Course on (algebraic aspects of) Convolutional Codes

Diego Napp

Department of Mathematics, Universidad of Aveiro, Portugal

CIMPA RESEARCH SCHOOL

July 11, 2017

(CIDMA)

Convolutional codes

July 11, 2017 1 / 51 My most heartfelt thanks to the organizers

CIMPA RESEARCH SCHOOL

ALGEBRAIC METHODS IN CODING THEORY

Diego Napp (CIDMA)

Convolutional codes

July 11, 2017 2 / 51

Overview

- Error-correcting codes: From block codes to convolutional codes
 - Basics: Polynomial encoders
- Distance properties of convolutional codes
 - Maximum Distance Profile (MDP) and Maximum Distance Separable (MDS)
 - Construction of MDP and MDS: Superregular matrices
- 3 Decoding of Convolutional codes
 - Viterbi algorithm
 - Decoding of convolutional codes over the erasure channel
 - 4 Network coding with convolutional codes
 - Avenues for further research
 - Motivated by applications: Video streaming and storage systems
 - More theoretical: Multidimensional convolutional codes and convolutional codes over Z_p^r

• One dimensional (1D) convolutional codes are very much suited for encoding data recorded in one single direction.

- One dimensional (1D) convolutional codes are very much suited for encoding data recorded in one single direction.
- To encode data recorded geometrically in *m* dimensions (*m*D, with m > 1), e.g., pictures or videos.

- One dimensional (1D) convolutional codes are very much suited for encoding data recorded in one single direction.
- To encode data recorded geometrically in *m* dimensions (*m*D, with m > 1), e.g., pictures or videos.
- It is possible to work in a framework that takes advantage of the correlation of the data in several directions.

- One dimensional (1D) convolutional codes are very much suited for encoding data recorded in one single direction.
- To encode data recorded geometrically in *m* dimensions (*m*D, with m > 1), e.g., pictures or videos.
- It is possible to work in a framework that takes advantage of the correlation of the data in several directions.
- Such framework would lead to *m* dimensional (*m*D) convolutional codes, generalizing the notion of 1D convolutional code.

- One dimensional (1D) convolutional codes are very much suited for encoding data recorded in one single direction.
- To encode data recorded geometrically in *m* dimensions (*m*D, with m > 1), e.g., pictures or videos.
- It is possible to work in a framework that takes advantage of the correlation of the data in several directions.
- Such framework would lead to *m* dimensional (*m*D) convolutional codes, generalizing the notion of 1D convolutional code.
- This generalization is nontrivial since 1D convolutional codes are represented over the polynomial ring in one variable whereas *m*D convolutional codes are represented over the polynomial ring in *m* independent variables.

• Many fundamental issues such as error correction capability, decoding algorithms, etc., that are well known for 1D convolutional codes have not been sufficiently investigated in the context of *m*D convolutional codes.

- Many fundamental issues such as error correction capability, decoding algorithms, etc., that are well known for 1D convolutional codes have not been sufficiently investigated in the context of *m*D convolutional codes.
- The first attempts to develop the general theory and the basic algebraic properties of 2D/mD convolutional codes were proposed in some papers. Questions about optimal distances and constructions of codes with large distance remained wide open for many years

- Many fundamental issues such as error correction capability, decoding algorithms, etc., that are well known for 1D convolutional codes have not been sufficiently investigated in the context of *m*D convolutional codes.
- The first attempts to develop the general theory and the basic algebraic properties of 2D/mD convolutional codes were proposed in some papers. Questions about optimal distances and constructions of codes with large distance remained wide open for many years
- Next we introduce the basic notions of 2D convolutional codes that, despite its fundamental importance, have been very little investigated.

Let \mathbb{F} be a finite field and $\mathbb{F}[z_1, z_2]$ the ring of polynomials in two variables with coefficients in \mathbb{F} .

Let \mathbb{F} be a finite field and $\mathbb{F}[z_1, z_2]$ the ring of polynomials in two variables with coefficients in \mathbb{F} . A 2D convolutional code C of rate k/n is a free $\mathbb{F}[z_1, z_2]$ - submodule of $\mathbb{F}[z_1, z_2]^n$, where k is the rank of C.

Let \mathbb{F} be a finite field and $\mathbb{F}[z_1, z_2]$ the ring of polynomials in two variables with coefficients in \mathbb{F} . A 2D convolutional code C of rate k/n is a free $\mathbb{F}[z_1, z_2]$ - submodule of $\mathbb{F}[z_1, z_2]^n$, where k is the rank of C.

Definition

A full row rank matrix $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$ whose rows constitute a basis for C is called a generator matrix or encoder of C.

A matrix $U(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{n \times n}$ is *unimodular* if it has a polynomial inverse ou equivalently if det $U(z_1, z_2) \in \mathbb{F} \setminus \{0\}$.

A matrix $U(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{n \times n}$ is *unimodular* if it has a polynomial inverse ou equivalently if det $U(z_1, z_2) \in \mathbb{F} \setminus \{0\}$. A matrix $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$, with $n \ge k$, is called *left factor prime* (IFP) if for every factorization $G(z_1, z_2) = \overline{V}(z_1, z_2)G(z_1, z_2)$, with $V(z_1, z_2) \in \mathbb{F}^{k \times k}$, $V(z_1, z_2)$ is unimodular.

