {i1,...,,,} contained in
A(s') such that >}, A;, (s') > b. We denote \;, (s) = A;, for brevity. Then by applying the Lemma 20 to B, A = 0
and {n, \;,,...,\;, }, with n = 0, we obtain a family of sets X; C Ls -y Xn C Zp,, , with h < m, satisfying that
B = By U---U By, where, for every k € {1,...,h}

k—1
By =S xzeB\ | B)|m,(z) € X
j=1
Moreover, there exists a family of positive integers {3 }!_, such that for every k = 1,...,h, given a € X and v =
(Uny -y Vip41) € Th—ip+1(C') one has that
[+ Bilr, > f'lv,11, (23)
in case i # 1, and
la+ Bilr, > g'1v, 24
in case iy = 1. Note that every (vp,...,0;, +1) € Tr_i, +1(C’) satisfies that v,, < s’.

Now, take p € B and let us see that (H?Zlejj) (p) ¢ T(C). Let k € {1,...,h} such that p € By. Let us denote
q= (H?Zl Tfjj) (p) and suppose that ¢ € T'(C’). Then there exists v = (vy,...,v3) € T, (C’) such that

om0 1> 5, (@) = e, vy, + 11

in case iy # 1, and
G n,...,v21 > m1(q) >0,

in case ¢, = 1. On the other hand, 7;, (¢) = 7, (Tli’“ (p)) = [mi, (p)+Bx]r;, and by definition m;, (p) € Xi. So, in cases iy, # 1
and i = 1 we reach a contradiction with (23) and (24) respectively (observe that f'[v,,... Vig415Vig] < fon, ... Vig+1,11). A

The previous theorem is based on the existence of certain subsets of A(s’). The following result deals with subsets A(u),
for some u € {1,...,s'}. So, in some sense it improves Theorem 21 (see (20)). Although, the following theorem implies a
growth of the (partial) PD-set. More precisely, it supposes the addition of the subgroup (7},). This means that in some cases
we might obtain PD-sets bigger than that given by the Theorem 21.

Theorem 22. Let C be a t-error-correcting abelian code in A(r1,...,r,). Let b be a positive integer such that b < t. We
define
0 if f'i=rn,
Xo=19 1 if [] <<,
boif <[],



Let wu=min{x € {2,...,s + 1} | f'lz] < [ |}. If there exists a subset I C A(u — 1)\ {n} such that
Ao+ D Ai(u—1)=b (25)
iel
then the group generated by T,, and {T;};cr is a b-PD-set for C with respect to the information set T'(C’).

Proof: Let B be a subset of Z,, X - -+ X Z, with cardinality b. We define Ly = m,(B). Then by applying the Lemma 19
to the elements of Lo and r,, we have that there exists Gy € N such that

F[u] < V—] 1< |2 S 1< o+t Boln, < (26)
b | Lo
for every a € Ly (observe that, by definition, |Lo| < b). Moreover, we have that there exists ag € Ly verifying that
[ao + Bolr, =10 — 1. 27
Let Xo = {p € B | mn(p) = ao}. We define

B if Ay =0,

By=< Xy if X=1,

B if X=0.

Note that if \g = b then the hypothesis (25) holds with I = (). This fact together with (26) imply that T/% (p) ¢ I'(C’) for
every p € B; that is, the group generated by T,, is a b-PD-set for C with respect to the information set I'(C’), and we are
done. Then, in what follows we assume that Ay < b. Note that this implies that Ay < |By.

Now, assume that there exists a subset [ = {i1,... %y} € A(u—1)\ {n} such that A\g + >_;"; Ai, (u— 1) > b. We write
A, (u— 1) = X;,,. We continue the proof in a similar way to that of Theorem 21. We apply the Lemma 20 to B, A = By,
{Xiy, -+, Ai,, } and n = Ag. Then we obtain two families of sets, {Xj}7_,, with

X1 C Lo, X0 C L,
(h < m) and {By}}_,, satisfying that B = By U By U --- U By, where, for every k € {1,...,h}, m, (v) € X, for all

x € By. Moreover, there exists a family of positive integers {51@}221 such that for every £ = 1,...,h, given a € Xj and
v=(Un,.. s Vip41) € Tni,+1(C"), with v,, < u — 1, one has that
[a+ Bilr, > f'v,11, (28)

in case iy # 1, and
la+ Bl > g1, (29)

in case i = 1.
Take p € B and let us see that [(H;’Zl Tg”) o Tf“} (p) ¢ T(C’). Denote q = [(H;‘Zl T5J> o Tfﬂ} (p) and suppose that
g € T(C’). Then there exists v = (vy,...,v3) € T,(C') such that

