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Overview

1 Error-correcting codes: From block codes to convolutional codes
Basics: Polynomial encoders

2 Distance properties of convolutional codes
Maximum Distance Profile (MDP) and Maximum Distance Separable
(MDS)
Construction of MDP and MDS: Superregular matrices

3 Decoding of Convolutional codes
Viterbi algorithm
Decoding of convolutional codes over the erasure channel

4 Network coding with convolutional codes

5 Avenues for further research
Motivated by applications: Video streaming and storage systems
More theoretical: Multidimensional convolutional codes and
convolutional codes over Zpr
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Day 4: Convolutional codes for Network coding
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Network Coding

We live in a network world.
How is the best way to disseminate information over a network?

Linear random network coding

It has been proven that network coding is enough to achieve the upper
bound in multicast problems with one or more sources. It optimizes the
throughput.
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Linear Network Coding

During one shot the transmitter injects a number of packets into the
network, each of which may be regarded as a row vector over a finite
field Fqm .

These packets propagate through the network. Each node creates a
random -linear combination of the packets it has available and
transmits this random combination.

Finally, the receiver collects such randomly generated packets and
tries to infer the set of packets injected into the network
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Subspaces remain the same under any linear operations on the basis

Subspace codes recently received a lot of attention since Koetter and
Kschischang showed (in a award winning paper in 2008) that they are
exactly what is needed for error-correction in random network coding.

The generalized projective space Pq(n) of order n over Fq is the set
of all subspaces of Fn

q . The set of all subspaces of dimension k is the
Grassmannian Gq(k , n).

A metric on Pq(n) is given by

dS(U,V ) = dim(U) + dim(V )− 2 dim(U ∩ V )

On Gq(k , n) it turns to

dS(U,V ) = 2(k − dim(U ∩ V ))

A subspace code is simply a subset of Pq(n), a constant dimension
code (CDC) is a subset of Gq(k, n) . If the distance between any two
elements of a CDC is greater than or equal to 2 we say that the code
has minimum distance 2
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Rank metric codes are used in Network Coding

Silva, Kschischang, and Koetter show that the subspace distance
between U = rowspan[I A] and V = rowspan[I B] is

dS(U,V ) = 2 rank (A− B)

Rank metric code: a block code over Fqm , where each codeword v is
associated with a matrix φ(v); row i of φ(v) is the expansion of vi
w.r.t. a fixed basis for Fqm over Fq.

Since Fm×n
q
∼= Fn

qm , any rank-metric code over the extension field can
also be considered as a matrix code over the base field.

Rank metric codes are matrix codes C ⊂ Fm×n
q , armed with the rank

distance

drank(X ,Y ) = rank(X − Y ), where X ,Y ∈ Fn×m
q .
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Rank metric codes are used in Network Coding

For linear (n, k) rank metric codes over Fqm with m ≥ n the following
analog of the Singleton bound holds,

drank(C) ≤ n − k + 1.

The code that achieves this bound is called Maximum Rank Distance
(MRD). Gabidulin codes are a well-known class of MRD codes.

We will assume n ≤ m and study MRD codes C ⊂ Fm×n
q that are

Fqm -linear. These codes have a generator matrix G ∈ Fk×n
qm and a

respective parity check matrix H ∈ F(n−k)×n
qm .
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Example
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THE IDEA: Multi-shot

Coding can also be performed over multiple uses of the network,
whose internal structure may change at each shot

Creating dependencies among the transmitted codewords of different
shots can improve the error-correction capabilities (Nobrega, R.,
Uchoa-Filho (2010), Wachter-Zeh, A., Stinner, M., Sidorenko (2015),
Mahmood, R., Badr, A., Khisti(2015)).

Ideal coding techniques for streaming communications must operate
sequential encoding and decoding constrains, and as such they
must inherently have a convolutional structure.

We propose the use of convolutional codes to add complex
dependencies to data streams in a quite simple way.

Although the use of convolutional codes is widespread, its application
to video streaming (or using the rank metric) is yet unexplored.
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Network streaming problem

Assume the network is used once at every time instance and j the
decoding deadline.

A = diag(A0,A1,. . . ,At+j) is the channel matrix, Ai ∈ Fn×n
q

(y0, y1, . . . , yt+j) = (v0, v1, . . . , vt+j)

 A0

. . .

At+j


rank(Ai ) = n during a perfect communication. But erasures may
occur and rank drops.

We want to obtain the vt ’s
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Distance notions

Definition

The sum rank distance of C is defined as

dSR(C) = min
06=X (D)∈C

rank (X (D)) := min
06=X (D)∈C

∑
i≥0

rank (Xi )

where

rank (Xi ) :=
K−1∑
j=0

rank (X j
i ).

And the column sum rank distance of C is defined as

d j
SR(C) = min

X (D)∈C and X 0
0 6=0

j∑
i=0

rank (Xi ),
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Convolutional codes maximum Column Rank distance

Theorem [Mahmood, R., Badr, A., Khisti(2015)]

Let C be a convolutional code with dc
j (C) = d and

A = diag(A0,A1,. . . ,Aj) the channel matrix. If
rank(A) = n(j + 1)− d + 1, then every message vt is recoverable by time
j . Conversely, if rankA = n(j + 1)− d then there exists at least one
codeword for which x0 cannot be recovered.

Problem

How do we construct G (D) to achieve the maximum column sum
distance??
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Thanks for your attention
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