A matrix $U(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{n \times n}$ is unimodular if it has a polynomial inverse ou equivalently if det $U(z_1, z_2) \in \mathbb{F} \setminus \{0\}$. A matrix $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$, with $n \ge k$, is called *left factor prime* (IFP) if for every factorization $G(z_1, z_2) = \overline{V}(z_1, z_2)G(z_1, z_2)$, with $V(z_1, z_2) \in \mathbb{F}^{k \times k}$, $V(z_1, z_2)$ is unimodular. And it is called *left zero prime* (IZP) if $G(z_1, z_2)$ admits a polynomial left inverse.

Let $G(z_1, z_2) \in \mathbb{F}^{n \times k}$, with $n \ge k$. Then the following are equivalent:

- i) $G(z_1, z_2)$ is left factor prime;
- ii) there exists polynomial matrices $X_i(z_1, z_2)$ such that $G(z_1, z_2)X_i(z_1, z_2) = d_i(z_i)I_k$, where $d_i(z_i) \in \mathbb{F}[z_i] \setminus \{0\}$, for i = 1, 2;

Let $G(z_1, z_2) \in \mathbb{F}^{n \times k}$, with $n \ge k$. Then the following are equivalent:

- i) $G(z_1, z_2)$ is left factor prime;
- ii) there exists polynomial matrices $X_i(z_1, z_2)$ such that $G(z_1, z_2)X_i(z_1, z_2) = d_i(z_i)I_k$, where $d_i(z_i) \in \mathbb{F}[z_i] \setminus \{0\}$, for i = 1, 2;

Theorem

- i) $G(z_1, z_2)$ is right zero prime;
- ii) $G(z_1, z_2)$ admits a polynomial left inverse;
- iii) there exists a polynomial matrix $V(z_1, z_2) \in \mathbb{F}^{n \times (n-k)}$ such that $[G(z_1, z_2) \ V(z_1, z_2)]$ is unimodular.

Let $G(z_1, z_2) \in \mathbb{F}^{n \times k}$, with $n \ge k$. Then the following are equivalent:

- i) $G(z_1, z_2)$ is left factor prime;
- ii) there exists polynomial matrices $X_i(z_1, z_2)$ such that $G(z_1, z_2)X_i(z_1, z_2) = d_i(z_i)I_k$, where $d_i(z_i) \in \mathbb{F}[z_i] \setminus \{0\}$, for i = 1, 2;

Theorem

- i) $G(z_1, z_2)$ is right zero prime;
- ii) $G(z_1, z_2)$ admits a polynomial left inverse;
- iii) there exists a polynomial matrix $V(z_1, z_2) \in \mathbb{F}^{n \times (n-k)}$ such that $[G(z_1, z_2) \ V(z_1, z_2)]$ is unimodular.

It follows that zero primeness implies factor primeness, but the converse is not true.

References

E. FORNASINI and M. E. VALCHER.

Algebraic aspects of two-dimensional convolutional codes. *IEEE Transactions on Information Theory*, **40(4)**: 1068–1082 (1994).

$E.\ FORNASINI \mbox{and}\ M.\ E.\ VALCHER.$

Multidimensional systems with finite support behaviors: Signal structure, generation, and detection.

SIAM Journal on Control and Optimization, 36(2): 760–779 (1998).

P. A. WEINER.

Multidimensional Convolutional Codes.

PhD thesis, Department of Mathematics, University of Notre Dame, Indiana, USA, April 1998.

D. NAPP, C. PEREA, and R. PINTO.

Input-state-output representations and constructions of finite support 2D convolutional codes.

Advances in Mathematics of Communications, 4(4): 533–545 (2010).

Cem Gneri ; Buket zkaya.

Multidimensional Quasi-Cyclic and Convolutional Codes IEEE Transactions on Information Theory, 62(12): 6772–6785 (20)

Diego Napp (CIDMA)

Lemma

Two generator matrices $G_1(z_1, z_2)$, $G_2(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$ define the same 2D convolutional code C if and only if there exists $U(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times k}$, unimodular, such that

$$G_2(z_1, z_2) = U(z_1, z_2)G_1(z_1, z_2)$$

Lemma

Two generator matrices $G_1(z_1, z_2), G_2(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$ define the same 2D convolutional code C if and only if there exists $U(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times k}$, unimodular, such that

$$G_2(z_1, z_2) = U(z_1, z_2)G_1(z_1, z_2)$$

Definition

The degree δ of a 2D convolutional code C is the maximum of the degrees of the determinants of the $k \times k$ submatrices of any generator matrix of C.

Minimal realization of 1D convolutional codes are very useful for many reasons: less amount of memory, help to construction of good codes, etc. These state-space representations are obtained via realizations of the encoders of the code. We know how to characterize them.

Minimal realization of 1D convolutional codes are very useful for many reasons: less amount of memory, help to construction of good codes, etc. These state-space representations are obtained via realizations of the encoders of the code. We know how to characterize them.

Open problem: Minimal realizations

When considering the 2D case, there exist several state-space models (e.g. Marchesini-Fornasini or Roesser model). While in the 1D case there exists a characterization of minimality for realization via state-space models, the same does not happen in the 2D case.