Flon, vl > m(q) > fllon, ..., +11, fori=2,...,n, (30)

and
9'ln, ..., v2] > my(q) > 0. 31)

Let k € {0,...,h} such that p € By. We distinguish two cases: k = 0 and & # 0.
If £ =0 then p € By, and hence 7, (p) = ap. So, by (27),

Tn(q) = (T;?O (p)) = lag + Bolr, =10 — 1.

This is a contradiction with (30), for ¢ = n, because we are assuming that Ao < b, which means that f’[v,] < f'[1] < 7.
Now, suppose that k& = 0. Then, on the one hand,

7Tn(q> = Tn (Tfo (p)) = [ﬂ-n (p) + ﬁO}rny

where 7, (p) € Lo by definition. So (26) together with (30), with ¢ = n, imply that v,, < u—1. On the other hand, m;, (p) € X
and
Tin@) = iy (THH0)) = [ (0) + Bl -

Therofore, if iy, # 1 then (30), for ¢ = iy, yields a contradiction with (28). Last, if i, = 1 then (31) contradicts (29). |
Our next result gives us a sufficient condition under the assumptions n > 3 and f’[1] = r,,. This new condition can hold
even when Theorem 22 does not do, as it will be shown in Example 24.



Theorem 23. Let C be a t-error-correcting abelian code in A(ry,...,r,). Let b a positive integer such that b < t. Suppose
that n > 3, f'[1] = r, and assume that there exists v = (vp,...,0r41,1) € Yp_;12(C") (with 1 < 7 < n) such that
fon,...,vre1,11 < 1r. Then, we define
vy, + 1 in case f'lv, +1] < {%"] ,
u= min{{v, +1 <z < | (32)

flonl = fllel > — [22] U {s’ +1}}
in case f'lv, +11> [Z2].

If there exists a subset I of A(u — 1)\ {7,...,n} verifying that
14> Ai(u—1) > b,
iel
then the group generated by {T,..., T} and {T;};cs is a b-PD-set for C with respect to T'(C').
Proof: Suppose that f'[1] = r,, and n > 3. Let us also assume that there exists v = (vn,...,0r41,1) € Ty rya(C’)
(with 1 < 7 < n) such that f'[v,...,vr11,1] < 7.

Let B be a subset of Z,., X --+ X Z,, with cardinality b. We define Ly = 7, (B). We claim that there exist ap € Ly and
Bo € N verifying that

fon +11 < [ag + Bolr, < f'lval (33)
and
f'tul < la+ Bolr, < 7Tn, forall a € L. (34)
Indeed, by applying the Lemma 19 to the elements of Ly and r,, we obtain 8) € N such that
T g
Sl | —1< 1, n
2] -1 || 1 s <o

for every a € Ly. In addition, there exists a; € Lg such that [ay + 5(],, =, — 1.
Suppose that f'[v, 4+ 1] > [%] Take B = r,, — f'lvnl. Then,

flon+11 < [ar + By — B]r, = fllonl =1 < f'{vnl.

So, since .
u:mm{anrl S'TS Sl | f/[“n]*fl[x] > Ty — ’V?n-‘}v
one has that for every a € L
Tn
la+ By — Bolr, > [?W —1—=rp+ fllva > flul.

Now, if we assume that u = s’ + 1, then 0 = f'[u] < [a + By — 3], for all a € Ly. Therefore, for any value of u, (33) and
(34) hold with 5y = g — B{ and ag = ay.
Now, let us suppose that f’[v, + 1] < [Z2] and let us denote a = miLn{[a + B4]r, }- Then there exists 5 € N such that
a€Llo

fon +11 < [ag + By — By ]r, < flonl

and
flil = fllon + 11 < [a+ By — B e, < T,
for every a € Ly. So, by taking 8y = 5, — { and ag = az one has (33) and (34). This finishes the proof of (33) and (34).
Let pg € {p € B | mn(p) = ao}. Then, by (33), f'lvn + 11 < [mn(po)+ Bolr, < f'lvnl. Take vy, Vi1, ..., Vn—1 € N such that
Fwn,..oovi +11 < [mi(po)+vilr; < fllvn,...,w), forevery i = 7+1,...,n—1and f'lvn,...,vr41,11 < [7r (Do) +Vr]r, = 77 —1.
Note that by hypothesis f'[vn,...,v,41,1] < 7. Then

