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Abstract. In [BS2] we introduced a technique to construct information sets

for every semisimple abelian code by means of its defining set. This construc-
tion is a non trivial generalization of that given by H. Imai [Im] in the case

of binary two-dimensional cyclic (TDC) codes. On the other hand, S. Sakata

[Sak] showed a method for constructing information sets for binary TDC codes
based on the computation of Groebner basis which agrees with the informa-

tion set obtained by Imai. Later, H.Chabanne [Chab] presents a generaliza-

tion of the permutation decoding algorithm for binary abelian codes by using
Groebner basis, and as a part of his method he constructs an information set

following the same ideas introduced by Sakata. In this paper we show that, in

the general case of q-ary multidimensional abelian codes, both methods, that
based on Groebner basis and that defined in terms of the defining sets, also

yield the same information set.

1. Introduction

Information sets are essential ingredients in order to know as well as possible
the properties and parameters of any error-correcting code. The fact that every
codeword in a linear code is determined by its information simbols remains crucial
in order to study any encoding and decoding techniques (information set decoding
[Cof, Pra]); even to study certain types of cryptographic attacks [Pet]. Hence it
is important to describe effective algorithms for finding them. Moreover, usually,
in order to apply a fixed decoding algorithm there exist information sets better
than the others. In fact the frame in which codes are constructed sometimes yields
the possible techniques for constructing information sets. This is the case of codes
from geometries and codes from designs [Key2, KV, Sen]. This is the topic of this
paper for the family of abelian codes [Ber, Cam]. Some relevant families of codes
are abelian, for instance: cyclic codes, Reed-Muller codes, extended Reed-Solomon
codes and others.

Regarding binary two dimensional cyclic (TDC) codes, H. Imai [Im] gave a
method to obtain information sets for TDC codes of odd area. Later, S. Sakata
[Sak] gave an alternative method for the same purpose. On the one hand, Imai’s
algorithm used the structure of the roots of the code. On the other hand, the
algorithm of Sakata is somehow based on the division algorithm for polynomials.
Up to our knowledge, these are the only techniques available for TDC codes. It is
known that both constructions yield the same information set (see [Im2, pp. 47-49]
and [PH, Proposition 6.3]).

Since then, two generalizations has been done. The fist one is that given by
H. Chabanne in [Chab], where a variant of permutation decoding was given. The
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implementation of the decoding algorithm given by Chabanne has two phases: The
first one is devoted to construct an information set in order to get a check matrix.
The second one is devoted to describe the premutation decoding algorithm. The
second one is that given in [BS, BS2], where we presented a technique based on the
computation of the cardinalities of certain cyclotomic cosets on different extensions
of the ground field. Such cosets are completely determined by the structure of the
defining set of the code. This method is valid for every semi simple abelian code,
not necessarily binary, and it generalizes Imai’s method.

As it was done for the constructions by Sakata and Imai, in this paper we study
the relationship between the first phase of Chabanne’s construction and our con-
struction. In fact, we focus on the construction used by Chabanne to the case of
binary semisimple abelian codes and we generalize it to q-ary codes with q ≥ 2.
Then we prove that if the ordering considered to compute polynomial degrees is
the lexicographical ordering, then both information sets coincide. To do this, we
first describe briefly both constructions and then we prove our main theorem.

Finally, we present some applications to permutation decoding. We deal with the
problem of correcting all errors with a fixed weight. The applications in Chabnne’s
paper show us examples of codes capable to correct (few) errors quickly, as well as
a higher number of errors, with a high percentage. We will see that one can get
an overview of the permutation decoding properties of all abelian codes in a given
algebra.

2. Preliminaries

We denote by F the field with q elements where q is a power of a prime p. Take
C a linear code of dimension k and length l over the field F. An information set for
C is a set of positions {i1, . . . , ik} ⊆ {1, . . . , l} such that restricting its codewords
to these positions we get the whole space Fk; the other l − k positions are called
check positions [MacSlo, PlHu].

An abelian code is an ideal of a group algebra FG, where G is an abelian group.
It is well-known that a decomposition G ' Cr1 × · · · × Crn , with Cri the cyclic
group of order ri, induces a canonical isomorphism of F-algebras from FG to

F[X1, . . . , Xn]/ 〈Xr1
1 − 1, . . . , Xrn

n − 1〉 .

We denote this quotient algebra by A(r1, . . . , rn). So, we identify the codewords
with polynomials P (X1, . . . , Xn) such that every monomial satisfy that the degree
of the indeterminate Xi is in Zri , the set of non negative integers less than ri.
We write the elements P ∈ A(r1, . . . , rn) as P = P (X1, . . . , Xn) =

∑
ajX

j, where

j = (j1, . . . , jn) ∈ Zr1 × · · · × Zrn and Xj = Xj1
1 · · ·Xjn

n .
We deal with abelian codes in the semisimple case, that is, we assume that

gcd(ri, q) = 1, for every i = 1, . . . , n. Then, every abelian code C is a principal
ideal; we call a generator polynomial of C to every generator of C as an ideal of
A(r1, . . . , rn). We use as main references [Ber, Cam].

