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1. Introduction

This is the text of a short course given at the meeting CIMPA School
on Algebraic Methods in Coding Theory, organized by CIMPA and USP -
State University of Sao Paulo. Our aim with this course is to present tools
and results from Gröbner basis theory which are suited to be used in some
areas of coding theory, and then to use them to study the so-called affine
cartesian codes.

The literature on the basics of Gröbner bases theory is numerous (we

can cite [1], [3], [16] and [9], to name a few) so we decided not to present

proofs of some of the more technical results in this theory. Thus, in section
2 we quickly introduce the basic facts of Gröbner bases theory, and we also
present the definition and the properties of the so-called footprint of an ideal

(also known as Gröbner escalier, see Definition 2.11). Section 3 starts with

the definition of affine varieties, linear codes and affine variety codes, as in-

troduced by Fitzgerald and Lax in [11]. We then introduce affine cartesian

codes, a Reed-Muller type of code studied by López, Renteŕıa-Márquez and

Villareal in [14] (see Definition 3.9). These codes also appeared, indepen-

dently, and in a generalized form, in a work by O. Geil and C. Thomsen (see

[13]). It’s in the determination of the parameters of these codes that we will

show how to combine results from Gröbner basis theory and commutative

algebra to obtain results in coding theory. In [14] the authors have already

determined the parameters of affine cartesian codes, but our methods differ
substantially from theirs. Here we make extensive use of the properties of
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the footprint which simplifies very much the calculation of those parame-
ters. In the last section, we present some results about the second lowest
Hamming weight of affine cartesian codes.

2. Prelminary results on Gröbner bases and the footprint of an
ideal

As mentioned above, our methods involve the use of results from Gröbner
basis theory, and in the present section we present a detailed account of these
results.

Let k be a field and denote by k[X] the ring of polynomials k[X1, . . . , Xn].

A product like aXα1
1 . · · · .Xαn

n , where a ∈ k∗ and α1, . . . , αn are nonnegative

integers is called a term, while Xα1
1 . · · · .Xαn

n is called a monomial. A mono-

mial Xα1
1 . · · · .Xαn

n will sometimes be denoted by Xα (or Xβ, Xγ , etc)

where α = (α1, . . . , αn) ∈ Nn0 and N0 is the set of nonnegative integers. We

writeM for the set of monomials of k[X]. Given a polynomial f ∈ k[X] we

say that a monomial M appears in f if the coefficient of M in f is nonzero.

Definition 2.1. A monomial order in M is a total order � defined on
M such that:
i) if Xα �Xβ then Xα+γ �Xβ+γ , for all α,β,γ ∈ Nn0 ;

ii) any nonempty subset A ⊂M has a smallest element.

Examples 2.2.
i) The lexicographic order (with Xn � · · · � X1) is defined by setting Xα �
Xβ if α = β or the first nonzero entry from the left to the right in β − α
is positive. Thus we have X1000

2 � X1 and X2
1X

2012
3 � X2

1X2.

ii) The graded lexicographic order (with Xn � · · · � X1) is defined by setting

Xα � Xβ if α = β or
∑n

i=1 αi <
∑n

i=1 βi or if
∑n

i=1 αi =
∑n

i=1 βi then

Xα �lex X
β where �lex is the order defined in (i).

ii) The graded reverse lexicographic order is defined by setting Xα �Xβ if

α = β or
∑n

i=1 αi <
∑n

i=1 βi or if
∑n

i=1 αi =
∑n

i=1 βi then the first nonzero

entry from the right to the left in β −α is negative.

Definition 2.3. Let f =
∑m

i=1 aiMm ∈ k[X] be a nonzero polynomial,

where ai ∈ k, ai 6= 0 and Mi ∈ M for all i = 1, . . . ,m, and let � be

a monomial order defined on M. Then the leading monomial of f (with

respect to �) is M` := max{Mi | i = 1, . . . ,m}, the leading coefficient

of f (with respect to �) is a` and the leading term of f (with respect to

�) is a`M`. We denote these elements by M` = lm(f), a` = lc(f) and

a`M` = lt(f).

Thus, for example, if f(X1, X2, X3) = 4X3
1X

4
2 +5X1X

8
3 +2 ∈ R[X1, X2, X3]

and we endow the set of monomials with the lexicographic order then we
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get lm(f) = X3
1X

4
2 and lt(f) = 4X3

1X
4
2 , while if we decide to use the graded

lexicographic order we have lm(f) = X1X
8
3 and lt(f) = 5X1X

8
3 .

An important procedure in Gröbner bases theory is the division of a
polynomial by a list of nonzero polynomials.

Definition 2.4. To divide f ∈ k[X] by {g1, . . . , gt} ⊂ k[X] \ {0}, with

respect to a monomial order �, means to find quotients q1, . . . , qt and a

remainder r in k[X] such that f = q1g1 + · · ·+ qtgt + r, and either r = 0 or

no monomial appearing in r is a multiple of lm(gi), for all i ∈ {1, . . . , t}.

In the literature on Gröbner bases cited at the introduction the reader
will find a description of the usual algorithm used to determine the quotients
and the remainder, as well as a proof that the algorithm in fact ends after
a finite number of steps. Here we just describe the algorithm and show how
it works in an example. The basic idea is the same that we are familiar
with when dividing two polynomials of one variable: we will use the leading
terms of g1, . . . , gt to “kill” the leading term of f and of subsequent poly-
nomials that appear in intermediate steps of the division. The novelty here
is that sometimes the leading term of an “intermediate polynomial” is not

a multiple of any of lm(g1), . . . , lm(gt) so we must move it to the remainder

to go on with the division. We think the idea will become clear after the

following example: we want to divide f = X2Y + XY 2 + Y 2 ∈ R[X,Y ] by

{g1 = XY − 1, g2 = Y 2 − 1} ⊂ R[X,Y ], and we endow the set of mono-

mials of R[X,Y ] with the lexicographic order (where Y � X). We start

by noting that lm(f) = X2Y so it is a multiple of lm(g1) = XY , and from

lm(f) = X.lm(g1) we start the division by writing f = X.g1+X+XY 2+Y 2.

Now we get that lm(X + XY 2 + Y 2) = X.Y 2 so again it is a multiple of

lm(g1) and since X.Y 2 = Y.lm(g1) we proceed with the division by writ-

ing f = X.g1 + Y.g1 + X + Y + Y 2 = (X + Y ).g1 + X + Y + Y 2. Ob-

serve now that lm(X + Y + Y 2) = X which is not a multiple of lm(g1)

or lm(g2) = Y 2, so we will consider X as part of the remainder. Thus

f = (X+Y ).g1+Y +Y 2+r1, where r1 = X, and we proceed with the division

by noting that lm(Y +Y 2) = Y 2 is not a multiple of lm(g1) but it is a multiple

of lm(g2), and from Y 2 = 1.lm(g2) we get f = (X+Y ).g1 +1.g2 +Y +1+r1.