Basics for 2D Convolutional Codes

Definition

The weight of
$$v(z_1, z_2) = \sum_{(i,j) \in \mathbb{N}^2} v_{(i,j)} z_1^i z_2^j \in \mathbb{F}[z_1, z_2]^n$$
 is defined as
 $\tilde{\mathbf{w}}v(z_1, z_2) = \sum \tilde{\mathbf{w}}v_{(i,j)}$

$$(i,j) \in \mathbb{N}^2$$

Diego Napp (CIDMA)

- E

The weight of
$$v(z_1, z_2) = \sum_{(i,j) \in \mathbb{N}^2} v_{(i,j)} z_1^i z_2^j \in \mathbb{F}[z_1, z_2]^n$$
 is defined as

$$ilde{\mathbf{w}} v(z_1, z_2) = \sum_{(i,j) \in \mathbb{N}^2} ilde{\mathbf{w}} v_{(i,j)}$$

Definition

The (free) distance of a 2D convolutional code C is defined as

$$d_{ ext{free}}\mathcal{C} = \min\{ ilde{oldsymbol{w}} v(z_1,z_2) \mid v(z_1,z_2) \in \mathcal{C} \setminus \{0\}\}$$

Diego Napp (CIDMA)

A E A

If C is a 2D convolutional code of rate k/n and degree δ , then

$$d_{\text{free}}\mathcal{C} \leq \frac{(\lfloor \delta/k \rfloor + 1)(\lfloor \delta/k \rfloor + 2)}{2}n - (k - \delta + k\lfloor \delta/k \rfloor) + 1$$

Definition

A 2D convolutional code of rate k/n and degree δ with distance achieving this bound is called 2D MDS convolutional code.

Let $n, \delta \in \mathbb{N}$. Assume that $n \ge \ell = \frac{(\delta+1)(\delta+2)}{2}$ and consider a superregular matrix

$$G = \begin{bmatrix} G_0 & G_1 & \cdots & G_{\ell-1} \end{bmatrix} \in \mathbb{F}^{n imes \ell}.$$

Define

$$\begin{split} G(z_1,z_2) &= G_0 + G_1 z_1 + G_2 z_2 + G_3 z_1^2 + G_4 z_1 z_2 + G_5 z_2^2 + \cdots \\ &+ G_{\frac{\delta(\delta+1)}{2}} z_1^{\delta} + G_{\frac{\delta(\delta+1)}{2}+1} z_1^{\delta-1} z_2 + \cdots + G_{\ell-1} z_2^{\delta} \;. \end{split}$$

Let $G(z_1, z_2)$ is the generator matrix of an 2D MDS convolutional code of rate 1/n and degree δ .

Example

In order to construct a 2D convolutional code of rate 1/12 and $\delta = 3$ we build a superregular Cauchy matrix of size 12×10 . We need a field with at least 22 elements and then we consider the field $\mathbb{F} = GF(23)$. Take for instance,

 $\vec{x} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], \ \vec{y} = [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]$

then we obtain the Cauchy matrix

 $A = \begin{bmatrix} 7 & 18 & 3 & 10 & 4 & 14 & 6 & 8 & 12 & 1 \\ 21 & 7 & 18 & 3 & 10 & 4 & 14 & 6 & 8 & 12 \\ 2 & 21 & 7 & 18 & 3 & 10 & 4 & 14 & 6 & 8 \\ 16 & 2 & 21 & 7 & 18 & 3 & 10 & 4 & 14 & 6 \\ 5 & 16 & 2 & 21 & 7 & 18 & 3 & 10 & 4 & 14 \\ 20 & 5 & 16 & 2 & 21 & 7 & 18 & 3 & 10 & 4 \\ 13 & 20 & 5 & 16 & 2 & 21 & 7 & 18 & 3 & 10 \\ 19 & 13 & 20 & 5 & 16 & 2 & 21 & 7 & 18 & 3 \\ 9 & 19 & 13 & 20 & 5 & 16 & 2 & 21 & 7 & 18 \\ 17 & 9 & 19 & 13 & 20 & 5 & 16 & 2 & 21 & 7 \\ 15 & 17 & 9 & 19 & 13 & 20 & 5 & 16 & 2 & 21 \\ 11 & 15 & 17 & 9 & 19 & 13 & 20 & 5 & 16 & 2 \end{bmatrix}$

Example

Now using the theorem we have the 2D CC of rate 1/12 and $\delta=3$ generated by the matrix