Fixed a primitive ri-th root of unity αi in some extension of F, for each i =
1, . . . , n, every abelian code C of A(r1, . . . , rn) is totally determined by its root set,

Z(C) = {(αa11 , . . . , αann ) | P (αa11 , . . . , αann ) = 0 for all P (X1, . . . , Xn) ∈ C} .

The defining set of C with respect to α = {α1, . . . , αn} is

Dα (C) = {(a1, . . . , an) ∈ Zr1 × · · · × Zrn | (αa11 , . . . , αann ) ∈ Z(C)} .
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Given an abelian code C ⊆ A(r1, . . . , rn), with defining set Dα(C) if one chooses
different primitive roots of unity, say β = {β1, . . . , βn} then the set Dβ(C) detemines
a new code, say C′, which is permutation equivalent to C. So, for the sake of
shortness, we refer to abelian codes without any mention to the primitive roots
that we are using as reference, and we denote its defining set as D(C).

For any γ ∈ N the qγ-cyclotomic coset of an integer a modulo r is the set

C(qγ ,r)(a) =
{
a · qγ·i | i ∈ N

}
⊆ Zr.

Given an element (a1, . . . , an) ∈ Zr1 × · · · × Zrn , we define its q-orbit modulo
(r1, . . . , rn) as

Q(a1, . . . , an) =
{(
a1 · qi, . . . , an · qi

)
| i ∈ N

}
⊆ Zr1 × · · · × Zrn .(1)

It is easy to see that for every abelian code C ⊆ A(r1, . . . , rn), D (C) is closed
under multiplication by q in Zr1 ×· · ·×Zrn , and then D(C) is necessarily a disjoint
union of q-orbits modulo (r1, . . . , rn). Conversely, every union of q-orbits modulo
(r1, . . . , rn) defines an abelian code in A(r1, . . . , rn). For the sake of simplicity we
only write q-orbit, and the tuple of integers will be clear by context. The structure
of q-orbits of the defining set is the essential ingredient for our algorithm, which
will be described in Section 4.

Now we present a brief introduction to orderings and Groebner basis. A term
ordering on Nn is a total ordering, which we denote by ≤, satisfying the following
conditions

a) j ≤ j + j′ for every j, j′ ∈ Nn.
b) If j ≤ j′ then δ + j ≤ δ + j′ for every j, j′, δ ∈ Nn.

As an example of a term ordering, we consider ≤L the lexicographical ordering
in Nn defined as follows: j = (j1, . . . , jn) ≤ δ = (δ1, . . . , δn) if and only if j = δ or
there exists 1 ≤ i0 ≤ n such that ji = δi, for i > i0, and ji0 < δi0 .

Let ≤ be a term ordering. For every polynomial P =
∑
ajX

j ∈ F[X1, . . . , Xn]
we define the leading term of P with respect to ≤ as

lt(P ) = max{j | aj 6= 0}.

For the sake of shortness, we are not including in the notation lt(P ) the reference
to the term ordering considered, which will always be clear from the context.

In order to simplify notation we introduce a partial ordering on Nn defined by
the following rule: for every (a1, . . . , an) and (b1, . . . , bn) in Nn

(2) (a1, . . . , an) � (b1, . . . , bn) if ai ≤ bi for all i = 1, . . . , n.

Let 0 6= I ≤ F[X1, . . . , Xn] be an ideal and fix a term ordering ≤ on Nn. We
denote by Lt(I) the set of leading terms of the elements of I with respect to ≤.
Then a Groebner basis for I with respect to ≤ is a subset Gb(I) = {g1, . . . , gs} ⊆ I
verifying that if j ∈ Lt(I) then there exist 1 ≤ i ≤ s such that lt(gi) � j (see (2)).
One can prove that for every ideal I 6= 0 there always exist a Groebner basis (see
[Buch, Cox]).

3. Information sets by using Groebner basis

H. Chabanne showed in [Chab] a method of calculating syndromes for semisim-
ple binary abelian codes by using Groebner bases. The author applied this method
to give an alternative permutation decoding procedure. Given an abelian code, H.
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Chabanne works with a set of check positions constructed from its generator poly-
nomial and based on calculating an appropriate Groebner basis. This set coincides
with that introduced by S. Sakata in [Sak] in the case of semisimple binary TDC
codes. In this section we adapt Chabanne’s construction to q-ary abelian codes not
necessarily semisimple.

Let C ⊆ A(r1, . . . , rn) be an abelian code generated by {P1, . . . , Pt}. Take IC the
ideal of F[X1, . . . , Xn] generated by {P1, . . . , Pt} and the set {Xri

i − 1}ni=1. Fix ≤,
a term ordering on Nn. Let us consider that Zr1 × · · · × Zrn inherits from Nn the
ordering defined in (2). Take Gb(IC) = {g1, . . . , gs} a Groebner basis with respect
to ≤.Then we define

Σ(C,≤) = {j ∈ Zr1 × · · · × Zrn | lt(gi) � j for some 1 ≤ i ≤ s},(3)

where the leading terms are calculated with respect to the term ordering ≤.
Note that the structure of Σ(C,≤) depends on the Groebner basis chosen, which,

in turn, depends heavily on the term ordering chosen. Indeed, the permutation
decoding algorithm could work with respect to certain ordering and not with respect
to some other. We denote its complementary set by Γ(C,≤); that is, Γ(C,≤) =
Zr1 × · · · × Zrn \ Σ(C,≤).