<H T o Tf°> (po) ¢ T(C).

i=T

Moreover, we have that
n—1
ao (H I o Tf°> (o) £ T(C), (35)

for any o in the group generated by {71,...,T-_1}.
Let us suppose that there exists a subset I = {iy,...,%,} € A(u — 1)\ {7,...,n} such that 1+ >, ; \j(u — 1) > b.
For bervity, we write A;(u — 1) = A;. The proof continues in a similar way to that of the previous theorem. We apply the
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Lemma 20 to B, A = {po} and {n, \i,,..., \i,, }, where we define 7 = 1. Then we obtain two families of sets, {X}7_,,
with
Xl QZT,;la"'aXh QZ

Tip

(h < m), and {By}?_,, such that B = {po} U By U --- U By, where, for every k € {1,...,h}, m;,(z) € X}, for all

x € By. Moreover, there exists a family of positive integers {ﬁk}zzl such that for every £k = 1,...,h, given a € X}, and
v=(Un,.. s Vip41) € Tni,+1(C"), with v,, < u — 1, one has that
[a+ Bilr, > f'v,11, (36)

in case iy # 1, and
la+ Bl > 'l (37)
in case i = 1.
Take p € B and denote ¢ = [(H?Il Tfjj o (H?;Tl Ti”i) o Tfﬂ} (p). Let us see that ¢ ¢ T'(C’). If p = pg then (35) gives
us what we wanted. So, suppose that p # py and ¢ € I'(C’). Then there exists v = (vy,, ..., v2) € T,,(C') such that

om0l > 5(q) > flivn, ... v + 11, (38)

fori=2,...,n, and
G'lon,...,v21 > mi(q) > 0. (39)

Let k € {1,...,h} such that p € By. Then, on the one hand,

(@) = T (T5° () = [mn(p) + Bolr.»
where 7, (p) € Lo. So (34) together with (38), for ¢ = n, imply that v, < u — 1. On the other hand, 7;, (p) € X}, and

w%(q)::w”:(Tﬁk@ﬁ)::[w”(p)%—ﬁkh%.

Therefore, if i # 1 then (38), for 7 = iy, yields a contradiction with (36). Last, if i = 1 then (39) contradicts (37). This
finishes the proof. [ ]

Example 24. We are going to see an abelian code C for which Theorem 23 asserts that it has a 2-PD-set with respect to
T'(C"), while by applying Theorem 22 we get at most a 1-PD-set with respect to T'(C’).
Consider the algebra A(3,3,7) over F5. We take the [63, 37, 6]-code C given by

UQ(0,1,0)UQ(L,1,1)UQ(1,1,3)
UQ(L2,0)UQ(1,2,1).

In this case, I'(C’) is determined by the following parameters (recall the definitions from (4) to (8))

flru=7>fl21=6> f'31=4> f'la1=1
fiL,un=1; fe,un=2; fi3,01=3; fe,11=3
J1,11=2; d21=2; ¢138,11=2; ¢g'14,11=3

By applying Theorem 22 we have that A\ = 0, u =4, A(3) \ {3} = {1} and A\1(3) = 1 (see Definition 18); so that we get
just a 1-PD-set.

Now, we apply Theorem 23. By following its corresponding notation we get v = (2,1), v = 2, 7 = 2, u = 4, A(3)\{2,3} =
{1}; which yields a 2-PD-set.

To finish this section, we are going to study the case of correcting errors with weight at most 3. In this situation, we will
present a result for the existence of (partial) PD-sets which improves the condition given by Theorem 22. First, we need the
following lemma.

Lemma 25. Let s,r be natural numbers with v > 2 and 1 < s < 3 and let r,x1,...,xs be positive integers such that

0 <z <+ <z < Let Y be a map from {x;}5_, to the set of positive integers such that y ;_, ¥(x;) = 3. Let

X1 = {g] —land xo =7r—¢€— (%1, where ¢ = 1 if £ € N and € = 0 otherwise. Then there exists 3 € N satisfying the

following conditions:

a) x1 < |[x;+ 0] <m foreveryi=1,...,s.

b) There exists A C {1,...,s} such that x» < [x; + (], <71, foralli € A, >, ,¥(x;) > 2, and [x;, + (], = 7 — 1 for
some ig € A.