Since the terms in Y + 1 are not a multiple either of lm(g1) or of lm(g2)

we consider them as a part of the remainder. The figure below shows the
calculation at its end.
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X2Y +XY 2 + Y 2 XY − 1, Y 2 − 1

X + Y, 1 Remainder

X + Y + 1

−X2Y +X

X +XY 2 + Y 2

−XY 2 + Y
X + Y + Y 2

−X
Y + Y 2

−Y 2 + 1

Y + 1
−Y − 1

0

This finishes the division and we have f = q1g1+q2g2+r with q1 = X+Y ,
q2 = 1 and r = X + Y + 1.

It is important to observe that from the division algorithm we get that
if the remainder r is not zero then the leading monomial of r is less than or
equal to the leading monomial of f .

Also, looking carefully at the algorithm we observe that we are taking

into account the order in which the divisors g1, . . . , gt are written (in other

words, we are actually dividing f by a sequence (g1, . . . , gt)) and we may

ask if a change in this order will produce a change in the quotients and
the remainder. The answer to this question is yes, and one may check that

applying the above procedure to divide X2Y +XY 2+Y 2 by {Y 2−1, XY −1}
(taken in this order) we get X2Y +XY 2 +Y 2 = (X+ 1)(Y 2−1) +X(XY −
1) + 2X + 1.

We are now ready to introduce the concept of Gröbner basis. It first
appeared in the thesis of the austrian mathematician Bruno Buchberger,

published in 1965 (see [4]). His advisor, Wolfgang Gröbner, had proposed

the following thesis problem: given an ideal I ⊂ k[X], find a basis for k[X]/I

as a k-vector space. If k[X] is a ring of just one variable then the answer is

well known: I is generated by a polynomial of a certain degree d (in the case

where I 6= 0) and {1 + I,X + I, . . . , Xd−1 + I} is a basis for k[X]/I. In the

case where k[X] is a ring of more than one variable the situation changes

dramatically. From the Hilbert basis theorem, we know that I is generated
by a finite number of polynomials, but I is not necessarily a principal ideal;

furthermore the quotient ring k[X]/I may be an infinite dimensional k-

vector space (e.g. take I = (X) ⊂ k[X,Y ]). Buchberger’s solution to this

problem was to, having fixed a monomial order in M, determine a special
generating set for I whose main property is that the classes of the monomials
which are not multiples of any of the leading monomials of the polynomials

in this special basis form a basis for k[X]/I as a k-vector space. In 1976 (see
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[5]) Buchberger decided to call this special basis for I a “Gröbner basis” as

token of recognition of the influence of his advisor’s ideas in his thesis work.

Definition 2.5. Let I ⊂ k[X] be a nonzero ideal and endow M with

a monomial order �. A set {g1, . . . , gs} ⊂ I is a Gröbner basis for I (with

respect to �) if for every f ∈ I, f 6= 0, we have that lm(f) is a multiple of

lm(gi) for some i ∈ {1, . . . , s}.

Example 2.6. Let I = (XY −1, Y 2−1) ⊂ R[X,Y ] and consider the lex-

icographic order (with Y � X) defined on the set of monomials of R[X,Y ].

Then Y (XY − 1)−X(Y 2 − 1) = −Y +X ∈ I and lm(X − Y ) = X is not a

multiple of lm(XY − 1) = XY or lm(Y 2− 1) = Y 2, hence {XY − 1, Y 2− 1}
is not a Gröbner basis for I.

We assume from now on that M is endowed with some fixed monomial
order and that I 6= (0). The following result shows that a Gröbner basis

for I is indeed a basis for I, and that we may use it to decide if a given
polynomial is in I.

Lemma 2.7. Let {g1, . . . , gs} ⊂ I be a Gröbner basis for I, then f ∈ I if

and only if the remainder in the division of f by {g1, . . . , gs} is zero. As a

consequence I = (g1, . . . , gs).

Proof. The “if” part is trivial. On the other hand for f ∈ I let f =∑s
i=1 qigi+r be the division of f by {g1, . . . , gs}. Then r = f−

∑s
i=1 qigi ∈ I

hence we must have r = 0 otherwise r would be a nonzero polynomial in

I whose leading monomial is not a multiple of lm(gi) for any i = 1, . . . , s,

contradicting the fact that {g1, . . . , gs} is a Gröbner basis for I. This shows

that I ⊂ (g1, . . . , gs) and a fortiori I = (g1, . . . , gs). �

An important property of a Gröbner basis is the following.

Proposition 2.8. Let {g1, . . . , gs} ⊂ I be a Gröbner basis for I. In

the division of f ∈ k[X] by {g1, . . . , gs} the remainder is always the same,

regardless of the order that we choose for g1, . . . , gs in the division algorithm.

Proof. Assume that f = q1g1+· · ·+qsgs+r = q̃1g1+· · ·+q̃sgs+r̃, where

qi, q̃i ∈ k[X] for all i = 1, . . . , s, r, r̃ ∈ k[X] and no monomial appearing in r

or r̃ is a multiple of lm(gi) for all i = 1, . . . , s. From r− r̃ =
∑s

i=1(q̃i−qi)gi ∈
I we must have r− r̃ = 0 otherwise r− r̃ would be a nonzero polynomial in

I whose leading monomial is not a multiple of lm(gi) for any i = 1, . . . , s,

contradicting the fact that {g1, . . . , gs} is a Gröbner basis for I. �

The above results list some nice properties of Gröbner bases but so far

it is not clear if every ideal I ⊂ k[X] admits such a basis. This is part of the

main contribution of Buchberger in his thesis work. There he presents an
algorithm that starting from any finite basis for I increases it, if necessary,
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in a sequence of steps until at some point the augmented basis is a Gröbner
basis. We will present Buchberger’s algorithm but we will not prove that
indeed it produces a Gröbner basis after a finite number of steps, again we
refer the reader to any of the books mentioned at the introduction.

The following is a key concept in Buchberger’s algorithm.

Definition 2.9. Let f, g ∈ k[X] \ {0}, with lt(f) = aXα and lt(g) =

bXβ. Let γi = max{αi, βi}, for i = 1, . . . , n and set γ = (γ1, . . . , γn) ∈
Nn0 . The S-polynomial of f and g is defined as S(f, g) = (1/a)Xγ−αf −
(1/b)Xγ−βg.