From the results in [Chab] one follows that, for every binary abelian code C,
the set Σ(C,≤) is an information set and so Γ(C,≤) is a set of check positions. As
we will see, a direct consequence of Theorem 6 is that Γ(C,≤L) is a set of check
positions for every q-ary abelian code C, with q a power of an arbitrary prime
number.

The next result, which will be useful in Section 5, shows that the set Σ(C,≤) is,
in fact, the set of leading terms of C.

Lemma 1. Let C be an abelian code in A(r1, . . . , rn) and let ≤ be a term ordering
on Nn. Then Σ(C,≤) = Lt(C).

Proof. Let {P1, . . . , Pt} be a generator set of C as an ideal in A(r1, . . . , rn). Let
IC be the ideal in F[X1, . . . , Xn] generated by {P1, . . . , Pt} and the set {Xr1

1 −
1, . . . , Xrn

n − 1}. Then, we compute Gb(IC) = {g1, . . . , gs} a Groebner basis for IC
with respect to ≤.

Take P ∈ C different from 0. On the one hand lt(P ) ∈ Zr1 × · · · × Zrn .
On the other hand, there exist β ∈ 〈{Xr1

1 − 1, . . . , Xrn
n − 1}〉 and β1, . . . , βt ∈

F[X1, . . . , Xn] such that P = β + β1P1 + · · · + βtPt ∈ IC . So, there exists i ∈
{1, . . . , s} such that lt(gi) � lt(P ). Therefore lt(P ) ∈ Σ(C,≤). This implies that
Lt(C) ⊆ Σ(C,≤).

Now let us see the reverse inclusion. Observe that

Σ(C,≤) = {lt(gi) + δ ∈ Zr1 × · · · × Zrn | δ ∈ Nn and 1 ≤ i ≤ s}.

Take k ∈ {1, . . . , s} and δ ∈ Nn such that lt(gk) + δ ∈ Zr1 × · · · × Zrn . Then

lt(gk) ∈ Zr1 × · · · × Zrn , moreover lt(gk) + δ = lt(Xδgk), where Xδ = Xδ1
1 · · ·Xδn

n ,
with δ = (δ1, . . . , δn). Let us see that lt(Xδgk) ∈ Lt(C). Let Xδgk = c + e, where
c ∈ C and e ∈ 〈{Xr1

1 − 1, . . . , Xrn
n − 1}〉. From the properties of term orderings one

has that lt(e) /∈ Zr1 × · · · × Zrn . So lt(Xδgk) = lt(c) ∈ Lt(C) and we are done. �
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4. Information sets from defining sets

In this section we describe the method of constructing sets of check positions
for abelian codes (not necessarily binary) given in [BS2]. It depends solely on the
defining set of the code. The reader may see the mentioned paper for details.

Let us consider the algebra A(r1, . . . , rn) under the assumptions (ri, q) = 1, for
all i = 1, . . . , n, and n ≥ 2. Let D be a union of q-orbits modulo (r1, . . . , rn) (see
(1)). For each i = 1, . . . , n, let Di denotes the projection of the elements of D onto
the first i-coordinates. Then, given e = (e1, . . . , ej) ∈ Dj , with 1 ≤ j ≤ n, we define

γ(e) = |Q(e)|

and

m (e) =
∣∣C(q′,rj)(ej)

∣∣ ,(4)

where q′ = q, in case j = 1, and q′ = qγ(e1,...,ej−1) otherwise.
As we have said, in the semisimple case every defining set for an abelian code in

A(r1, . . . , rn) is a union of q-orbits modulo (r1, . . . , rn). Our construction is based
on the computation of the paremeters (4) on a special set of representatives of
the q-orbits. In fact, the representatives must verify the conditions given by the
following definition.

Definition 2. Let D be a union of q-orbits modulo (r1, . . . , rn) and fix and ordering
Xi1 < · · · < Xin . A set D of representatives of the q-orbits of D is called a
restricted set of representives, with respect to the fixed ordering, if for every
e = (e1, . . . , en) and e′ = (e′1, . . . , e

′
n) in D one has that, for all j = 1, . . . , n, the

equality Q(ei1 , . . . , eij ) = Q(e′i1 , . . . , e
′
ij

) implies that (ei1 , . . . , eij ) = (e′i1 , . . . , e
′
ij

).

One can prove that restricted sets of representatives of the elements of the defin-
ing set always exist and the construction does not depend on the election on the
representatives. Although, different orderings on the indeterminates may yield dif-
ferent information sets. From now on we consider as default ordering the following
one: X1 < · · · < Xn.

Now we describe our construction. Let C ⊆ A(r1, . . . , rn) be an abelian code
with defining set D(C). Let D(C) be a restricted set of representatives of q-orbits
in D(C), with respect to the default ordering on the indeterminates. As before, for
each 1 ≤ i ≤ n, we denote by Di(C) and Di(C) the projection of D(C) and D(C)
respectively, onto the first i-coordinates.