Proof: First of all, note that it follows straightforward that x; < x2 < 7 for any positive integer . We are going to
distinguish in cases depending on the different values of s.
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The case s = 1 is clear by taking 3 =7 —1 — 1.

Suppose that s = 2. Then we can assume without loss of generality that ¢(x5) = 2. Take 8/ = r — 1 — x5. Then
0<[z1+3) <lxa+p]=r—1<r. So,if [z1 + 3], > x1, then 3 satisfies the required conditions and we are done.
Now, suppose that [z + ('], < x1 and take 3" =r — 1 — [z1 + ('],. Then,

O0<[r1+B 4+ =r—1<r<[za+p8]+8" =
=2r —2— [z + 0], <2r.
Hence, [x2 + ' + "], =r —2 — [x1 + §']-. On the other hand,
7"—2—[961+ﬁ']r>7“—2—><1=r—1—%W >x2—12> 1.

Therefore, by taking 3 = 3’ + 3" we obtain what we wanted.

Finally suppose that s = 3. In this case, ¥(z;) = 1, for all i = 1,2,3. By applying Lemma 19 to {x1, 22,23} and r, one
has that there exists 3 € N such that x; < [x; + §'],, for all ¢ = 1,2,3, and [z; + 8], = r — 1, for some j € {1,2,3}.
Assume WLOG that

X1 < [xl +/8I}r < [(E2 + ﬁ/]r < [:I:d + 6l]r =r—1

Then, if [z2 + 8], > x2, we get the result by taking 5 = §’. So, suppose that [x2 + '], < x2. This implies that [zo + 5], —
[1 + B']r < x2 — x1. Then, we take 8" =r — 1 — [x3 + (], So,

21+ 8+ 6" <[a+f +8"],=r—-1<
(3 + B3], + 8" =2r — 2 — 2o + 3], < 2r,
and then [x3 + ' + "], = r — 2 — [x2 + '], Now, on the one hand,
r—2—[ro+p,>r—2—x2= [g‘ +e—2=x1+e—1>x1 —1.
On the other hand,
21+ 8+ 8" = [z1 + B +r = 1= [z2+ B >

r
T*1*X2+X1:2[§1 +e—2=x2—09,
where § =1 — 3 [£] — 2e + 2. It is easy to see that § = 0 or 1 for any value of r, and so [z1 + 3’ + "], > xa. [
Proposition 26. Let C be a t-error-correcting abelian code in A(ry,...,ry,), with t > 3. Let x1 = (%1 — 1 and x2 =

Tp — €— V—’ﬂ where € = 1 if "2 € N and € = 0 otherwise. We define

3

0 if fi=rn,
L oif xe < f11<rn,
2 if xa<[fm<xe,
30 fm<xa.

Let u; = min{x € {2,...,8 + 1} | f'la) < x3}, for ¢ = 1,2. If A\g = 3 or there exist subsets I C A(ug — 1) \ {n} and
0#£JCINAMuy —1) such that
Mo+ Y Ailug = 1)+ Ai(u — 1) > 3,
iel\J =

then the group generated by T, and {T;};cr is a 3-PD-set for C with respect to the information set T'(C").

Proof: Let B be a subset of Z,, x - -+ X Z,, with cardinality 3. Consider Lo = 7, (B) and the map v : Ly — Z given by
Y(a) = {p € B | mn(p) = a}|- Then we apply the Lemma 25 to the elements of Lo, r,, and the map 1. So we obtain §y € N
such that

X1 S [a +/80]rn < Tn, (40)

for all @ € Lo. Moreover, there exists A" C L such that ) _ ,, ¢¥(a) > 2 and
X2 < [a + ﬁO]rn < Tn, (41)

for all a € A’, and
[Cl() + ﬂo]'r'n =rp,—1, (42)

for some ag € A’.
If \o = 3 then f'[1] < x;. So, by (40) one has that 7% (p) ¢ T'(C’), for all p € B. Hence the group generated by T}, is

a 3-PD-set for C with respect to I'(C’) and we are done. From now on we suppose that Ay < 3 and that there exist I and J
verifying the required conditions.
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Let us set
{ag} ifXo=1,
Xo=4 A ifr =2
0 if \g = 0,
and By = {p € B | mn(p) € Xo} (note that by definition \g < |Bp|). Then, by (41) and (42) one has that
™ (T (p)) > f'11, (43)
for all p € By. We claim that
(roT) (p) ¢ T(C), (44)

for any 7 in the group generated by {T7,...,T,—1}. Indeed, suppose that ¢ = (70 T/°) (p) € T'(C’). Then there exists
vy € {1,...,s'} such that f'[va] > m,,(q) = f’lvn + 11. On the other hand, by (43) one has that m,(q) = m, (T} (p)) > f'11].
This yields a contradiction.