 $7 + 18z_1 + 3z_2 + 10z_1^2 + 4z_1z_2 + 14z_2^2 + 6z_1^3 + 8z_1^2z_2 + 12z_1z_2^2 + z_2^3$ $21 + 7z_1 + 18z_2 + 3z_1^2 + 10z_1z_2 + 4z_2^2 + 14z_1^3 + 6z_1^2z_2 + 8z_1z_2^2 + 12z_2^3$ $2 + 21z_1 + 7z_2 + 18z_1^2 + 3z_1z_2 + 10z_2^2 + 4z_1^3 + 14z_1^2z_2 + 6z_1z_2^2 + 8z_3^3$ $16 + 2z_1 + 21z_2 + 7z_1^2 + 18z_1z_2 + 3z_2^2 + 10z_1^3 + 4z_1^2z_2 + 14z_1z_2^2 + 6z_2^3$ $5 + 16z_1 + 2z_2 + 21z_1^2 + 7z_1z_2 + 18z_2^2 + 3z_1^3 + 10z_1^2z_2 + 4z_1z_2^2 + 14z_3^3$ $20 + 5z_1 + 16z_2 + 2z_1^2 + 21z_1z_2 + 7z_2^2 + 18z_1^3 + 3z_1^2z_2 + 10z_1z_2^2 + 4z_2^3$ $13 + 20z_1 + 5z_2 + 16z_1^2 + 2z_1z_2 + 21z_2^2 + 7z_1^3 + 18z_1^2z_2 + 3z_1z_2^2 + 10z_2^3$ $19 + 13z_1 + 20z_2 + 5z_1^2 + 16z_1z_2 + 2z_2^2 + 21z_1^3 + 7z_1^2z_2 + 18z_1z_2^2 + 3z_1^3$ $9 + 19z_1 + 13z_2 + 20z_1^2 + 5z_1z_2 + 16z_2^2 + 2z_1^3 + 21z_1^2z_2 + 7z_1z_2^2 + 18z_2^3$ $17 + 9z_1 + 19z_2 + 13z_1^2 + 20z_1z_2 + 5z_2^2 + 16z_1^3 + 2z_1^2z_2 + 21z_1z_2^2 + 7z_2^3$ $15 + 17z_1 + 9z_2 + 19z_1^2 + 13z_1z_2 + 20z_2^2 + 5z_1^3 + 16z_1^2z_2 + 2z_1z_2^2 + 21z_3^3$ $11 + 15z_1 + 17z_2 + 9z_1^2 + 19z_1z_2 + 13z_2^2 + 20z_1^3 + 5z_1^2z_2 + 16z_1z_2^2 + 2z_2^3$

is a 2D MDS convolutional code.

イロト イ理ト イヨト イヨト

Convolutional Codes over \mathbb{Z}_{p^r}

 Motivation: Convolutional codes over the ring Z_M are the most suitable for phase modulation signals [1].

J.L. Massey and T. Mittelholzer. (1990) "Systematicity of convolutional codes over rings".

- R. Johannesson, Z. Wan, and E. Wittenmark (1998)
 Some structural properties of convolutional codes over rings IEEE Trans. Information Theory, IT-44:839845, 1998.
- Mohammed El Oued and Patrick Sole (2013)
 MDS Convolutional Codes Over a Finite Ring
 IEEE trans. info. theory, Vol. 59, n. 11, november 2013.
- C. Feng, R W. Nobrega, F R. Kschischang and D Silva (2014) Communication over Finite-Chain-Ring Matrix Channels *IEEE trans. info. theory, 2014.*

Diego Napp (CIDMA)

Image: A match a ma

- Motivation: Convolutional codes over the ring Z_M are the most suitable for phase modulation signals [1].
- We start with the ring Z_{p^r}. By the Chinese Remainder Theorem, results on codes over Z_{p^r} can be extended to codes over Z_M.
- J.L. Massey and T. Mittelholzer. (1990) "Systematicity of convolutional codes over rings".
- R. Johannesson, Z. Wan, and E. Wittenmark (1998)
 Some structural properties of convolutional codes over rings IEEE Trans. Information Theory, IT-44:839845, 1998.
- Mohammed El Oued and Patrick Sole (2013)
 MDS Convolutional Codes Over a Finite Ring
 IEEE trans. info. theory, Vol. 59, n. 11, november 2013.
- C. Feng, R W. Nobrega, F R. Kschischang and D Silva (2014) Communication over Finite-Chain-Ring Matrix Channels *IEEE trans. info. theory, 2014.*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convolutional codes over \mathbb{Z}_{p^r}

Definition

A convolutional code C over \mathbb{Z}_{p^r} is a $\mathbb{Z}_{p^r}[D]$ -submodule of $\mathbb{Z}_{p^r}^n[D]$.

A convolutional code C over \mathbb{Z}_{p^r} is a $\mathbb{Z}_{p^r}[D]$ -submodule of $\mathbb{Z}_{p^r}^n[D]$.

Now we have to take care of the Zero divisors

Diego Napp (CIDMA)

Example

Let $C = \text{span}\{g_0, g_1\} \subset \mathbb{Z}^3_{3^3}[D]$ be a convolutional code, with $g_0 = [\begin{array}{ccc} 1 & 1+D & 0 \end{array}]$ and $g_1 = [\begin{array}{ccc} 3 & 0 & 3+3D \end{array}]$.

Encoder
$$\longrightarrow \tilde{G}(D) = \begin{bmatrix} 1 & 1+D & 0\\ 3 & 0 & 3+3D \end{bmatrix}$$

* g_0, g_1 are not linearly independent!

We only have a minimum number of generators but not necessarily linearly independent.