Given e ∈ Di(C), let

R(e) = {a ∈ Zri+1
| (e, a) ∈ Di+1(C)},

where (e, a) has the obvious meaning; that is, if e = (e1, . . . , ei) then (e, a) =
(e1, . . . , ei, a).

The algorithm lies in calculate n families of sequences of natural numbers. For
each e ∈ Dn−1(C), we define

M(e) =
∑

a∈R(e)

m (e, a)
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and consider the set {M(e)}e∈Dn−1(C). Then we denote the different values of the

M(e)’s as follows,

f [1] = max
e∈Dn−1(C)

{M(e)} and

f [i] = max
e∈Dn−1(C)

{M(e) |M(e) < f [i− 1]}.

So, we obtain the sequence

f [1] > · · · > f [s] > 0 = f [s + 1],

that is, we denote by f [s] the minimun value of the paremeters M(·) and we set
f [s + 1] = 0 by convention. Note that M(e) > 0, for all e ∈ Dn−1(C), by definition.

For any value of n, this is the initial family of sequences and it is always formed
by a single sequence. Now, suppose that n ≥ 3. Then we continue as follows:

Given 1 ≤ u ≤ s, we define for every e ∈ Dn−2(C)

Ωu(e) = {a ∈ R(e) |M(e, a) ≥ f [u]} and µu(e) =
∑

a∈Ωu(e)

m(e, a).

Observe that the set Ωu(e) may eventually be the empty set. In this case, the
corresponding value µu(e) will be zero.

We define

f [u, 1] = max
e∈Dn−2(C)

{µu(e)} and

f [u, i] = max
e∈Dn−2(C)

{µu(e) | 0 < µu(e) < f [u, i− 1]}.

We order the previous parameters getting the sequence

f [u, 1] > · · · > f [u, s(u)] > 0 = f [u, s(u) + 1],

where again f [u, s(u)] denotes the minimum value of the paremeters µu(·) and
f [u, s(u) + 1] = 0 by definition. So we obtain the second family of sequences

{f [u, 1] > · · · > f [u, s(u)] > 0 = f [u, s(u) + 1] | u = 1, . . . , s}.

In order to describe how to define a family of sequences from the previous ones,
suppose that we have constructed the j-th family (n− 1 > j ≥ 1)

{f [un, . . . , un−j+2, 1] > · · · > f [un, . . . , un−j+2, s(un, . . . , un−j+2)] >

> 0 = f [un, . . . , un−j+2, s(un, . . . , un−j+2) + 1] | (un, . . . , un−j+2) ∈ Υn(C)} ,

where

Υj(C) = {(un, . . . , un−j+2) | 1 ≤ un ≤ s and(5)

1 ≤ ui ≤ s(un, . . . , ui+1) for i = n− j + 2, . . . , n− 1}.

For every (un, . . . , un−j+2) ∈ Υj(C) we take the corresponding sequence:

f [un, . . . , un−j+2, 1] > · · · > f [un, . . . , un−j+2, s(un, . . . , un−j+2)] >

> 0 = f [un, . . . , un−j+2, s(un, . . . , un−j+2) + 1].

Let u ∈ {1, . . . , s(un, . . . , un−j+2)}. Then, for every e ∈ Dn−j−1(C) we define

Ωun,...,un−j+2,u(e) =
{
a ∈ R(e) | µun,...,un−j+2

(e, a) ≥ f [un, . . . , un−j+2, u]
}
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and

µun,...,un−j+2,u(e) =
∑

a∈Ωun,...,un−j+2,u
(e)

m(e, a).

By ordering the differents values µun,...,un−j+2,u(e), with e ∈ Dn−j−1(C), we obtain

f [un, . . . , un−j+2, u, 1] > · · · > f [un, . . . , un−j+2, u, s(un, . . . , un−j+2, u)](6)

> 0 = f [un, . . . , un−j+2, u, s(un, . . . , un−j+2, u) + 1],

where f [un, . . . , un−j+2, u, s(un, . . . , un−j+2, u) + 1] = 0 by convention. Then the (j+1)-
th family of sequences is

{f [un, . . . , un−j+1, 1] > · · · > f [un, . . . , un−j+1, s(un, . . . , un−j+1)] >
> 0 = f [un, . . . , un−j+1, s(un, . . . , un−j+1) + 1] | (un, . . . , un−j+1) ∈ Υj+1(C)} .

We follow the previous process until to get n− 1 families of sequences. Finally,
by using all the previous sequences, we define, for any value of n, the last family of
sequences. For every (un, . . . , u2) ∈ Υn(C) we define

g[un, . . . , u2] =



∑
e∈D1(C)

M(e)≥f[u2]

m(e) if n = 2,

∑
e∈D1(C)

µun,...,u3
(e)≥f[un,...,u2]

m(e) if n > 2.

So the last family of sequences is

{g[un, . . . , u3, 1] < · · · < g[un, . . . , u3, s(un, . . . , u3)] <

< g[un, . . . , u3, s(un, . . . , u3)] | (un, . . . , u3) ∈ Υn−1(C)} .

