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Overview

Error-correcting codes: From block codes to convolutional codes
@ Basics: Polynomial encoders

Distance properties of convolutional codes

@ Maximum Distance Profile (MDP) and Maximum Distance Separable
(MDS)

@ Construction of MDP and MDS: Superregular matrices

Decoding of Convolutional codes
o Viterbi algorithm
@ Decoding of convolutional codes over the erasure channel

Network coding with convolutional codes

Avenues for further research

@ Motivated by applications: Video streaming and storage systems

@ More theoretical: Multidimensional convolutional codes and
convolutional codes over Zpr
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Day 1:
Basics,

From block codes to convolutional codes

Encoders

@ want to store bits on magnetic storage device
@ or send a message (sequence of zeros/ones)
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Day 1:
Basics,

From block codes to convolutional codes

Encoders

@ want to store bits on magnetic storage device
@ or send a message (sequence of zeros/ones)

@ Bits get corrupted, 0 — 1 or 1 — 0, but rarely.
What happens when we store/send information and errors occur?

can we detect them? correct?
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The International Standard Book Number (ISBN)

It can be proved that all possible valid ISBN-10's have at least two digits
different from each other.
ISBN-10:

X1 — XpX3X4 — X5XpX7XgX9 — X10

satisfy
10

> ixi=0 mod 11
i=1
For example, for an ISBN-10 of 0-306-40615-2:

s=(0x10)+(3x9)+(0x8)+ (6 x7)+
+(4x6)+(0x5)+(6x4)+(1x3)+(5x2)+(2x1)
=0+27+0+4+42+24+0+4+24+3+10+2
=132=12x 11
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@ Break the message into 3 bits blocks m = n € I3
@ Encode each block as follows:

1 00110
u— uG G = 01 01 01
0 01 011
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@ Break the message into 3 bits blocks m = n € I3
@ Encode each block as follows:

u— uG G =

O O =
o= o
— o o
O = =
=
=)

For example

(1, 1, 0) 101 1 |=(,1001,1)
001 11
100110

(1, 0, 1) 101 1 |=(,0 1,10, 1)

etc...
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@ Only 23 codewords in [F®
¢ = {(1,0,0,1,1,0),(0,1,0,1,0,1),(0,0,1,0,1,1),(1,1,0,0,1,1),

(1,0,1,1,0,1),(0,1,1,1,1,0),(1,1,1,0,0,0), (0,0,0,0,0,0)}
@ In F® we have 2° possible vectors
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@ Only 23 codewords in [F®
¢ = {(1,0,0,1,1,0),(0,1,0,1,0,1),(0,0,1,0,1,1),(1,1,0,0,1, 1),
(1,0,1,1,0,1),(0,1,1,1,1,0),(1,1,1,0,0,0), (0,0,0,0,0,0)}

@ In F® we have 2° possible vectors

@ Any two codewords differ at least in 3 coordinates. | can detect and
correct 1 error!!!
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Coding theory develops methods to protect information against errors.
Cryptography develops methods how to protect information against
an enemy (or an unauthorized user).

Coding theory - theory of error correcting codes - is one of the most
interesting and applied part of mathematics and informatics.

All real systems that work with digitally represented data, as CD
players, TV, fax machines, internet, satelites, mobiles, require to use
error correcting codes because all real channels are, to some extent,
noisy.

Coding theory methods are often elegant applications of very basic
concepts and methods of (abstract) algebra.
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Let's start: Block codes

®:F< — F”
u — Pu)=v=uG

u information word, v codeword and G the encoder.
CzImFG:{uG: ueIFk},

i.e., a k-dimensional vector subspace of " over F.

If we have a sequence of information words

u(0), u(1),--- — v(0), v(1),...

u(i) — u(i)G = v(i).

v
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Let me rewrite sequences as polynomials
{u(0),u(1),...} = u(0) + u(1)D + u(2)D? + ...

and
{v(0), v(1),...} = v(0) + v(1)D + v(2)D* + ...