Observe that lt((1/a)Xγ−αf) = Xγ = lt((1/b)Xγ−βg). Buchberger

proved that {g1, . . . , gs} ⊂ I is a Gröbner basis for I if and only if the

remainder in the division of S(gi, gj) by {g1, . . . , gs} is zero for all distinct

i, j ∈ {1, . . . , s}. He also proved that the following procedure may be used

in an algorithm which produces a Gröbner basis for I = (g1, . . . , gs) in a

finite number of steps: assume that for some pair of distinct integers i, j ∈
{1, . . . , s} the remainder Ri,j in the division of S(gi, gj) by {g1, . . . , gs} is

not zero. Define gs+1 = Ri,j and consider the set {g1, . . . , gs, gs+1}. Clearly

I = (g1, . . . , gs, gs+1) because gs+1 ∈ I. If the remainder in the division

of S(gi, gj) by {g1, . . . , gs+1} is zero for all distinct i, j ∈ {1, . . . , s + 1}
then {g1, . . . , gs+1} is a Gröbner basis for I. If for some pair of distinct

integers i, j ∈ {1, . . . , s + 1} the remainder Ri,j in the division of S(gi, gj)

by {g1, . . . , gs+1} is not zero then define gs+2 = Ri,j and consider the set

{g1, . . . , gs+2}. Buchberger proved that after a finite number of steps this

process will produce a set {g1, . . . , gt} which is a Gröbner basis for I.

Example 2.10. We saw in Example 2.6 that {XY − 1, Y 2 − 1} is not

a Gröbner basis for I = (XY − 1, Y 2 − 1) ⊂ R[X,Y ] with respect to the

lexicographic order where Y � X. Let’s apply Buchberger algorithm to

find a Gröbner basis for I. Let g1 = XY − 1 and g2 = Y 2 − 1, then

S(g1, g2) = Y g1−Xg2 = X−Y and the remainder in the division of S(g1, g2)

by {g1, g2} is clearly X − Y . So let g3 = X − Y and consider the set (which

generates I) {XY − 1, Y 2 − 1, X − Y }. Now the reminder in the division of

S(g1, g2) by {XY −1, Y 2−1, X−Y } is zero. One may also easily check that

the remainder in the division of S(g1, g3) = Y 2 − 1 and S(g2, g3) = Y 3 −X
by {XY −1, Y 2−1, X−Y } is zero, so {XY −1, Y 2−1, X−Y } is a Gröbner

basis for I (with respect to �).

We introduce now the concept that solves Buchberger’s thesis problem.



RESULTS FROM COMMUTATIVE ALGEBRA APPLIED TO CODING THEORY 7

Definition 2.11. Let I ⊂ k[X] be an ideal. The footprint of I (with

respect to a fixed monomial order in M) is the set

∆(I) = {M ∈M |M is not the leading monomial of any polynomial in I}

The footprint of an ideal I has a close relationship with a Gröbner basis

for I (both being defined with respect to the same monomial order in M).

Proposition 2.12. Let I ⊂ k[X] be an ideal and let {g1, . . . , gs} be a

Gröbner basis for I. Then a monomial M is in ∆(I) if and only if M is

not a multiple of lm(gi) for all i = 1, . . . , s.

Proof. The “only if” part is obvious from the definition of ∆(I). On

the other hand, from the definition of Gröbner basis we know that if M

is not a multiple of lm(gi) for all i = 1, . . . , s then M is not the leading

monomial of any polynomial in I. �

The above proof is very straightforward and uses the definition of ∆(I) in

one direction and the defintion of Gröbner basis in the other. This hints that
the concepts of Gröbner basis and footprint may be equivalent, and indeed
they are in the following sense. Having defined what is a Gröbner basis for
an ideal I we can define the footprint of I using the statement of the above
proposition. On the other hand we can start with Definition 2.11 and then

define a Gröbner basis for I as being a set {g1, . . . , gs} ⊂ I such that the set

of monomials which are multiples of lm(gi) for some i ∈ {1, . . . , s} is exactly

M\∆(I). Then one can prove that such a set {g1, . . . , gs} indeed exists and

satisfies the condition in definition 2.5 (we do this in the Appendix).

In the following example we show how to use the above result to obtain
a graphical representation of the footprint.

Example 2.13. Let I = (X3 − X,Y 3 − Y,X2Y − Y ) ⊂ R[X,Y ], and

endow M with the lexicographic order, where Y � X. It is not difficult to

check that {X3 −X,Y 3 − Y,X2Y − Y } is a Gröbner basis for I. We have

lm(X3 −X) = X3, lm(Y 3 − Y ) = Y 3, lm(X2Y − Y ) = X2Y , and we apply

the above proposition to determine ∆(I). It is easy to “see” the footprint

of I in the figure below, where we represent a monomial XαY β by the pair

of nonnegative integers (α, β).
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6

-d d d
d

tdd
t

d t
t Leading monomials of the

Gröbner basis for Id Monomials of ∆(I)

In fact, the points (3, 0), (0, 3) and (2, 1) correspond to the leading mono-

mials of the Gröbner basis and from them it is easy to determine the
monomials which are multiples of at least one of these leading monomi-

als (thus determining the set of monomials which are the leading monomials

of the polynomials in I). From this set and the above result we get that

∆(I) = {1, X,X2, Y,XY, Y 2, XY 2}.

We now present the solution to Buchberger’s thesis problem, which will
be very useful in the next section.

Theorem 2.14. Let I ⊂ k[X]. Then

B := {M + I |M ∈ ∆(I)}

is a basis for k[X]/I as a k-vector space.

Proof. Let G be a Gröbner basis for I with respect to the same mono-

mial order used to determine ∆(I), and let f ∈ k[X]. Dividing f by G we

get that the remainder is of the form r =
∑t

i=1 aiMi where ai ∈ k[X] and

Mi ∈ ∆(I) for all i = 1, . . . , t. Since f + I = r + I we get that B generates

k[X]/I as a k-vector space. Now assume that
∑`

i=1 bi(Mi + I) = 0 + I,

where bi ∈ k and Mi ∈ ∆(I) for all i = 1, . . . , `. Then
∑`

i=1 biMi ∈ I so

we must have bi = 0 for all i = 1, . . . , `, otherwise
∑`

i=1 biMi would be a

nonzero element of I whose leading monomial is not a leading monomial of a
polynomial in I. This shows that B is a linearly independent set over k. �

Example 2.15. We continue with the setup of Example 2.13. From the

above result we get that R[X,Y ]/I is an R-vector space of dimension 7 and

{1 + I,X + I,X2 + I, Y + I,XY + I, Y 2 + I,XY 2 + I} is a basis for this
vector space.

We end this section with a remark that we will need in what follows. Let
I ⊂ k[X] be an ideal and let {f1, . . . , ft} be a basis for I. We will denote
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by ∆(lm(f1), . . . , lm(ft)) the set

∆(lm(f1), . . . , lm(ft)) := {M ∈M |M is not a multiple of fi for all i = 1, . . . , t}.

Remark 2.16. Observe that ∆(I) ⊂ ∆(lm(f1), . . . , lm(ft)). Actually,

from Proposition 2.12 we get that ∆(I) = ∆(lm(f1), . . . , lm(ft)) if and only

if {f1, . . . , ft} is a Gröbner basis for I.

3. Affine varieties and affine cartesian codes

We start this section by presenting a key concept in algebraic geometry,
the one which starts the interaction between algebra and geometry.