In order to solve this problem we will restrict to linear combinations with coefficients in $\mathcal{A}_p[D]$ where

$$\mathcal{A}_p = \{0, 1, 2, \dots, p-1\} \subset \mathbb{Z}_{p^r}.$$

Obviously any element $a \in \mathbb{Z}_{p^r}$ can be written uniquely as (the *p*-adic expansion)

$$a = \alpha_0 + \alpha_1 p + \dots + \alpha_{r-1} p^{r-1}, \ \alpha_i \in \mathcal{A}_p.$$

Example

Back to example encoder

$$\tilde{G}(D) = \begin{bmatrix} 1 & 1+D & 0\\ 3 & 0 & 3+3D \end{bmatrix}$$

new type of encoder

$$G(D) = \begin{bmatrix} g_0 \\ 3g_0 \\ 9g_0 \\ g_1 \\ 3g_1 \end{bmatrix} = \begin{bmatrix} 1 & 1+D & 0 \\ 3 & 3+D & 0 \\ 9 & 9+9D & 0 \\ 3 & 0 & 3+3D \\ 9 & 0 & 9+9D \end{bmatrix}$$

with $u(D) \in \mathcal{A}_p[D]^5$.

- ∢ ∃ ▶

Example

Back to example encoder

$$\tilde{G}(D) = \begin{bmatrix} 1 & 1+D & 0\\ 3 & 0 & 3+3D \end{bmatrix}$$

new type of encoder

$$G(D) = \begin{bmatrix} g_0 \\ 3g_0 \\ 9g_0 \\ g_1 \\ 3g_1 \end{bmatrix} = \begin{bmatrix} 1 & 1+D & 0 \\ 3 & 3+D & 0 \\ 9 & 9+9D & 0 \\ 3 & 0 & 3+3D \\ 9 & 0 & 9+9D \end{bmatrix}$$

with $u(D) \in \mathcal{A}_p[D]^5$. Only the message $u(D) = [1 \ 0 \ 0 \ 0] \in \mathcal{A}_p[D]^5$ produces the codeword $[1 \ 1 + D \ 0]$.

Let
$$\{v_1(D), \dots, v_k(D)\} \subset \mathbb{Z}_{p'}^n[D].$$

$$\sum_{j=1}^k a_j(D)v_j(D), a_j(D) \in \mathcal{A}_p[D],$$

is said to be a **p-linear combination** of $v_1(D), \ldots, v_k(D)$.

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

The set of all *p*-linear combination of $v_1(D), \ldots, v_k(D)$ is called the **p-span** of $\{v_1(D), \ldots, v_k(D)\}$: *p*-span $(v_1(D), \ldots, v_k(D))$.

Obviously, *p*-span $(v_1(D), \ldots, v_k(D))$ is not always a $\mathbb{Z}_{p^r}[D]$ -module!

The set of all *p*-linear combination of $v_1(D), \ldots, v_k(D)$ is called the **p-span** of $\{v_1(D), \ldots, v_k(D)\}$: *p*-span $(v_1(D), \ldots, v_k(D))$.

Obviously, *p*-span $(v_1(D), \ldots, v_k(D))$ is not always a $\mathbb{Z}_{p^r}[D]$ -module!

Example: In $\mathbb{Z}^3_{3^3}[D]$

```
[3 \ 3+3D \ 0] \notin p-span([1 \ 1+D \ 0])
```

Thus not a submodule of $\mathbb{Z}^3_{3^3}[D]$.

An ordered sequence of vectors $(v_1(D), \ldots, v_k(D))$ in $\mathbb{Z}_{p^r}^n[D]$ is said to be a **p-generator sequence** if:

- $p v_i(D)$ is a *p*-linear combination of $v_{i+1}(D), \ldots, v_k(D)$, $i = 1, \ldots, k - 1$;
- **2** $p v_k(D) = 0.$

An ordered sequence of vectors $(v_1(D), \ldots, v_k(D))$ in $\mathbb{Z}_{p^r}^n[D]$ is said to be a **p-generator sequence** if:

•
$$p v_i(D)$$
 is a *p*-linear combination of $v_{i+1}(D), \ldots, v_k(D)$,
 $i = 1, \ldots, k - 1$;

2
$$p v_k(D) = 0.$$

Example: in $\mathbb{Z}^3_{3^3}[D]$

```
([1 \ 1 + D \ 0], [3 \ 3 + 3D \ 0], [9 \ 9 + 9D \ 0])
```

is a *p*-generator sequence

If $V = (v_1(D), \ldots, v_k(D))$ is a *p*-generator sequence then

p-span V = span V.

 $\rightarrow p$ -span V is a submodule of $\mathbb{Z}_{p^r}^n[D]$, and we say that V is a p-generator sequence of M =span V.

If $V = (v_1(D), \ldots, v_k(D))$ is a *p*-generator sequence then

p-span V = span V.

 $\rightarrow p$ -span V is a submodule of $\mathbb{Z}_{p^r}^n[D]$, and we say that V is a p-generator sequence of M =span V.

If $M = span(v_1(D), ..., v_k(D))$ is a submodule of $\mathbb{Z}_{p^r}^n[D]$ then $(v_1(D), pv_1(D), ..., p^{r-1}v_1(D), v_2(D), pv_2(D), ..., ..., p^{r-1}v_2(D), ..., v_l(D), pv_k(D), ..., p^{r-1}v_k(D)).$

is a p-generator sequence of M.