The algorithm yields the following set

Γ(C) = {(i1, . . . , in) ∈ Zr1 × · · · × Zrn |(7)

there exists (un, . . . , u2) ∈ Υn(C) such that

f [un, . . . , uj + 1] ≤ ij < f [un, . . . , uj ], for j = 2, . . . , n, and

0 ≤ i1 < g[un, . . . , u2]}.

The following theorem, proved in [BS2], establishes that Γ(C) is a set of check
positions for C.

Theorem 3 ([BS2]). Let C ≤ A(r1, . . . , rn) be an abelian code. Assume that
(ri, q) = 1, for every i = 1, . . . , n, and n ≥ 2. Then Γ(C) is a set of check po-
sitions for C.

5. Relationship between both constructions

Now, we study the relationship between the sets Γ(C,≤) and Γ(C) described in
Sections 3 and 4 respectively. First, we need the following theorem due to S. Sakata
which uses the following notation: Given a subset S ⊆ Zr1 × · · · × Zrn one defines

P(S) =

∑
j∈S

ajX
j ∈ F[X1, . . . , Xl] \ {0}

 .
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Theorem 4 ([Sak]). Let C ⊆ A(r1, . . . , rn) be an abelian code with dimension k.
Let S be a subset of Zr1 × · · ·×Zrn . Then S is a set of check positions for C if and
only if the following conditions hold:

a) C ∩ P(S) = ∅.
b) S is maximal in Zr1 × · · · × Zrn such that a) is valid, or equivanletly, |S| =

n∏
i=1

ri − k.

Let us see that Γ(C,≤) satisfies the condition a) given by the previous theorem.

Lemma 5. Let C ⊆ A(r1, . . . , rn) be an abelian code with dimension k and let ≤
be a term ordering. Then Γ(C,≤) satisfies that C ∩ P(Γ(C,≤)) = ∅.

Proof. Let {P1, . . . , Pt} be a set of generators of C as an ideal in A(r1, . . . , rn). As
before, we write IC to denote the ideal in F[X1, . . . , Xl] generated by {P1, . . . , Pt}
and the set {Xr1

1 − 1, . . . , Xrn
n − 1}. Let Gb(IC) = {g1, . . . , gs} be a Groebner basis

for IC with respect to ≤.
Take P ∈ C different from zero and denote j0 = lt(P ), where the leading term is

calculated by using the fixed ordering ≤. Then j0 ∈ Zr1 × · · · × Zrn . On the other
hand, there exist β ∈ 〈{Xr1

1 − 1, . . . , Xrn
n − 1}〉 and β1, . . . , βt ∈ F[X1, . . . , Xn] such

that P = β + β1P1 + · · ·+ βtPt ∈ IC . By definition of Groebner basis, there exists
i ∈ {1, . . . , s} such that lt(gi) � j0. Therefore, j0 ∈ Σ(C,≤), and hence j0 /∈ Γ(C,≤).
One follows that P /∈ P(Γ(C,≤)). �

The next theorem shows that if we take as term ordering the lexicographical one
defined in Section 2, we have the equality between the sets Γ(C,≤L) and Γ(C).

Theorem 6. Let C ⊆ A(r1, . . . , rn) be an abelian code. Assume that (ri, q) = 1,
for every i = 1, . . . , n, and n ≥ 2. Then Γ(C) = Γ(C,≤L).

Proof. For each i = 1, . . . , n, fix a primitive ri-th root of unity αi in some extension
of F. Let D(C) be the defining set of C with respect to {α1, . . . , αn}. Take D(C) a
restricted set of representatives of the q-orbits of D(C).

Given u ∈ {1, . . . , s+ 1} we define

Hu = {e ∈ Dn−1(C) |M(e) ≥ f [u]}

and for every (un, . . . , ui+1) ∈ Υn−i+1(C) (see (5)) and u ∈ {1, . . . , s(un, . . . , ui+1)+
1}, with 2 ≤ i ≤ n− 1, we define

Hun,...,ui+1,u = {e ∈ Di−1(C) | µun,...,ui+1(e) ≥ f [un, . . . , ui+1, u]}.

First, we shall prove that Γ(C) ⊆ Γ(C,≤L). To do this we show that for every
P ∈ C one has that lt(P ) /∈ Γ(C), where the leading term is calculated by using the
ordering ≤L. This fact, together with Lemma 1 will give us the inclusion.

Let P ∈ C. Suppose that lt(P ) ∈ Γ(C). We consider P as a polynomial in n
indeterminates; that is, P = P (X1, . . . , Xn). Let us denote lt(P ) = (η1, . . . , ηn).
By the definition of Γ(C), there exists (vn, . . . , v2) ∈ Υn(C) such that

f [vn, . . . , vj + 1] ≤ ηj < f [vn, . . . , vj ], with j = 2, . . . , n,

and(8)

0 ≤ η1 < g[vn, . . . , v2].
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Then we define

w = min {u ∈ {1, . . . , s+ 1} | there exists e = (e1 . . . , en−1) ∈ Hu with
P
(
αe11 , . . . , α

en−1

n−1 , Xn

)
6= 0},

where by convention w = s + 1 in case that P (αe11 , . . . , α
en−1

n−1 , Xn) = 0 for all

e = (e1 . . . , en−1) ∈ Dn−1(C). Note that Dn−1(C) = H1 ∪ · · · ∪ Hs+1, and then
w must exist. If w < s + 1 then there exists e = (e1, . . . , en−1) ∈ Hw such that
P
(
αe11 , . . . , α

en−1

n−1 , Xn

)
6= 0, and hence

ηn ≥
∑

a∈R(e)

m(e, a) = M(e) ≥ f [w].