Definition 3.1. Let I ⊂ k[X] be an ideal. The (affine) variety associ-

ated to I is the set

V (I) = {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 for all f ∈ I}.

It is easy to see that if I = (g1, . . . , gt) then (a1, . . . , an) ∈ V (I) if and

only if gi(a1, . . . , an) = 0 for all i = 1, . . . , t.

Given V = V (I) we may ask for the set of all polynomials which vanish

on V . It is easy to see that this set is an ideal of k[X] which contains I, and

it is known as the ideal of the variety V and denoted by I(V ). A famous

theorem by Hilbert states that if k is algebraically closed then I(V (I)) =
√
I,

where
√
I := {f ∈ k[X] | fm ∈ I for some m ∈ N} is the ideal known as the

radical of I, see e.g. [9, p. 173].

A variety V (I) may have infinitely many points (e.g. take I = (Y −X2) ⊂
R[X,Y ]) or a finite number of points (e.g. take I = (X2 − 1, Y 2 − 1) ⊂
R[X,Y ]). To prove an important relationship between the variety of I and

the footprint of I when ∆(I) is finite we will need the following auxiliary

result.

Lemma 3.2. Let I ⊂ k[X] be an ideal and let P1, . . . , Pr be distinct

points of V (I). Then there exist polynomials p1, . . . , pr ∈ k[X] such that

pi(Pj) = δij for all i, j ∈ {1, . . . , r}.

Proof. Let Pi = (ai1, . . . , ain) ∈ kn where i = 1, . . . , r, we will show

how to obtain p1 as in the lemma. Since all points are distinct, for i ∈
{2, . . . , r} there exists ji ∈ {1, . . . , n} such that a1ji 6= aiji . Let hi = (Xji −
aiji)/(a1ji − aiji), then hi(P1) = 1 and hi(Pi) = 0 for all i = 2, . . . , r so

taking p1 =
∏r
i=2 hi we get p1(P1) = 1 and p1(Pi) = 0 for all i = 2, . . . , r.

In the same way we obtain p2, . . . , pr as in the lemma. �

Proposition 3.3. Let I ⊂ k[X] be an ideal such that ∆(I) is a finite

set. Then V (I) is also a finite set and #(V (I)) ≤ #(∆(I)).
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Proof. Let P1, . . . , Pr be distinct elements of V (I), we will find a set

in k[X]/I which is linearly independent and has r elements. This will prove

the proposition because as we saw #(∆(I)) is the dimension of k[X]/I

as a k-vector space. From the above Lemma we know that there exist

p1, . . . , pr ∈ k[X] such that pi(Pj) = δij for all i, j ∈ {1, . . . , r}. Assume

that
∑r

i=1 ai(pi + I) = 0 + I where a1, . . . , ar ∈ k, then
∑r

i=1 aipi ∈ I hence∑r
i=1 aipi(Pj) = 0, i.e. aj = 0 for all j ∈ {1, . . . , r}. Thus {p1+I, . . . , pr+I}

is a linearly independent set in k[X]/I, which completes the proof. �

Actually, one can prove a more refined result (see [3, Thm. 8.32]). Recall

that an ideal I is said to be a radical ideal if I =
√
I.

Theorem 3.4. Let I ⊂ k[X] be an ideal such that ∆(I) is a finite

set and let L be an algebraically closed extension of k. Then VL(I) :=

{(a1, . . . , an) ∈ Ln | f(a1, . . . , an) = 0 for all f ∈ I} is a finite set and

#(VL(I)) ≤ #(∆(I)). Moreover, if k is a perfect field (e.g. a finite field

or a field of characteristic zero) and I is a radical ideal then #(VL(I)) =

#(∆(I)).

Now we want to apply the above facts to the study of error correcting
codes, so we will quickly recall the definitions of a linear code, defined over
a finite field Fq with q elements, and its main parameters.

Definition 3.5. A (linear) code C defined over the alphabet Fq and of

length n is an Fq-vector subspace of Fnq . The elements of C are sometimes

called codewords.

Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fnq , the Hamming distance be-

tween a and b is defined as d(a, b) = #{i | ai 6= bi, where i ∈ {1, . . . , n}}.
If C ⊂ Fnq is a code and a, b ∈ C then a − b ∈ C and d(a, b) = d(a − b,0)

where 0 is the zero vector in Fnq .

Definition 3.6. Let C ⊂ Fnq be a code. The minimum distance of C
is the positive integer defined as dmin(C) = min{d(a, b) | a, b ∈ C,a 6= b}
(hence dmin(C) = min{d(a,0) | a ∈ C,a 6= 0}).

It is not difficult to show that d has indeed the properties of a distance
function. The importance of the minimum distance lies in its relation to
the error correction capacity of the code. Assume that a sender transmits

an n-tuple a of the code C to a receiver through a channel (e.g. as in the

communication between two computers or a mobile phone and a nearby

antenna). Usually the channel “has noise” i.e. it changes some of the entries

in the original n-tuple. Suppose that the channel changes at most t entries,

with t ≤ (dmin(C)−1)/2. The receiver knows the code and thus will see, if a

has been changed, that the received word a′ is not a codeword (and in fact
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it is not because 0 < d(a,a′) ≤ t < dmin(C)) and moreover one can show

that among all codewords only a satisfies d(a,a′) ≤ t so the receiver can

determine that the codeword which was sent is a. The importance of the

dimension k(C) of a code is that it is a measure of how much information

the code can carry, since the number of codewords will then be qk. The
importance of the length n of the code is that the longer the code is the more
energy one must spend to transmit each codeword. The relative parameters

k(C)/n and dmin(C)/n are key concepts which appear in the analysis of the

performance of a code, playing also an important role when one wishes to
compare distinct codes. The ideal code would have a large dimension, a
large minimum distance and a short length, but these requirements can’t be
met at the same time. In fact a basic relation between these parameters is

the so-called Singleton inequality which states that k(C) + dmin(C) ≤ n+ 1

(see e.g. [15, p. 33]).

In 1998 Fitzgerald and Lax proposed the following construction of lin-

ear codes. Let I = (g1, . . . , gt) ⊂ Fq[X] and set Iq = (g1, . . . , gt, X
q
1 −

X1, . . . , X
q
n − Xn). Recall that

∏
a∈Fq

(X − a) = Xq − X so that V (I) =

V (Iq). From now on we will always be considering the graded lexico-

graphic order in M ⊂ Fq[X]. From Remark 2.16 we get that #(∆(Iq)) ≤
#(∆(lm(g1), . . . , lm(gt), X

q
1 , . . . , X

q
n)) ≤ qn so from Proposition 3.3 we get

that #(V (Iq)) ≤ #(∆(Iq)). Let V (Iq) = {P1, . . . , Pm} and let ϕ be the map

ϕ : Fq[X]/Iq −→ Fmq
f + Iq 7−→ (f(P1), . . . , f(Pm)).

Proposition 3.7. The map ϕ is an isomorphism of Fq-vector spaces.