> u(D) — ) u(D)G =) v(D)

i>0 i>0 i>0

Then

Laurent series of interest

| \

o Power series: ;- s(D). It is an integral domain, F[[D]].
s(D). It is a field, F((D)).
Polynomials: F[D]. Power series with finite support.

Rational functions: P(D)/Q(D) (Q(D) # 0) has unique Laurent
expansion as a Laurent series.

Realizable Laurent series: P(D)/Q(D) (Q(0) # 0).

Laurent series: ) -,

v
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Elias' idea 1955

Block codes
> u(D) — > u(D)G =) v(D)
i>0 i>0 i>0
Why not G polynomial?? J
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Elias' idea 1955

Block codes
> u(D) — > u(D)G =) v(D)
i>0 i>0 i>0
Why not G polynomial?? J

Convolutional codes

> u(D) — > u(D)G(D) => " v(D)

i>0 i>0 i>0
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Block codes vs convolutional codes

G
oot D+ D+ ug —— -+ G D?*+ 111G D + G
~—~ ~—~ ~—~

V2 Vi Vo
Convolutional code

G(D)
otipD? + i D + g — ...(u2Go + uy Gy + upGa) D? 4 (1 Go + upGy) D +upGo
N———— S——

Vo %% Vo

(CIDMA) Convolutional codes July 3, 2017 12 / 34



Block codes vs convolutional codes

G
ot WD+ D4 upg — -+ G D?> + u1yG D + uG
~—~ ~—~ ~—~
v Vi Vo
Convolutional code

G(D)
o thD? + 11D + ug — .. (1Gy + 11 Gy + U Gy) D? +(u1Go + g Gy) D + up Gy
[ —— N~

Vo %1 Vo
v

An (n, k) convolutional code is a k-dimensional subspace of F(D)".

¢ = ImF(D)G(D):{u(D)G(D): u(D)eIE"‘(D)}

v

RENELS

If consider only codewords with finite support, a convolutional code of rate
k/n is a F[D]-submodule of F"[D] of rank k.

v
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Example

Let G(D)=( 1+ D+ D? 1+ D? ). This encoder has memory 2.
Assume that we want to encode the string

10011011...

which in polynomial form gives u(D) =1+ D3+ D*+ D%+ D" + .. ..
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Example

Let G(D)=( 1+ D+ D? 1+ D? ). This encoder has memory 2.
Assume that we want to encode the string

10011011...

which in polynomial form gives u(D) =1+ D3+ D*+ D%+ D" + .. ..
Doing the product u(D)G(D), we obtain

(w(D),vi(D)) = (1+D+ D>+ D3+ 0D*+0D%+0D° + ...,
140D+ D>+ D3+ D*+ D% +0D°+ D" +...)

Interleaving the coefficients, we obtain that the encoding string is

111011110101 0001...
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Viewed as computer scientists

With Shift Registers:

G(D)=(1+D+D* 1+D?)

has the following implementation

/469
.0,0,0,1,1—=[ 0 |—=[ 0 |—=[0]

N
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Example

The encoder
G(D):( 1+D+D? 1+ D? )

has the following implementation

/ 2] \ 1
..0,0,0,1 [0 ]—[0]
@
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Example

The encoder
G(D):( 1+D+D? 1+ D? )

has the following implementation

- N

..0,0,0 | 1]

NI

1,1

0,1
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Example

The encoder
G(D):( 1+D+D? 1+ D? )

has the following implementation

/ ® 1,1,1
0,0—[0 ]—[ 1 |—[1]
@ 0,0,1
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Example

The encoder
G(D):( 1+D+D? 1+ D? )

has the following implementation

/ 1,1,1,1
.0 | 0| |1
& 1,0,0,1
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Example

The encoder
G(D):( 1+D+D? 1+ D? )

has the following implementation

&) 0,1,1,1,1
@ 0,1,0,0,1
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Example

u (i)

X, (i)

A physical realization for the encoder G(D) = ( 14+ D+ D?> 1+ D? ).