Example

$M = \mathsf{span}\{[1 + D \ 2 + 2D], [9 \ 0], [0 \ 9]\} \subset \mathbb{Z}^3_{3^3}[D]$

Diego Napp (CIDMA)

Example

 $M = \text{span}\{[1 + D \ 2 + 2D], [9 \ 0], [0 \ 9]\} \subset \mathbb{Z}^3_{3^3}[D]$

 $([1 + D \ 2 + 2D], [3 + 3D \ 6 + 6D], [9 \ 0], [0 \ 9])$

is a p-generator sequence of M:

$$3[1 + D \ 2 + 2D] = [3 + 3D \ 6 + 6D]$$
$$3[3 + 3D \ 6 + 6D] = (1 + D)[9 \ 0] + (2 + 2D)[0 \ 9]$$
$$3[9 \ 0] = 3[0 \ 9] = [0 \ 0]$$

The vectors $v_1(D), \ldots, v_k(D)$ are said to be **p-linearly independent** if the only *p*-linear combination of $v_1(D), \ldots, v_k(D)$ that is equal to 0 is the trivial one.

The vectors $v_1(D), \ldots, v_k(D)$ are said to be **p-linearly independent** if the only *p*-linear combination of $v_1(D), \ldots, v_k(D)$ that is equal to 0 is the trivial one.

An ordered sequence of vectors $V = (v_1(D), \ldots, v_k(D))$ which is a *p*-linearly independent *p*-generator sequence is said to be a **p**-basis and we say that V is a *p*-basis of M = p-span V.

Lemma

Two *p*-bases of a submodule of $\mathbb{Z}_{p'}^{n}[D]$ have the same number of elements.

The number of elements of a *p*-basis of a submodule M of $\mathbb{Z}_{p^r}^n[D]$ is called **p-dimension** of M, denoted as p-dim(M).

Example: M=span($[1 \ 1+D \ 0], [3 \ 0 \ 3+3D]$) $\subset \mathbb{Z}^3_{3^3}[D]$

 $([1 \ 1 + D \ 0], [3 \ 3 + 3D \ 0], [9 \ 9 + 9D \ 0], [3 \ 0 \ 3 + 3D], [9 \ 0 \ 9 + 9D])$

is a *p*-basis of *M* and consequently p-dim(M) = 5.

Let v(D) be a nonzero vector in $\mathbb{Z}_{p^r}^n[D]$:

$$v(D)=v_0+v_1D+\cdots+v_{\nu}D^{\nu},$$

with
$$v_i \in \mathbb{Z}_{p^r}^n$$
, $i = 0, \ldots, \nu$, and $v_{\nu} \neq 0$.

- v(D) has **degree** ν , deg $v(D) = \nu$;
- v_{ν} is called the **leading coefficient vector** of v(D), denoted by v^{lc} .

Let *M* be a submodule of $\mathbb{Z}_{p^r}^n[D]$ written as the *p*-span of a *p*-generator sequence $V = (v_1(D), \ldots, v_k(D))$.

V is called a **reduced p-basis** for *M* if the leading coefficient vectors $v_1^{lc}, \ldots, v_k^{lc}$ are *p*-linearly independent.

Example

 $\mathsf{M}{=}\mathsf{span}([1 \ 1+D \ 0],[3 \ 0 \ 3+3D]) \subset \mathbb{Z}^3_{3^3}[D]$

 $([1 \ 1 + D \ 0], [3 \ 3 + 3D \ 0], [9 \ 9 + 9D \ 0], [3 \ 0 \ 3 + 3D], [9 \ 0 \ 9 + 9D])$

is a reduced p-basis of M?

Let *M* be a submodule of $\mathbb{Z}_{p'}^{n}[D]$ written as the *p*-span of a *p*-generator sequence $V = (v_1(D), \ldots, v_k(D))$.

V is called a **reduced p-basis** for *M* if the leading coefficient vectors $v_1^{lc}, \ldots, v_k^{lc}$ are *p*-linearly independent.

Example

$$\mathsf{M}{=}\mathsf{span}([1 \ 1+D \ 0],[3 \ 0 \ 3+3D]) \subset \mathbb{Z}^3_{3^3}[D]$$

 $([1 \ 1 + D \ 0], [3 \ 3 + 3D \ 0], [9 \ 9 + 9D \ 0], [3 \ 0 \ 3 + 3D], [9 \ 0 \ 9 + 9D])$

is a reduced *p*-basis of *M*? Yes, since the leading coefficient vectors

$$([0 \ 1 \ 0], [0 \ 3 \ 0], [0 \ 9 \ 0], [0 \ 0 \ 3], [0 \ 0 \ 9])$$

are *p*-linearly independent.

Every submodule of $\mathbb{Z}_{p^r}^n[D]$ has a reduced *p*-basis.

A reduced *p*-basis for a submodule *M* of $\mathbb{Z}_{p^r}^n[D]$ gives rise to several invariants of *M*.

- Let $V = (v_1(D), \ldots, v_k(D))$ be a reduced *p*-basis of *M*.
 - The degrees of $v_1(D), \ldots, v_k(D)$ are called the **p-indices** of *M*;
 - The **p-degree** of *M* is defined as the sum of the *p*-indices of *M*.

V.V. Vazirani, H. Saran and B.J. Rajan (1996)

An efficient algorithm for constructing minimal trellises for codes over finite abelian groups.

IEEE Trans. Information Theory, Vol. 42, pp. 1832-1854, 1996.