Proof. It is clear that ϕ is a linear transformation. From Xq
i −Xi ∈ Iq

for all i = 1, . . . , n we get that Iq is a radical ideal (because it contains a uni-

variate square-free polynomial in each variable - see e.g. [3, Prop. 8.14]), and

also for any algebraically closed extension L of Fq we have VL(Iq) = VFq(Iq),

thus from Theorems 2.14 and 3.4 we get that dimFq[X]/Iq = #(∆(Iq)) = m.

From Lemma 3.2 we know that there are polynomials p1, . . . , pm ∈ Fq[X]

such that pi(Pj) = δij for all i, j ∈ {1, . . . ,m}, thus ϕ(pi+Iq) = ei, where ei
is the i-th vector in the canonical basis for Fmq , for all i ∈ {1, . . . ,m}. This

proves that ϕ is surjective and a fortiori an isomorphism. �

The following concept was introduced by Fitzgerald and Lax in [11].

Definition 3.8. Let L ⊂ Fq[X]/Iq be an Fq-subvector space of Fq[X]/Iq.

The image ϕ(L) =: C(L) is called the affine variety code associated to L.

In [11] the authors prove that every Fq-linear code is equal to C(L) for

some suitably chosen n, I and L.
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We want to present results about a particular type of affine variety codes
that was introduced recently by H. López, C. Renteŕıa-Marquez and R.

Villareal in [14], and independently, and in a generalized form, by O. Geil

and C. Thomsen (see [13]). Let A1, . . . , An be nonempty sets of Fq and let

X := A1 × · · · × An. Let fi :=
∏
c∈Ai

(Xi − c) for all i ∈ {1, . . . , n} and let

I := (f1, . . . , fn), clearly V (I) = X. As above we set Iq = (f1, . . . , fn, X
q
1 −

X1, . . . , X
q
n−Xn) and observe that in this case Iq = I because fi is a factor of

Xq
i −Xi for all i = 1, . . . , n. Consider, for all integers d ≥ 0, the Fq-subvector

space of Fq[X]/I given by

Ld := {p+ I | p = 0 or deg(p) ≤ d}

where deg(p) is the total degree of the polynomial p ∈ Fq[X].

Definition 3.9. The affine cartesian code C(d) is the image ϕ(Ld).

A very important instance of affine cartesian codes happens when we
take Ai = Fq for all i = 1, . . . , n. These are the so-called generalized Reed-

Muller codes, a much studied example of linear codes.

In [14] the authors determine the parameters of these codes and we will

also do this here, although most of the time we will not follow [14] but will

use techniques involving the theory presented so far. Let di := #(Ai) for

all i = 1, . . . , n, then V (I) = d1. · · · .dn and this is the length of C(d) for all

d ≥ 0. In [14] the authors prove that one may assume 2 ≤ d1 ≤ · · · ≤ dn
without loss of generality (see [14, Prop. 3.2]).

Lemma 3.10. {f1, . . . , fn} is a Gröbner basis for I.

Proof. Clearly lm(fi) = Xdi
i for all i = 1, . . . , n so that

∆(I) ⊂ {Xα1
1 . · · · .Xαn

n | 0 ≤ αi < di ∀ i = 1, . . . , n}.

From #(V (I)) = d1. . . . .dn ≤ #(∆(I))) ≤ d1. . . . .dn we get in particular

that #(∆(I)) = d1. . . . .dn. This shows that B := {f1, . . . , fn} is a Gröbner

basis for I, otherwise from Buchberger’s algorithm we would have to add

to B a polynomial whose leading monomial is not a multiple of Xdi
i for all

i = 1, . . . , n but this would imply #(∆(I)) < d1. . . . .dn, a contradiction. �

Lemma 3.11. (cf. [14, Lemma 2.3]) The ideal of X is I.

Proof. Clearly I ⊂ I(X) so that ∆(I(X)) ⊂ ∆(I). From Propo-

sition 3.3 and the above Lemma we have d1. · · · .dn = #(V (I(X))) ≤
#(∆(I(X))) ≤ #(∆(I)) = d1. · · · .dn so ∆(I(X)) = d1. · · · .dn. Since

{f1, . . . , fn} ⊂ I(X) as in the previous lemma we get that {f1, . . . , fn}
is a (Gröbner) basis for I(X) and I(X) = I. �
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Now we want to calculate the dimension of C(d). Since ϕ is an isomor-

phism and C(d) = ϕ(Ld) we have that dimC(d) = dimLd. Let ∆(I)≤d :=

{M ∈ ∆(I) | deg(M) ≤ d}.

Proposition 3.12. The set {M + I |M ∈ ∆(I)≤d} is a basis for Ld.

Proof. From Theorem 2.14 we know that {M + I | M ∈ ∆(I)≤d} is a

linearly independent set, and clearly it is contained in Ld. Let f ∈ Fq[X],

f 6= 0 such that deg(f) ≤ d. Let r be the remainder in the division of f

by {f1, . . . , fn}. From the division algorithm, the fact that {f1, . . . , fn} is a

Gröbner basis for I and Proposition 2.12 we get that r is a linear combination

of monomials in ∆(I)≤d, which ends the proof. �

As a consequence of the above result we get the following result.

Lemma 3.13. (cf. [14, Thm. 3.1]) The dimension of C(d) is dimC(d) =

#(∆(I)≤d), in particular dimC(d) = d1. · · · .dn and dmin(C(d)) = 1 for all

d ≥
∑n

i=1(di − 1).

Proof. The first assertion is a consequence of the above Proposition
and the fact that ϕ is an isomorphism. For the second and third, observe

that since {f1, . . . , fn} is a Gröbner basis for I we have

∆(I) = {Xα1
1 . · · · .Xαn

n | 0 ≤ αi ≤ di − 1 ∀ i = 1, . . . , n}

thus ∆(I)≤d = ∆(I) whenever d ≥
∑n

i=1(di − 1). The result now follows

from #(∆(I)) = d1. · · · .dn and the fact that ϕ(L(d)) = Fd1.··· .dnq . �

Theorem 3.14. (cf. [14, Thm. 3.1]) The dimension of C(d) for 0 ≤ d <∑n
i=1(di − 1) is given by

dim(C(d)) =

(
n+ d

d

)
−

n∑
i=1

(
n+ d− di
d− di

)
+ · · ·+

(−1)j
∑

1≤i1<···<ij≤n

(
n+ d− di1 − · · · − dij
d− di1 − · · · − dij

)
+ · · ·+

(−1)n
(
n+ d− d1 − · · · − dn
d− d1 − · · · − dn

)
where we set

(
a
b

)
= 0 if b < 0.