Now, let us define By = {p € B | m,(p) = a for some a € A} and By = B\ By (B1 = By in case Ag = 2). Observe that
|B1| > 2 and then |Bz| < 1. Assume WLOG that I\ J = {i1,...,%m }, with m’ < m, and set Y = ka:/l i (uz — 1). We
continue the proof by distinguishing in cases:

Case 1: By # () and Y = 0. Note that, by hypothesis, in this case Ao + ;- Ai, (u1 — 1) > 3. Then, we apply
Lemma 20 to B, A = By, 1 = X and {\;, (u1 —1)}}L, ., |, having in mind that i, € A(u; —1) for every k = m’+1,...,m.
So, we obtain two families of sets {X;}" , and {Bj}?:m/-‘,-l’ such that B = By U Byy41 U -+ - U By, where, for each

j=m'+
ke{m +1,...,h}, m, (z) € Xy, for all z € By.
One also has that there exists a family of positive integers {8 }7_, 41 such that for every k = m/+1,...,h, given a € X,
and v = (vp, ..., Vip41) € Ty +1(C'), with v, <wy — 1, the following conditions hold:
[a+ﬁk]7'ik Z fl[vvl]v (45)
in case iy # 1, and
[a + ﬂl]rl Z g/[vL (46)
in case iy = 1.
Tak h Bi Bo / .
e p € B. Let us see that |([[;_,, 1 T;7 ) oT7°| (p) ¢ I'(C'). The case p € By was proved in (44). Suppose that

p€ B\ By and let k € {m’ +1,...,h} such that p € By. Let us denote ¢ = [(H?:m/+l TfjJ) o Tf‘)} (p) and suppose that
q € T'(C’). Then there exists v = (vp,...,v2) € T, (C’) such that

Flon, .. vl > m(q) > flon, ..., +11, fori=2,...,n, (47)

and
g/[vn,...,vg] > 7r1(q) > 0. 48)

Now, on the one hand, it follows from (40) that 7, (¢) = 7, (T;f0 (p)) > x1. Hence (47), with ¢ = n, implies that v,, < u;—1.
On the other hand, 7;, (p) € X and

7iu(0) = 7o, (TR4(0) = [miu () + Bl -

Therefore, if iy, # 1 then (47), with i = iy, yields a contradiction with (45). Last, if i, = 1 then (48) contradicts (46). This
finishes the proof of this case.

Case 2: By # () and Y = 1. Note that in this case Ao + >_;-, /1 Ai, (U1 — 1) > 2. Assume without loss of generality
that \;, (uz — 1) = 1 (this implies that m’ > 1). Take p; € By. Then [m,(p1) + Bolr, > X2. Suppose that i; # 1. Then, since
i1 € A(ug — 1), one has that f/[S7~ 1= (us —1),1] < 7,. Let v = (v, ..., 03,) € Ty_i,+2(C’) such that v, < uy — 1. By
Lemma 17 a) we have that f'[v,,...,v;,] < f/[S"~"1~1(uy — 1),1]. So, we take 31 = r;;, — 7;, (p1) — 1, and then

iy (Tfl (pl)) = [mi(p1) + P, =70 =12 flon, v (49)

If 4y = 1, a similar argument using 7 (p1) and the parameters ¢'[-] instead of f'[], leads us to the following inequality

- (Tfl (pl)) > ' lom, . val. (50)