This encoder has degree 2 and memory 2.
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A convolutional encoder is also a linear device which maps
u(0), u(L), - — v(0), (1), ..

In this sense it is the same as block encoders. The difference is that the
convolutional encoder has an internal “storage vector” or “memory".
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A convolutional encoder is also a linear device which maps
u(0), u(L), - — v(0), (1), ..

In this sense it is the same as block encoders. The difference is that the
convolutional encoder has an internal “storage vector” or “memory".

Definition

Remember: Convolutional code are k-dimensional subspace of F(D)".

| A\

¢ = ImF(D)G(D):{u(D)G(D): u(D)eFk(D)}

| N\

Polynomial Generator Matrices

Two encoders G(D), G'(D) are equivalent if they generate the same code,
i.e., if they are F(D)-row equivalent. In other words, there exist a
nonsingular matrix U(D) such that

G(D) = U(D)G'(D)

v
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Example

- P V(%)

u(s) -+ X (i) T X, (i)

A physical realization for the encoder G(D) = ( 14+ D+ D? 1+ D? ).
This encoder has degree 2 and memory 2.
Clearly any matrix which is F(D)-equivalent to G(D) is also an encoder.

¢(D)=(1 2% )
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Example

L Vl(ﬁ)

-

A

X,(i) |

A physical realization for an equivalent encoder G’(D). This encoder has

degree 2 and infinite memory.

- V(1)
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u(5) 1| ¥, (i) X (i)

A physical realization for the (catastrophic) equivalent encoder

G"(D)=(14+D)G(D)=( 14+ D3 1+ D+ D?+ D* ). This encoder

has degree 3 and memory 3.
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u (1)

4

A physical realization for the (catastrophic) equivalent encoder

G"(D)=(14+D)G(D)=( 14+ D3 1+ D+ D?+ D* ). This encoder
has degree 3 and memory 3.

Then...

| N\

@ .which encoders are good?

@ which are minimal?

@ are there canonical forms?

v
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Properties of Encoders

Definition

If the entries of G(D) are polynomials, G(D) is called polynomial encoder
(PE). PE are interesting because they have finite memory (no feedback
loop in the implementation).
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Properties of Encoders

If the entries of G(D) are polynomials, G(D) is called polynomial encoder

(PE). PE are interesting because they have finite memory (no feedback
loop in the implementation).

Let G(D) be a PE.
Q Internal degree of G(D) = maximum degree of G(D)'s k x k minors
@ External degree of G(D)= sum of the row degree of G(D)

© G(D) is basic if among all encoders has the minimum possible
internal degree

© G(D) is reduced if among all encoders has the minimum possible
external degree
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Properties of Encoders

If the entries of G(D) are polynomials, G(D) is called polynomial encoder

(PE). PE are interesting because they have finite memory (no feedback
loop in the implementation).

Let G(D) be a PE.
Q Internal degree of G(D) = maximum degree of G(D)'s k x k minors
@ External degree of G(D)= sum of the row degree of G(D)

© G(D) is basic if among all encoders has the minimum possible
internal degree

© G(D) is reduced if among all encoders has the minimum possible
external degree

V.

Note that Internal degreeG(D) < External degreeG(D) |
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Let G(D) € Fk*". The following are equivalent:
G(D) is basic
The ged of the k x k minors of G(D) is 1

G(«) has rank k for any « in the algebraic closure of F.

G(D) has a polynomial right inverse, i.e., 3T (D) such that
G(D)T(D) = I.

There exists a parity-check matrix H(D) € F[D]"~k*" i.e., a matrix
such that C = {v(D) € F(D)" | H(D)v(D) = 0}.