Proof. According to the previous result the dimension of C(d) is equal

to the cardinality of ∆(I)≤d, i.e. the number of monomials in ∆(I) of the

form Xα1
1 . · · · .Xαn

n with 0 ≤
∑n

i=1 αi ≤ d. Let

h(t) := (1 + t+ · · ·+ td1−1). · · · .(1 + t+ · · ·+ tdn−1),
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it is easy to see that the coefficient of te in h(t) is equal to the number of

monomials in ∆(I) which have degree e, for all e ∈ {0, . . . ,
∑n

i=1(di − 1)}.
Thus one way to obtain what we want is to calculate the coefficients of

t0, t, . . . , td and then sum them up. A quicker way is to observe that there

is a bijection between the sets ∆(I)≤d and

�d := {Xα0
0 .Xα1

1 . · · · .Xαn
n ∈ Fq[X0, X1, . . . , Xn] | with

n∑
i=0

αi = d and 0 ≤ αi ≤ di − 1 ∀i = 1, . . . , n}

given by β : ∆(I)≤d → �d where β(M) = Xd
0M(X1/X0, . . . , Xn/X0) and

β−1 : �d → ∆(I)≤d is given by β−1(N) = N(1, X1, . . . , Xn). Now consider

H(t) := (1 + t+ t2 + · · · ).(1 + t+ · · ·+ td1−1). · · · .(1 + t+ · · ·+ tdn−1),

then the coefficient of td is the cardinality of �d. To calculate this coefficient

we note that we may think of H(t) as a real function of one variable t defined

in a suitable neighborhood of 0, say |t| < 1. Then 1 + t+ t2 + · · · = 1/(1− t)
so that

H(t) =
1

1− t
.
1− td1
1− t

. · · · .1− t
dn

1− t

thus H(t) = (1/(1 − t)n+1)
∏n
i=1(1 − tdi). Using that 1/(1 − t)n+1 =∑∞

j=0

(
n+j
j

)
tj we get

H(t) =(

∞∑
j=0

(
n+ j

j

)
tj)(1−

n∑
i=1

tdi +
∑

1≤i1<i2≤n
tdi1+di2 + · · ·+

(−1)j
∑

1≤i1<···<ij≤n
tdi1+···+dij + · · ·+ (−1)ntdi1+···+din ).

The expression for dimC(d) in the statement of the theorem is the coefficient

of td in H(t) calculated using the above product. �

To find the minimum distance of C(d), for 0 ≤ d <
∑n

i=1(di − 1), we

need the following auxiliary result.

Lemma 3.15. Let 0 < d1 ≤ · · · ≤ dn and s <
∑n

i=1(di − 1) be integers.

Let m(α1, . . . , αn) :=
∏n
i=1(di − αi), where 0 ≤ αi < di is an integer for all

i = 1, . . . , n. Then

min{m(α1, . . . , αn) | α1 + · · ·+ αn ≤ s} = (dk+1 − `)
n∏

i=k+2

di
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where k and ` are uniquely defined by s =
∑k

i=1(di − 1) + ` with 0 ≤ ` <

dk+1 − 1. Here, if k + 1 = n then we understand that
∏n
i=k+2 di = 1, and if

s < d1 − 1 then we set k = 0 and ` = s.

Proof. Observe that the minimum must be attained when
∑n

i=1 αi =

s, and the Lemma claims it is attained at the n-tuple (d1 − 1, . . . , dk −
1, `, 0, . . . , 0). Thus let α = (α1, . . . , αn) with

∑n
i=1 αi = s and assume that

αi1 < di1 − 1 for some i1 ∈ {1, . . . , k}. If there exists i2 ∈ {k + 1, . . . , n}
such that αi2 > 0 and αi1 + αi2 ≤ di1 − 1 then denoting by α′ the n-tuple

obtained from α by replacing αi1 by αi1 + αi2 and αi2 by 0 we get that

m(α)−m(α′) = (αi1αi2 + (di2 − di1)αi2).

n∏
i=1

i 6=i1,i2

(di − αi) ≥ 0

so that m(α) ≥ m(α′). If there exists i2 ∈ {k + 1, . . . , n} such that αi2 > 0

and αi1 + αi2 > di1 − 1 then denoting by α′′ the n-tuple obtained from α

by replacing αi1 by di1 − 1 and αi2 by αi2 − (di1 − 1− αi1) we get that

m(α)−m(α′′) = (di1 − 1− αi1)(di2 − 1− αi2).

n∏
i=1

i 6=i1,i2

(di − αi) ≥ 0

so that m(α) ≥ m(α′′). This proves that if m attains its minimum at α we

may assume that αi = di − 1 for all i = 1, . . . , k. In the same way we prove
that we may also assume αk+1 = `. �

Theorem 3.16. (cf. [14, Thm. 3.8]) Let 0 ≤ d <
∑n

i=1(di − 1), the

minimum distance of C(d) is (dk+1−`)
∏n
i=k+2 di where k and ` are uniquely

defined by d =
∑k

i=1(di − 1) + ` with 0 ≤ ` < dk+1 − 1. As in the above

result, if k + 1 = n we understand that
∏n
i=k+2 di = 1, and if d < d1 − 1

then we set k = 0 and ` = d.

Proof. Let F ∈ Ld and let JF := (F, f1, . . . , fn). Then the num-

ber of zeroes in the codeword ϕ(F + I) is equal to #(V (JF )) so that the

weight of this codeword is w(ϕ(F + I)) =
∏n
i=1 di −#(V (JF )). From The-

orem 3.3 we get that #(V (JF )) ≤ #(∆(JF )). Let M := Xα1
1 . · · · .Xαn

n

be the leading monomial of F , from Remark 2.16 we get that ∆(JF ) ⊂
∆(M,Xd1

1 , . . . , Xdn
n ) so that #(∆(JF )) ≤

∏n
i=1 di −

∏n
i=1(di − αi). Thus

w(ϕ(F+I)) ≥
∏n
i=1(di−αi) and from the previous Lemma we have w(ϕ(F+

I)) ≥ (dk+1 − `)
∏n
i=k+2 di. To see that this bound is actually attained

we write Ai := {ai1, . . . , aidi} for i = 1, . . . , n and let G(X1, . . . , Xn) =

(
∏k
i=1

∏di−1
j=1 (Xi − aij) )

∏`
j=1(Xk+1 − ak+1 j), then deg(G) = d, G has



16 CÍCERO CARVALHO∏n
i=1 di − (dk+1 − `)

∏n
i=k+2 di zeroes in A1 × · · · × An so w(ϕ(G + I)) =

(dk+1 − `)
∏n
i=k+2 di. �

Comparing the above proof to the original one, presented in [14, Thm.

3.8], one sees that the footprint technique yields a substantial simplification

in the proof. This technique had already been used in [12] to study higher

Hamming weights of generalized Reed-Muller codes and was used in [6] to

study higher Hamming weights of affine cartesian codes. We present the

main results of [6] in the next section.

4. The second lowest Hamming weight of affine cartesian codes

Lemma 4.1. Let 2 ≤ s ≤ d1 ≤ · · · ≤ dn be integers, with n ≥ 2.