M. Kuijper, R. Pinto and J.W.Polderman (2007) The predictable degree property and row reducedness for systems over a finite ring *Linear Alg. Appl., Vol. 425, pp. 776-796, 2007.* A convolutional code C of length n is a $\mathbb{Z}_{p^r}[D]$ -submodule of $\mathbb{Z}_{p^r}^n[D]$. If C has p-dimension k and p-degree δ , we say that C is an (n, k, δ) -convolutional code.

A convolutional code C of length n is a $\mathbb{Z}_{p^r}[D]$ -submodule of $\mathbb{Z}_{p^r}^n[D]$. If C has p-dimension k and p-degree δ , we say that C is an (n, k, δ) -convolutional code.

A **p-encoder** $G(D) \in \mathbb{Z}_{p^r}[D]^{k \times n}$ of C is a polynomial matrix whose rows are a *p*-basis of C and therefore

$$\mathcal{C} = \mathit{Im}_{\mathcal{A}_{\mathcal{P}}[D]} \mathit{G}(D) = \left\{ \mathit{u}(D) \mathit{G}(D) \in \mathbb{Z}_{\mathcal{P}^{r}}^{n}[D] : \mathit{u}(D) \in \mathcal{A}_{\mathcal{P}}[D]^{k}
ight\}.$$

A **reduced p-encoder** is a a polynomial matrix whose rows are a reduced *p*-basis of C. Note that all convolutional codes have a reduced *p*-encoder since every

submodule of $\mathbb{Z}_{p^r}^n[D]$ has a reduced *p*-basis.

M. Kuijper, R. Pinto (2009) On minimality of convolutional ring encoders IEEE Trans. Information Theory, Vol. 55, No. 11, pp. 4890-4897, November 2009. If a convolutional code admits a constant generator matrix, it is called a **block code**.

We introduce the notion of \underline{p} -standard form from the definition of standard form.

Definition [G. H. Norton and A. Salagean, (2001)]

Let C be a block code over $\mathbb{Z}_{p^r}^n$. A generator matrix G for C is said to be in **standard form** if

$$\widetilde{G} = \begin{bmatrix} l_{k_0} & A_{1,0}^0 & A_{2,0}^0 & A_{3,0}^0 & \cdots & A_{r-1,0}^0 & A_{r,0}^0 \\ 0 & pl_{k_1} & pA_{2,1}^1 & pA_{3,1}^1 & \cdots & pA_{r-1,1}^1 & pA_{r,1}^r \\ 0 & 0 & p^2l_{k_2} & p^2A_{3,2}^2 & \cdots & p^2A_{r-1,2}^2 & p^2A_{r,2}^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & p^{r-1}l_{k_{r-1}} & p^{r-1}A_{r,r-1}^{r-1} \end{bmatrix},$$

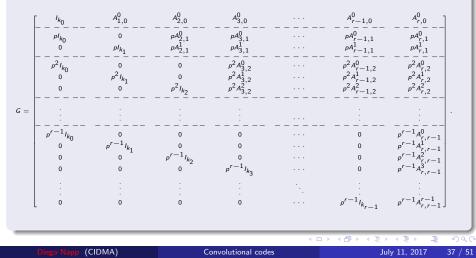
where the columns are grouped into blocks of sizes $k_0, \ldots, k_{r-1}, n - \sum_{i=0}^{r-1} k_i$.

[6] Graham H. Norton and Ana Salagean (2001) On the Hamming distance of linear codes over a finite chain ring IEEE Trans. Information Theory, Vol. 46–3, pp. 1060-1067, 2001.

Diego Napp (CIDMA)

Definition

Let C be a block code over $\mathbb{Z}_{p^r}^n[D]$. A *p*-encoder G of C is said to be in **p-standard** form if



Definition

G(D) is noncatastrophic if

v(D) = u(D)G(D) with finite support $\rightarrow u(D)$ finite support

Definition

G(D) is noncatastrophic if

v(D) = u(D)G(D) with finite support $\rightarrow u(D)$ finite support

Open problem

any convolutional code over $\mathbb{Z}_{p'}^{n}[D]$ admits a noncatastrophic *p*-encoder.

Conjecture

It was conjecture to be true.

The free distance of a convolutional code C is defined as

$$d(\mathcal{C}) = min\{wt(v(D)): v(D) \in \mathcal{C}, v(D) \neq 0\},\$$

where wt(v(D)) is the weight of a polynomial vector

$$v(D) = \sum_{i\geq 0} v_i D^i \in \mathbb{Z}_{p^r}^n[D]$$

given by

$$wt(v(D)) = \sum_{i\geq 0} wt(v_i),$$

with $wt(v_i)$ the number of non zero elements of v_i .

Main problem

How do we construct convolutional codes of a given length *n*, *p*-dimension k and *p*-degree δ with the largest possible distance?

Theorem

The free distance of an (n, k, δ) -convolutional code C satisfies

$$d(\mathcal{C}) \leq n\left(\left\lfloor \frac{\delta}{k} \right\rfloor + 1\right) - \left\lceil \frac{k}{r} \left(\left\lfloor \frac{\delta}{k} \right\rfloor + 1 \right) - \frac{\delta}{r} \right\rceil + 1.$$

- M. El Oued and P. Solé (2013) MDS Convolutional Codes Over a Finite Ring IEEE trans. info. theory, Vol. 59, n. 11, november 2013.
- D. Napp, R. Pinto and M. Toste On MDS Convolutional Codes Over \mathbb{Z}_{p^r} accepted in Designs, Codes and Cryptography.