Since f [s + 1] = 0, for any value of w we conclude that ηn ≥ f [w] and so vn < w.
Moreover, for all u < w and e = (e1 . . . , en−1) ∈ Hu one has that P (αe11 , . . . , α

en−1

n−1 , Xn) =
0. We write

P (X1, . . . , Xn) =

ηn∑
t=0

Pt (X1, . . . , Xn−1)Xn
t.

Then we have Pηn(αe11 , . . . , α
en−1

n−1 ) = 0 for all e = (e1 . . . , en−1) ∈ Hvn .
Now, we define

w(vn) = min {u ∈ {1, . . . , s(vn) + 1} | there exists e = (e1, . . . , en−2) ∈ Hvn,u

with Pηn
(
αe11 , . . . , α

en−2

n−2 , Xn−1

)
6= 0},

where by convention w(vn) = s(vn) + 1 in case that Pηn
(
αe11 , . . . , α

en−2

n−2 , Xn−1

)
=

0 for all e = (e1, . . . , en−2) ∈ Dn−2(C). Note that Dn−2(C) = Hvn,1 ∪ · · · ∪
Hvn,s+1, and hence w(vn) must exist. If w(vn) < s(vn) + 1 then there exists
e = (e1, . . . , en−2) ∈ Hvn,w(vn) such that Pηn

(
αe11 , . . . , α

en−2

n−2 , Xn−1

)
6= 0. This

implies that

ηn−1 ≥
∑

a∈Ωvn (e)

m(e, a) = µvn(e) ≥ f [vn, w(vn)].

Since f [vn, s(vn) + 1] = 0, we may conclude that for any value of w(vn) one has that
ηn−1 ≥ f [vn, w(vn)], and hence vn−1 < w(vn). Moreover, for all u < w(vn) and
e = (e1 . . . , en−2) ∈ Hvn,u, P (αe11 , . . . , α

en−2

n−2 , Xn−1) = 0. We denote

Pηn (X1, . . . , Xn−1) =

ηn−1∑
t=0

Pηn,t (X1, . . . , Xn−2)Xn−1
t.

Then we have that Pηn,ηn−1(αe11 , . . . , α
en−2

n−2 ) = 0 for all e = (e1 . . . , en−2) ∈ Hvn,vn−1 .
We continue this process until to obtain a polynomial Pηl,...,η2(X1) in F[X1] such

that Pηl,...,η2(αe11 ) = 0 for all e1 ∈ Hvn,...,v2 . Therefore,

η1 ≥
∑

a∈Hvn,...,v2

m(a) = g[vn, . . . , v2],

where the equality of the right hand side follows from the fact that

Hun,...,u2 = {e ∈ D1(C) | µun,...,u3(e) ≥ f [un, . . . , u2]}.

This contradicts (8). So Γ(C) ⊆ Γ(C,≤L).
Finally, by aplying Theorem 3, Lemma 5 and Theorem 4 we obtain directly the

reverse inclusion Γ(C) = Γ(C,≤L). �
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Let us remark that if we take an ordering of the indeterminates different from
that chosen to get Γ(C), to wit, X1 < · · · < Xn, one can prove analogously that the
corresponding new set Γ(C) equals Γ(C,≤L′) with ≤L′ the lexicographical ordering
in Nn associated with the new ordering on the indeterminates. This fact will be
used in Section 6.

The following corollary follows directly from the previous theorem.

Corollary 7. Let C be an abelian code in A(r1, . . . , rn). Assume that (ri, q) = 1,
for every i = 1, . . . , n, and n ≥ 2. Then Γ(C,≤L) is a set of check positions for C.

6. Applications

In the previous section we have checked that in the case of semi simplicity and
lexicographical ordering in the variables, both constructions afford the same infor-
mation set. However, the behavior of each of these two constructions, determines
the scope of its applicabilty. In Chabnne’s paper we may find examples of codes
capable to correct (few) errors quickly, as well as a higher number of errors, with
a high percentage. We deal with the problem of correcting all errors with a fixed
weight. With our method, one can get an overview of the permutation decoding
properties of all codes in a given algebra A(r1, . . . , rn).

Before we present our examples let us give a brief introduction to the (original)
permutation decoding algorithm. Permutation decoding was introduced by F. J.
MacWilliams in [Mac] and it is fully described in [Hu] and [MacSlo]. Fixed an infor-
mation set for a given linear code C, this technique uses a special set of permutation
automorphisms of the code called PD-set.

We denote the permutation group on Zr1×· · ·×Zrn by Sr1×···×rn and we consider

its extension to automorphisms of A(r1, . . . , rn) via τ
(∑

j ajX
j
)

=
∑

j aτ−1(j)X
j.

Under this point of view the permutation automorphism group of an abelian code
C ≤ A(r1, . . . , rn) is PAut(C) = {τ ∈ Sr1×···×rn | τ(C) = C} .