Let q(a1, . . . , an) =
∏n
i=1(di − ai) where 0 ≤ ai < s is an integer for all

i = 1, . . . , n. Then

min{q(a1, . . . , an) | a1 + · · ·+ an ≤ s} = (d1 − (s− 1))(d2 − 1)

n∏
i=3

di.

Proof. As in the previous Lemma we observe that the minimum must

be attained when
∑n

i=1 ai = s. Thus, let α = (a1, . . . , an), with
∑n

i=1 ai = s

and assume that a1 < s− 1. If there exists i2 ∈ {2, . . . , n} such that ai2 > 0

and a1 + ai2 ≤ s − 1 then denoting by α′ the n-tuple obtained from α by

replacing a1 by a1 + ai2 and ai2 by 0, we get that

m(α)−m(α′) = (a1ai2 + (di2 − d1)ai2)

n∏
i=2
i 6=i2

(di − ai) ≥ 0

som(α) ≥ m(α′) andm(α) > m(α′) if a1 6= 0. If there exists i2 ∈ {2, . . . , n}
such that a1+ai2 > s−1 then we must have a1 > 0 and ai2 = s−a1, denoting

by α′′ the n-tuple obtained from α by replacing a1 by s− 1 and ai2 by 1 we
get

m(α)−m(α′′) = (di2 − d1 + a1 − 1)(s− a1 − 1)
n∏

i=2
i 6=i2

(di − ai) ≥ 0.

This shows that if q attains its minimum at α = (a1, . . . , an) then we may

assume that a1 = s− 1 and now it is easy to check that we can also assume
a2 = 1. �

We will now determine the second Hamming weight of codes C(d) for

several particular cases of this code. We start with the case where all the
sets in the cartesian product have the same cardinality a and 2 ≤ d < a

(hence a ≥ 3).
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Theorem 4.2. Let Ai ⊂ Fq such that #(Ai) = a ≥ 3 for all i = 1, . . . , n,

with n ≥ 2 and let 2 ≤ d < a. The second Hamming weight of C(d) is

(a− (d− 1))(a− 1)an−2.

Proof. We write Ai = {ai1, . . . ,aia} for all i = 1, . . . , n, and let 1 ≤
t < a. Let F ∈ Fq[X1, . . . , Xn] be a polynomial of degree t and let JF =

(F, f1, . . . , fn). As in the proof of Theorem 3.16 we have that w(ϕ(F +I)) =∏n
i=1 di −#(VFq(JF )). Let M := Xa1

1 . · · · .Xan
n be the leading monomial of

F (so that
∑n

i=1 ai = t because we are using the graded-lexicographic order).

We deal first with the case where t ≥ 2.
a) Assume that ai < t for all i = 1, . . . , n. From

#(VFq(JF )) ≤ #(∆(JF )) ≤ #(∆(M,Xd1
1 , . . . , Xdn

n )) =

n∏
i=1

di −
n∏
i=1

(di − ai)

and Lemma 4.1 we get w(ϕ(F + I)) ≥ (d1 − (t − 1))(d2 − 1)
∏n
i=3 di. This

bound is effectively attained, for example, when F =
(∏t−1

i=1(X1 − a1i)
)

(X2−

a21).

b) Assume now that aj = t for some j ∈ {1, . . . , n}. If {F, f1, . . . , fn}
is a Gröbner basis for JF then #(∆(JF )) = tan−1 and w(ϕ(F + I)) =

an−tan−1 = (a−t)an−1; from Theorem 3.16 we get that this is the minimum

distance of C(t). If {F, f1, . . . , fn} is not a Gröbner basis for JF then the S-

polynomial S(F, fj) = Xa−t
j F − fj must have a nonzero remainder R in the

division by {F, f1, . . . , fn} (otherwise {F, f1, . . . , fn} would be a Gröbner ba-

sis because any other pair of distinct polynomials {g1, g2} in {F, f1, . . . , fn}
has leading monomials which are relatively prime - see [9, pags. 103 and

104]). Let L := Xb1
1 . · · · .Xbn

n be the leading monomial of R, from the di-

vision algorithm we get bj < t, bi < a for all i ∈ {1, . . . , n}, i 6= j and∑n
i=1 bi ≤ deg(S(F, fj)) ≤ a. Thus JF = (F, f1, . . . , fn) = (R,F, f1, . . . , fn)

so that

#(∆(JF )) ≤ #(∆(L,Xt
j , X

a
1 , . . . , X

a
n)) = tan−1 − (t− bj)

n∏
i=1,i 6=j

(a− bi)

Now we apply Lemma 3.15 with d1 = t, di = a for i = 2, . . . , n and s = a, and

writing a = (t−1)+(a−(t−1)) we get that an upper bound for the number of

zeroes of F in X is tan−1−(t−1)an−2 so the minimum distance of ϕ(F+I) is

lower bounded by an−tan−1+(t−1)an−2 = (a−1)(a−t+1)an−2. This proves

that for 2 ≤ t < a the possible values for w(F + I), where F is a polynomial

of degree t are in the set {(a− t)an−1}∪{w ∈ N |w ≥ (a−1)(a− t+1)an−2}
where (a− t)an−1 and (a− 1)(a− t+ 1)an−2 are realized as weights.
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In the case where t = 1 we have M = Xj for some j ∈ {1, . . . , n} so that

#(∆(M,Xa
1 , . . . , X

a
n) = an − (a− 1)an−1, thus w(F + I) ≥ (a− 1)an−1.

Now we put the above results together to calculate the second smallest

weight of C(d), where 2 ≤ d < a, and find that it is equal to (a − 1)(a −
d+ 1)an−2. This is because (a− 1)(a− d+ 1)an−2 < (a− 1)(a− t+ 1)an−2

and (a − 1)(a − d + 1)an−2 < (a − t)an−1 for all 1 ≤ t < d, and of course

(a− d)an−1 < (a− 1)(a− d+ 1)an−2. �

Setting a = q in the above theorem we get the values for the second

Hamming weight of the generalized Reed-Muller codes when 2 ≤ d < q (cf.

[12]).

In the next theorem we treat the case where we have the cartesian prod-
uct of two subsets of Fq with distinct cardinalities.

Theorem 4.3. Let A1, A2 ⊂ Fq be such that 3 ≤ #(A1) =: d1 < d2 :=

#(A2) and let 2 ≤ d < d1. The second Hamming weight of C(d) is (d1 −
d+ 1))(d2 − 1).