Now we apply the Lemma 20 to B\ {p1}, A = By, n = Ao and {\;, (u1 —1)}}_,, , having in mind that i, € A(u; —1) for
every k =m/+1,...,m. By using an analogous procedure as in the previous case, we obtain {X;}!'_ .. and {Bi}}_ /11
such that B\ {p1} = BoUBp/41U---UBy, for all x € By, one has that 7;, () € X}, and there exists a family {5k}Z:m'+1
such that (45) and (46) hold.
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Take p € B and let us see that [(H?:m,ﬂ Tfjﬂ) o Tfl o Tf‘)} (p) ¢ T(C'). The case p € By has been already proved. Let
us denote again
h
q= 11 T’B o T o T | (p)
j=m’'+1

and suppose that p ¢ By and g € I'(C’). Then there exists v = (vy,,...,v2) € T,,(C") which verifies (47) and (48).
Suppose that p € B\ By and p # py. Let k € {m’ +1,...,h} such that p € By. Then, by applying (40) one has that
Tn(q) = Tn (T;f“ (p)) > x1- So, v, <wuy — 1, by (47) with 4 = n. On the other hand, 7;, (p) € X and

7in0) = 7o, (T 0)) = [ (0) + B, -

Therefore, if i, # 1 then (47), with ¢ = iy, yields a contradiction with (45). If i, = 1 then (48) contradicts (46). Last, let
p = p1. Then, (41) implies that 7, (q) > X2, s0 v, < us — 1. On the other hand, 7;, (¢) = m;, (Tﬁ1 (pl)) = [mi, (p1) —&—61],«1.1.
So, if i1 # 1 then (47), with ¢ = i1, yields a contradiction with (49). If 7; = 1 then (48) contradicts (50).

Case 3: By # ) and Y > 2. Let B> = {p1}. Then [m,(p1) + Bo]r, > x1. Take i, € J, with m' +1 < p < m. Since
i, € A(uy — 1), one has that f'[S"=%~1(u; —1),1] < 7;,. Now, given v = (vp,,...,v;,) € Tp_;,42(C’) such that v, <uy —1,
by the Lemma 17 a) we have that f'[v,,...,v;,] < f'1S"~%~1(u1 —1),1]. So, we take (3;, = r;, —m;,(p1) — 1, and we obtain
that

i, (Tiip (P1)) = [mi,(p1) + Bi )i, =73, = 1> f'lon,.. o vi,). (51

In case i, = 1, an analogous argument by using m1(p1) and the parameters ¢'[] instead of f'[-], leads us to the following
inequality

™ (TP (p1)) > ¢'lvn,..., val. (52)

Now, we apply the Lemma 20 to By, A = By, n = Ao and {)\;, }Z‘:’l, having in mind that i, € A(ug — 1) for every
k=1,...,m'. So, we obtain two families of sets {Xj}?:l and {Bj}?zl (h <m’), such that B = By U B; U --- U By,
where m;, (x) € Xy, for every k € {1,...,h} and for all z € By,

Moreover, one has that there exists a family of positive integers {3 }7_, such that for every k = 1,...,h, given a € X,
and v = (Un, ..., 05 41) € Tnoit1(C'), with v, < ug — 1, (45) and (46) hold.

Take p € B and let us see that ¢ = I(H?_l Tlﬁjy) o Tifiip o Tf‘)} (p) ¢ T(C'). Again, we can assume without loss of
generality that p ¢ By. Suppose that ¢ € T'(C"). Then there exists v = (v, ..., v2) € T,,(C’) satisfying (47) and (48). Suppose
that p € By. Let k € {1,...,h} such that p € By. Then, by (41) one has that [7,(p) + Bolr, = X2, S0 v, < ug — 1, by (47),
with ¢ = n. On the other hand, m;, (p) € X;, and

mi(@) = 7o, (75 0)) = [ @) + Bilr,,

Therefore, if i, # 1 then (47), with ¢ = iy, yields a contradiction with (45). If i;, = 1 then (48) contradicts (46). Last, let p = p;.
Then, on the one hand, [m,,(p) + 5o, > X1, 50 v < uy — 1. On the other hand, m;, (¢q) = 7, TZ”’ (p1)) = [mi, (p1) +Bi, ], -
So, if ¢, # 1 then (47), with ¢ = ¢,, leads us to a contradiction with (51). If i, = 1 then (48) contradicts (52).

Case 4: By = (. In this case we have that B = BB;. The proof is analogous to Case 1, by applying the Lemma 20 to B,
A= By, n= Ao and {\;; }],, and by using that i, € A(up — 1) forall k =1,...,m. [ |

VI. APPLICATIONS

In this section, we shall show some applications of our results. Concretely, we use Theorem 21, Theorem 22, Theorem 23
and Proposition 26 as criteria to design abelian codes having determined permutation decoding properties. Moreover, we may
determine upper bounds on the dimension of codes of certain lengths satisfying such properties.