Example

Is G(D)=( D*+1 D3+1) basic?
Not. (D + 1) # 1 is the ged of its 1 x 1 minors, equivalently G(1) =0 .
Multiply by (D + 1)~! to obtain the equivalent basic encoder

| N\

G(D)=(D+1 D*+D+1)

v
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The following are equivalent:
e G(D) = (gj(D)) is reduced
@ The matrix of highest coefficients G has rank k

Ghe = coelgigient gij(D), v the i-th row degree of G(D)'s

@ G(D) has the predictable degree property : For any
LI(D) = (ul(D), U2(D), cey uk(D)

deg(u(D)G(D)) = max (deg(ui(D)) +deg((g(D). . &n(D)))

@ Internal degreeG(D) = External degreeG(D)
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Example

0 1+D D 1
Yes. G(0), G(1) have full rank. Is it reduced?

Is G(D) = ( L DR b ) basic?

Ghe = ( 8 1 i 8 ) is not full rank — it is not reduced.

The equivalent encoder G(D)
. (11\(1 D 1+D 0\ (1 1 11
G(D)_<0 1)(0 1+D D 1)‘(0 1+DD1>

is reduced!
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Example

0 1+D D 1
Yes. G(0), G(1) have full rank. Is it reduced?

Is G(D):(1 b 1+D0> basic?

Ghe = ( 8 1 i 8 ) is not full rank — it is not reduced.

The equivalent encoder G(D)

— v _(11\(1 D 14D O\ _ (1 1 11
G(D)_<0 1)(0 1+D D 1)_(0 1+DD1>

is reduced!

Theorem

| A\

If G(D) is a basic reduced generator matrix for C (minimal), then

Internal degreeG(D) = External degreeG(D) =: deg C

v
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Catastrophic Encoders

An information word u(D) is encoded into the codeword

and v(D) is then transmitted over a noisy channel and received as y(D).
The decoder:

@ ‘“hard” job": find a codeword, say ¥(D), which is “close” to y(D)

@ ‘easy” job": calculate the information word @i(D) corresponding to
V(D) but here catastrophes can occur!!

Catastrophe occurs when the codeword error has finite weight but the
corresponding information error has infinite weight.

Definition

G(D) is catastrophic if there is an infinite-weight vector u(D) such that
v(D) = u(D)G(D) has finite weight.

| A

v
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Theorem (Massey)

The following are equivalent:
e G(D) is noncatastrophic
@ The gcd of the k x k minors of G(D) is a power of D
e G(D) has a right finite weight inverse

Example

The encoder
1+D 0 1 D )

G(D):( 1 D 1+D 0

is noncatastrophic as an inverse is

0 1
0 0

HD)=1 0
D! 14Dt

v
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Historical Remarks

Convolutional codes were introduced by Elias (1955)

The theory was imperfectly understood until a series of papers of
Forney in the 70’s on the algebra of the k x n matrices over the field
of rational functions in the delay operator D.

Became widespread in practice with the Viterbi decoding. In fact,
they belong to the most widely implemented codes in (wireless)
communications. The field is typically F> and the rate and degree are
small so that the Viterbi decoding algorithm is efficient.

Recursive systematic convolutional codes were invented by Claude
Berrou around 1991: turbo codes.

Widely used in digital video, radio, mobile communications and
satellite communications. Also used in the Voyager program (NASA).

In the last decade a renewed interest has grown for convolutional
codes over large fields trying to fully exploit the potential of
convolutional codes.
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Summary of the basics

@ Convolutional codes are block codes with memory

@ They can be represented by polynomial matrices and state space
representations

@ We have studied several properties of polynomial matrices: Basic,
reduced and catastrophic
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Exercise 1

The following encoder

1+D 0 1 D
qD%‘( D 14+D+D? D? 1>
@ is basic?
@ is reduced?
e Find an equivalent basic and reduced (minimal) encoder.
@ Encode the information sequence

10 00 01 11

Build a shift register of the following encoder

(1+4D+D? 1+D3)

Encode the information sequence 0 0 0 1 0 1.

v
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