Definition 8. Let C be a t-error-correcting [l, k] code. Let I be an information set
for C. For s ≤ t a s-PD-set for C and I is a subset P ⊆ PAut(C) such that every
set of s coordinate positions is moved out of I by at least one element of P (see
[Key, Mac]). In case s = t, we say that P is a PD-set.

The idea of permutation decoding is to apply the elements of the PD-set to the
received vector until the errors are moved out of the fixed information set. The
following theorem shows how to check that the information symbols of a codeword
with weight less or equal than t are correct. We denote the weight of a vector v ∈ Fl
by wt(v).

Theorem 9 ([Hu], Theorem 8.1). Let C be a t-error-correcting [l, k] code with
parity check matrix H in standard form. Let r = c+ e be a vector, where c ∈ C and
wt(e) ≤ t. Then the information symbols in r are correct if and only if wt

(
HrT

)
≤

t.

Then, once we have found a PD-set P ⊆ PAut(C) for the given code C and
information set I, the algorithm of permutation decoding is as follows: take a
check-matrix H for C in standard form. Suppose that we receive a vector r = c+ e,
where c ∈ C and e represents the error vector and satisfies that wt(e) ≤ t. Then we

calculate the syndromes H (τ(r))
T

, with τ ∈ P , until we obtain a vector H (τ0(r))
T
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with weight less than or equal to t. By the previous theorem, the information
symbols of the permuted vector τ(r) are correct, so by using the parity check
equations we obtain the redundancy symbols and then we can construct a codeword
c′. Finally, we decode to τ−1(c′) = c.

In general to find t-PD-sets for a given t-error correcting code is not at all an
easy problem. It depends on the chosen information set and they need not even to
exist. Moreover, it is clear that the algorithm is more efficient the smaller the size
of the PD-set.

Let Ts be the transformation from A(r1, . . . , rn) into itself, given by

Ts(P (X1, . . . , Xn)) = Xs · P (X1, . . . , Xn)

for s = 1, . . . , n. Then it is clear that Ts can be seen as a permutation in Sr1×···×rn ,
via Ts (i1, . . . , in) = (i1, . . . , is + 1, . . . , in) and as such, 〈{Ts}ns=1〉 may be viewed
as a subgroup of PAut(C) for every abelian code C ⊆ A(r1, . . . , rn). We consider
permutation decodable codes with respect to our information set and with a PD-set
contained in the group generated by the translations T1, . . . , Tn.

Example 10. In [Chab, Example 1] Chabanne considers the [49 = 7 × 7, 18, 12]
binary code, L1, with defining set

D(L1) = Q(0, 0) ∪Q(0, 1) ∪Q(1, 0) ∪Q(1, 1) ∪Q(3, 3) ∪(9)

Q(0, 3) ∪Q(3, 0) ∪Q(3, 5) ∪Q(5, 3) ∪Q(1, 4) ∪Q(4, 1).

Chabanne explains how this information set works in order to make permutation
decoding. He obtains that L1 may correct any error with weight less or equal than
3, by using the PD-set 〈T1, σ〉, where σ(P (X,Y )) = P (X2, Y 2). Moreover, he made
a probabilistic study on the permutation decoding capability of L1 for errors with
weight greater than 3.

Now we are going to see how our tools work, and what kind of results one may
obtain. Concretely, we will see that by studying the 2-orbit structure of the whole
space Z7 × Z7 we may get the 3-error correcting codes of length 49 with highest
dimension, such that the group 〈T1, T2〉 is a PD-set.

Example 11. The reader may check, in a direct fashion, that there are two shapes
A1 and A2, in Z7×Z7 with the minimum area for which it is possible to put inside
three positions.

-. . . . . . ..

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .6

7

7

X

Y

A1

Figure 3

-. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .6

7

7

X

Y

A2

Figure 4



12 JOSÉ JOAQUÍN BERNAL AND JUAN JACOBO SIMÓN

Now, the following table describes all minimal abelian codes in A(7, 7). For
i = 1, . . . , 17, we call Ei = (Z7 ×Z7) \D(Ci). Note that the parameters m(−), and
so M(−), have been computed with respect to the ordering X > Y .

Code Ei M(0) M(1) M(3) dimension
C1 Q(0, 0) 1 0 0 1
C2 Q(0, 1) 0 1 0 3
C3 Q(0, 3) 0 0 1 3
C4 Q(1, 0) 3 0 0 3
C5 Q(3, 0) 3 0 0 3
C6 Q(1, 1) 0 1 0 3
C7 Q(3, 3) 0 0 1 3
C8 Q(4, 1) 0 1 0 3
C9 Q(5, 3) 0 0 1 3
C10 Q(1, 3) 0 0 1 3
C11 Q(5, 1) 0 1 0 3
C12 Q(2, 1) 0 1 0 3
C13 Q(6, 3) 0 0 1 3
C14 Q(2, 3) 0 0 1 3
C15 Q(3, 1) 0 1 0 3
C16 Q(4, 3) 0 0 1 3
C17 Q(6, 1) 0 1 0 3

Accordingly with the table above, one may check that there not exist any sum
of minimal codes C, for which Γ(C) = A1 or A2. What we can find are codes such
that their set of check positions agrees with the shape delimited by the dashed
lines, and so all of them have dimension 25. This is the highest dimension for a
3-error correcting code of length 49 decodable with the PD-set 〈T1, T2〉. However,
in the case of Figure 4, any of such codes must contain the code C1 + C4 + C5
whose minimum distance is 6, and so, it is not a 3-error correcting code. In the
case of Figure 3, the sums of minimal codes works better, and, for example, L3 =
C4 + · · · + C9 + C12 + C13 has minimum distance, d (L3) = 7. Note that L1 ⊂ L3,
and dim(L1) = 18 < dim(L3) = 25.