First, we present two examples of codes that we have chosen having in mind the tables in [18] and [19], together with the
updates in [3]. Finally, we present an example of a ternary three-dimensional and 3-error-correcting abelian code, to show how
our techniques work in a more general context than that considered in [7], [10], [16], [17], [19].

In [18] and [19], Shiva, Fung and Tan obtained upper bounds on the dimension of 2 and 3-error-correcting cyclic codes
of certain lengths which are permutation decodable with respect to the usual information set (consecutive positions). They
always obtain PD-sets generated by both the permutations 7 (that they denote by Rj) and some powers of the Frobenius

automorphism of F = [, that we denote by o, acting on A(rq,...,ry,) via o (ZJ anj) = Zj a; X779, Shiva et al. denote
the i-th power of the Frobenius automorphism by R;, that is, R; = o".

Again, it may be necessary to revise the construction of I'(C) in Section III, more precisely the definitions from (4) to (8),
and Definition 18.



24

We begin by updating 2-error-correcting cyclic codes of length 51. In [18, p. 642] Shiva et al., assert that, for dimension
k > 33 permutation decoding is not possible under the usual information set.

Example 27. We shall design a binary (51,34,6) code C, with maximum dimension such that it has a PD-set (17, Tb), with
respect to the information set I'(C’). To do this, we begin by considering all 2-orbits modulo (3,17); that is, r; = 3 and
ro = 17. Set D a set of restricted representatives (see Definition 4) of the whole space Z3 x Zi7, as in Section IV,

D = {(0,0),(0,1),(0,3), (1,0), (1,1),(1,2),(1,3),(1,6)} .

We are going to construct our codes as sums of minimal codes. The following table describe all minimal abelian codes in
A(3,17) in terms of the corresponding defining sets.

Code | D(C") | M'(0) | M’'(1) | dimension
¢ 10,0 1 0 1
G | (0,1)] 8 0 8
Cs 10,3 8 0 8
G, [ (Lo | 0 1 2
G | (L) | 0 1 8
Cs | (L,2) | 0 1 8
C: [(1,3) | 0 1 8
Cs | (1,6) | 0 4 8

First, we look for codes satisfying the condition given in Theorem 21. So, there must exist a subset I of A(s") C {1,2}
such that 7., \i(s") > 2. A first posibility is that |[I| = 1. In this case, it must happen that f'[1] < 9 or g'[s'] < 2. Note
that, under the condition ¢’[s'] < 2, all possible values for the ¢'[-] are 1,2 and 3, and then s’ = 1. Having in mind the table
above, we have that any sum of minimal codes that reaches the value f’[1] < 9 has dimension at most 24 (for example,
C = Cy + C5 + Cg), while any sum of minimal codes reaching ¢'[1] < 2 has dimension at most 17 (there is only one case:
C = C1 + C3 + C3). On the other hand, under the condition |I| = 2 it must happen that

f/m <17 and g¢'1s1< 3. (53)

Again, having in mind the range of possible values for those ¢'[-]’s, we obtain s’ = 1. Any sum of minimal codes satisfying
(53) has dimension at most 32. However, this dimension is reached only by C = C5 + Cs + C7 + Cg and in this case, one may
check that d(C) = 4; so that it is not a 2-error-correcting code. All 2-error-correcting codes satisfying (53) have dimension at
most 26 (for example, C = C4 + Cs + Cg + Cr).

Now we are looking for codes satisfying the condition in Theorem 22. We separate in two cases depending on the possible
values of Ag. In case Ny = 2 we get f/[1] < 9 which brings us back to the case of Theorem 21. For A\ = 0 we get
g'lu—1] = ¢'[1] < 2, wich drives us to cases already seen. So, consider the case A\g = 1. Then 9 < f’[1] < 17 and it must
happen that ¢'[u — 1] < 3 (note that A(u — 1)\ {2} C {1}). It may appear at most two nonzero different values of parameters
M’[-] and so the same happens with f’[-]. So, if u = 3 then s’ = 2 and ¢’[2] = 3. Hence, in order to get ¢'[u — 1] < 3 it must
be u = 2. If s/ = 1 then we get condition (53). Therefore there is only one new case which is

9< f1<17, 0< f'121<9 and ¢'111 < 3. (54)

Any sum of minimal codes satisfying these conditions has dimension at most 40. However, one may check that all codes
reaching this dimension must contain the sum Cs 4+ Cg + C7 4 Cg, and as we have already seen this implies that their minimum
distance is at most 4. By putting out one of the above minimal summands we get that the codes with minimum distance greater
or equal to 5, satisfying condition (54) have dimension at most 34. For example

C=Cy+C4+Cs5+Cs + Cr,

whose minimum distance is 6. These codes trascend the bounds given in [18]. All other sufficient conditions are not applicable
to this example.