An (n, k, δ) -convolutional code C over \mathbb{Z}_{p^r} is said to be **Maximum Distance Separable** (MDS) if

$$d(\mathcal{C}) = n\left(\left\lfloor \frac{\delta}{k} \right\rfloor + 1\right) - \left\lceil \frac{k}{r} \left(\left\lfloor \frac{\delta}{k} \right\rfloor + 1 \right) - \frac{\delta}{r} \right\rceil + 1.$$

Given $n, k, \delta \in \mathbb{N}$, let us construct an MDS (n, k, δ) -convolutional code over \mathbb{Z}_{p^r} .

For simplicity, assume that $\mathbf{k} \mid \delta$. Determine $(k_0, k_1, \dots, k_{r-1})$ such that $k_0 + k_1 + \dots + k_{r-1} = \min_{\substack{k=rk'_0+(r-1)k'_1+\dots+k'_{r-1}}} (k'_0 + k'_1 + \dots + k'_{r-1})$ $= \left\lceil \frac{k}{r} \right\rceil.$ Consider an MDS $(\tilde{n}, \tilde{k}, \tilde{\delta})$ -convolutional code \tilde{C} over the field \mathbb{Z}_p [1] with

 $\widetilde{n} = n$,

$$\widetilde{k} = k_0 + k_1 + \dots + k_{r-1},$$

 $\widetilde{\delta} = \frac{\delta}{k} \widetilde{k}.$

[1] Smarandache, R. and Gluesing-Luerssen, H. and Rosenthal, J. (2001) Constructions for MDS-Convolutional Codes IEEE Trans. Automat. Control, vol. 47-5, pp.2045-2049, 2001. Let

$$\widetilde{G}(D) = \begin{bmatrix} \widetilde{G}_{k_0}(D) \\ - - - - \\ \widetilde{G}_{k_1}(D) \\ - - - - \\ \vdots \\ - - - \\ \widetilde{G}_{k_{r-1}}(D) \end{bmatrix} \in \mathbb{Z}_p[D]^{\widetilde{k} \times n}$$

be an encoder of \widetilde{C} in reduced form, where $\widetilde{G}_{k_i}(D)$ is a $k_i \times n$ matrix, $i = 0, 1, \ldots, r - 1$, .

The distance of $\widetilde{\mathcal{C}}$ equals (from [2])

$$d(\widetilde{\mathcal{C}}) = (n - \widetilde{k}) \left(\left\lfloor \frac{\widetilde{\delta}}{\widetilde{k}} \right\rfloor + 1 \right) + \widetilde{\delta} + 1.$$

From $\widetilde{k} = \left\lceil \frac{k}{r} \right\rceil$ and $\widetilde{\delta} = \frac{\delta}{k} \widetilde{k}$ we get that

$$d(\widetilde{C}) = n\left(\frac{\delta}{k}+1\right) - \left\lceil \frac{k}{r} \right\rceil + 1$$

= $n\left(\frac{\delta}{k}+1\right) - \left\lceil \frac{k}{r}\left(\frac{\delta}{k}+1\right) - \frac{\delta}{r} \right\rceil + 1$

We lift $\widetilde{G}(D)$ to construct a $k \times n$ matrix G(D):

G

$$F(D) = \begin{bmatrix} \tilde{G}_{k_0}(D) \\ p \tilde{G}_{k_0}(D) \\ \vdots \\ p^{r-1} \tilde{G}_{k_0}(D) \\ ---- \\ p \tilde{G}_{k_1}(D) \\ p^2 \tilde{G}_{k_1}(D) \\ \vdots \\ p^{r-1} \tilde{G}_{k_1}(D) \\ \vdots \\ ---- \\ \vdots \\ p^{r-1} \tilde{G}_{k_{r-1}}(D) \end{bmatrix}$$

Diego Napp (CIDMA)

July 11, 2017 47 / 51

2

Theorem

The matrix G(D) defined above is a reduced *p*-encoder of an (n, k, δ) -convolutional code C with $k \mid \delta$. Moreover, C is MDS, *i.e.*,

$$d(\mathcal{C}) = n\left(\frac{\delta}{k}+1\right) - \left\lceil \frac{k}{r}\left(\frac{\delta}{k}+1\right) - \frac{\delta}{r} \right\rceil + 1$$

Remarks

- These constructions of MDS convolutional codes over \mathbb{Z}_{p^r} are "based" on MDS convolutional codes over \mathbb{Z}_p .
- Lifting techniques: Solé et. al used the Hensel lifting of a cyclic code. We used direct lifting.
- The known constructions of a (n, k, δ)- convolutional code require very large fields.

Open problems

- What happens if we consider other metrics? Homogeneous weights?
- More general class of finite rings?
- Characterization and existence of the dual codes of a convolutional code over \mathbb{Z}_{p^r}

Thank you for your attention!

Thanks to the organizers!

Diego Napp (CIDMA)

Convolutional codes

July 11, 2017 51 / 51