The code L3, even it has not the best parameters (see http://codetables.de/),
its relevance relies on the fact that it is the highest dimensional binary permutation
decodable code in A(7, 7).

Finally, we include a non binary example on three variables.

Example 12. The same procedure seen in the example above allows us to extend
our designing of permutation decodable codes to three variables. We shall construct
a 5-ary, 3-error correcting code in A(3, 3, 6), with the highest dimension satisfying
that 〈T1, T2, T3〉 is a partial PD-set.
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As above, by analizing the 3-dimensional shapes in Z3 ×Z3 ×Z6 one may check
that the shape with minimum volume for which it is possible to put inside 3-
positions, corresponds to the following parameters.

f [1] = 5 > f [2] = 3 > f [3] = 1
f [1, 1] = 3; f [2, 1] = 3 > f [2, 2] = 1; f [3, 1] = 3
g[1, 1] = 1; g[2, 1] = 1 < g[2, 2] = 3; g[3, 1] = 3

There are no any abelian code with this parameters, however, there are codes with
information sets shapes very close to that considered. One of them is the code C,
with defining set

D(C) = Q(0, 0, 0) ∪Q(0, 0, 1) ∪Q(0, 0, 2) ∪Q(0, 0, 3) ∪Q(0, 1, 1) ∪
Q(0, 1, 2) ∪Q(0, 1, 3) ∪Q(0, 1, 4) ∪Q(0, 1, 5) ∪Q(1, 0, 5) ∪
Q(1, 1, 5) ∪Q(1, 2, 3) ∪Q(1, 2, 4) ∪Q(1, 2, 5).

whose Γ(C) is determined by the parameters

f [1] = 6 > f2 = 5 > f [3] = 3 > f [4] = 1
f [1, 1] = 1; f [2, 1] = 3; f [3, 1] = 3 > f [3, 2] = 1; f [4, 1] = 3
g[1, 1] = 1; g[2, 1] = 1; g[3, 1] = 1 < g[3, 2] = 3; g[4, 1] = 3.

The code C is a [54, 28, 8], 5-ary abelian code.

Acknowledgement: The authors would like to thank the referees for their
comments, that contribute to give a clearer exposition.

References

[Ber] Berman, S. D.: Semisimple cyclic and Abelian codes. Cybernetics vol. 3 no. 3, pp. 21-30

(1967).
[BS] Bernal, J. J. and Simón, J. J.: Information sets for abelian codes. 2010 IEEE Information

Theory Workshop - ITW 2010 Dublin.

[BS2] Bernal J. J. and Simón, J. J., Information sets from defining sets in abelian codes. IEEE
Trans. Inform. Theory, vol. 57, no. 12, pp. 7990-7999 (2011).

[Buch] Buchberger, B., Groebner bases: An algorithm method in polynomial ideal theory. In:
Bose (ed.) Recent trends in multidimensional system theory. Dordrecht: Reidel (1985).

[Cam] Camion, P., Abelian codes. MRC Tech. Sum. Rep. no. 1059, Univ. of Wisconsin, Madison

(1970).
[Chab] Chabanne, H., Permutation decoding of abelian codes, IEEE Trans. on Inform. Theory,

vol. 38, no. 6, pp. 1826-1829 (1992).

[Cof] Coffey, J. T. and Goodman, R. M. The complexity of information set decoding, IEEE Trans.
Inform. Theory, vol. 36, no. 5, pp. 1031-1037 (1990).

[Cox] Cox, D., Little, J. and O’Shea, D., Ideals, varieties, and algorithms. Springer: New York

(1992).
[Hu] Huffman, W. C., Codes and groups, in Pless, V. S., Huffman, W. C. and Brualdi, R. A.

(editors), Handbook of Coding Theory, vol. II. North-Holland, Amsterdam, pp. 1345-1440

(1998).
[Im] Imai, H.: A theory of two-dimesional cyclic codes, Information and Control, vol. 34, pp. 1-21

(1977).
[Im2] Imai, H.: Multivariate polynomials in coding theory, AAECC-2, LNCS, vol. 228, pp. 36-60

(1986).
[Key] Key, J. D., McDonough, T. P. and Mavron, V. C., Partial permutation decoding for codes

from finite planes, European Journal of Combinatorics, no. 26, pp. 665-682 (2005).
[Key2] Key, J. D., McDonough, T. P. and Mavron, V. C., Information sets and partial permutation

decoding for codes from finite geometries, Finite Fields and their Applications, vol. 12, pp.
232-247 (2006).
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