Now we update 3-error correcting cyclic codes of length 63. In [19, Table X] its is obtained the bound on the dimension
k <21 using Ry = (T1, T2) and k < 35 involving the Frobenius automorphism; that is, using ({71, To} U {o}).

Example 28. We shall present a sketch of the study of codes with length 63. The first thing is to select the ambient algebra.
It can be A(63) for cyclic codes, A(9,7) for TDC codes or A(3,3,7). We consider this last case to illustrate that it is possible
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to obtain very good codes in the multidimensional case (n > 3). The minimal codes associated with the 2-orbits are in the
following table.

Code | D(C’") | dim. Code | D(C") | dim.

C; | Q0,0,0) | 1 Co |Q(1,2,0)| 2
Cy | Q(0,0,1) ] 3 Cpo | Q(1,0,1) | 6
Cs [Q0,0,3)] 3 C1 | Q(1,0,3)] 6
Cs [ Q0,1,0)] 2 Ci |Q(1,1,1)| 6
Cs | Q,1,1)] 6 Cis | Q(1,1,3)] 6
Cs [Q(0,1,3)] 6 Cu |Q(1,2,1)| 6
C; | Q(1,0,0)] 2 Cis 1 Q(1,2,3)] 6
Cs [ Q(1,1,0)] 2

The application of Theorem 21 and Theorem 22 is completely analogous to Example 27 above, giving bounds of dimension
24 and 31, respectively. In this case, we may also apply Theorem 23, obtaining a bound of dimension 15, which is not so
interesting.

By applying Proposition 26 we obtain codes of dimension 35; however all these codes are not 3-error correcting. The greatest
dimension for a 3-error correcting code is 33; for example,

C=C1+C4+Cip+ +C11 +Cio2+Ci3+Ciy

which has minimum distance 8. The bound given in [19, Table IX] for the dimension of 3-error correcting cyclic codes of
lenght 63, with a PD set contained in {7;}?_; with respect to the usual information set is 21.

Finally, we shall use our design techniques to find the best ternary 3-error correcting code C in A(4, 4,4) which is permutation
decodable with respect to I'(C’) and with PD-set (11,72, T5).

Example 29. We shall show a sketch of the the study of codes with length 64 in A(4,4,4). As in the previous examples, one
has to consider all minimal codes associates with the 3-orbits in Z, X Z4 X Z4. As the list has 36 items, it will be omitted.
By analysing the structure of the 3-orbits, having in mind Proposition 26, we obtain an upper bound of dimension 37, for
3-error correcting codes. This bound is reached, for example, by the code C, such that D(C’) is
D(C') = Q(0,0,0)UQ(2,2,0) UQ(2,0,0)UQ(2,1,0) U
Q(0,2,1) UQ(0,0,1) UQ(0,1,2) UR(0,1,0) U
Q(0,1,1) 1,2,2 (1,2,0) 1,2, 1)U
Q(1,0,2) 1,0,0 (1,0,1) U
(1,1,0) (1,3,0)

)

)

1,1,2)

Q(1,1,0 1,1,1 1,3,0 )

Q(
(1,
(1,
( 1,3,1).

) U
)
)
)

/\/\/-\/\

ue ueQ ue
uQ uQ uQ
ue uQ ue
In this case, I'(C’) is determined by the parameters

=3 > fllz3=2 > f'B=1
=3 ;5 frea=4 ; fBuy=4
Jgin,11=3 ; Ji21u=3 ; JB1=41

By using Proposition 26, with \g = 1, u1 = 3, us = 2, A(ug — 1) = {3,1} and A(ug — 1) = {3,2,1}, we may check that
(Ty, Ty, T5) is a 3-PD-set with respect to I'(C’). In fact, it is a PD-set, because a direct computation of the minimum distance
shows that d(C) = 8.
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