Proof. We follow the same procedure of the above proof, and although
the beginning is similar the development is a bit more elaborate. We write

Ai = {ai1, . . . ,aidi} for i = 1, 2, and let 1 ≤ t < d1. Let F ∈ Fq[X1, X2]

be a polynomial of degree t and let JF = (F, f1, f2). Then w(ϕ(F + I)) ≥
d1d2 −#(∆(JF )). Let M := Xa1

1 .Xa2
2 be the leading monomial of F (hence

a1 + a2 = t). We deal first with the case where t ≥ 2.

a) Assume that ai < t for i = 1, 2. From #(∆(JF )) ≤ #(∆(M,Xd1
1 , Xd2

2 )) =

d1d2 −
∏2
i=1(di − ai) and Lemma 4.1 we get w(ϕ(F + I)) ≥ (d1 − (t −

1))(d2 − 1). This bound is effectively attained, for example, when F =(∏t−1
i=1(X1 − a1i)

)
(X2 − a21).

b) Assume now that aj = t for j = 1 or j = 2. If {F, f1, f2} is a Gröbner

basis for JF then #(∆(JF )) = td2, if a1 = t or #(∆(JF )) = td1, if a2 = t

so that w(ϕ(F + I)) ≥ d1d2 − td2 if a1 = t or w(ϕ(F + I)) ≥ d1d2 − td1 if

a2 = t. According to Theorem 3.16 (d1 − t)d2 is the minimum distance of

C(t), and it is easy to check that (d2 − t)d1 is also realized as the weight of

a codeword. We assume now that {F, f1, f2} is not a Gröbner basis for JF ,

and we treat separatedly the cases where M = Xt
1 and M = Xt

2.

WhenM = Xt
1 we must have that the S-polynomial S(F,X1) = Xd1−t

1 F−
Xd1

1 has a nonzero remainder in the division by {F,Xd1
1 , Xd2

2 } (because Xt
1

and Xd2
2 are relatively prime), so let L := Xb1

1 X
b2
2 be the leading mono-

mial of this remainder. From the division algorithm we get b1 < t, b2 < d2

and b1 + b1 ≤ d1. We have #(∆(JF )) ≤ #(∆(L,M,Xd1
1 , Xd2

2 )) = td2 − (t−
b1)(d2−b2) so w(ϕ(F+I)) ≥ d1d2−td2+(t−b1)(d2−b2). We now use Lemma
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3.15 to find the minimum of (t−b1)(d2−b2), observing the restrictions on b1
and b2, and get w(ϕ(F+I)) ≥ d1d2−td2+d2−d1+t−1 = (d2−1)(d1−t+1).

When M = Xt
2 we have that the S-polynomial S(F,X2) = Xd2−t

2 F−Xd2
2

has a nonzero remainder in the division by {F,Xd1
1 , Xd2

2 } and again we

denote by L = Xb1
1 X

b2
2 the leading monomial of this remainder. From the

division algorithm we get b1 < d1, b2 < t and b1 + b2 ≤ d2, but from b1 < d1

and b2 < t we also get b1 +b2 ≤ d1 +t−2, thus b1 +b2 ≤ r := min{d2, d1 +t−
2}. As before we note that #(∆(JF )) ≤ #(∆(L,M,Xd1

1 , Xd2
2 )) = td1−(d1−

b1)(t−b2) so that w(ϕ(F +I)) ≥ d1d2− td1 +(d1−b1)(t−b2). Now we want

to apply Lemma 3.15 to find the minimum of (t− b2)(d1− b1), observing the

restrictions on b1 and b2. If r = d1+t−2 then from d1+t−2 = (t−1)+(d1−1)

we get that the minimum is 1, hence w(ϕ(F + I)) ≥ d1(d2− t) + 1. If r = d2

then d2 ≤ d1 + t−2 so d2− t+ 1 ≤ d1−1, thus from d2 = (t−1) +d2− t+ 1

and Lemma 3.15 we get that the minimum is d1 − d2 + t− 1, which implies

that w(ϕ(F + I)) ≥ (d1 − 1)(d2 − t+ 1).

This completes the analysis of the case where t ≥ 2. In the case where

t = 1 we have that either w(ϕ(F + I)) ≥ (d1 − 1)d2 or w(ϕ(F + I)) ≥
d1(d2 − 1).

From what is done so far we get that if 2 ≤ t < d1 then w(ϕ(F + I)) ∈
{(d1 − t)d2} ∪ {v ∈ N | v ≥ (d2 − 1)(d1 − t + 1)} because (d2 − 1)(d1 − t +

1)− d1(d2 − t) = −(t− 1)(d2 − d1 − 1) ≤ 0 and (d2 − 1)(d1 − t+ 1)− (d1 −
1)(d2 − t+ 1) = −(t− 2)(d2 − d1) ≤ 0.

Thus considering the weights w(ϕ(F+I)) for all polynomials F of degree

less of equal than d (where 2 ≤ d < d1) we get that the second smallest

weight is (d2 − 1)(d1 − d + 1), this is because (d2 − 1)(d1 − d + 1) < (d2 −
1)(d1− t+ 1) and (d2− 1)(d1− d+ 1) < (d1− t)d2 whenever 1 ≤ t < d, and

(d1 − d)d2 < (d2 − 1)(d1 − d+ 1). �

The following result deals with higher Hamming weights of the code

C(d).

Theorem 4.4. Let 2 ≤ d1 ≤ · · · ≤ dn be integers, with n ≥ 2, and

let d be an integer such that
∑n−1

i=1 (di − 1) ≤ d <
∑n

i=1(di − 1). Write

d =
∑n−1

i=1 (di − 1) + `, with 0 ≤ ` < dn − 1. Then for t ∈ {1, . . . , `+ 1} the

t-th weight of C(d) is dn − `+ (t− 1).

Proof. For t ∈ {1, . . . , ` + 1} we have C(d − (t − 1)) ⊂ C(d) so from

Theorem 3.16 we get that in C(d) there are words of weight dn − `, dn −
` + 1, . . . , dn, being dn − ` the minimum distance of C(d). This proves the

theorem. �
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We now put the last three results together to determine the second

Hamming weight of C(d), for all d ≥ 2, in the case where we have the

cartesian product of two sets containing at least three elements each.

Corollary 4.5. Let A1, A2 ⊂ Fq be such that 3 ≤ #(A1) =: d1 ≤ d2 :=

#(A2) and let 2 ≤ d. Then second Hamming weight of C(d) is equal to:

i) (d1 − d+ 1)(d2 − 1) if 2 ≤ d < d1;

ii) d1 + d2 − d if d1 ≤ d ≤ d1 + d2 − 2;

iii) 2 if d1 + d2 − 2 < d.

Proof. Item (i) is a direct consequence of Theorems 4.2 and 4.3. Item

(ii) is a consequence of the above theorem, because writing d = (d1 − 1) + `

we get that the second weight is d2 − `+ 1 = d1 + d2 − d. Item (iii) comes

from the fact that C(d) = Fmq whenever d ≥ d1 + d2 − 2 as observed just

before Lemma 3.15 (this is also proved in [14]). �

We remark that in the literature the second lowest Hamming weight is
also called the next-to-minimal Hamming weight of a code. For the Reed-

Muller codes, these weights have already been determined (see [2] and the

references therein). In [8] most of the next-to-minimal weights of the affine

cartesian are determined. The parameters of a projective version of the affine
cartesian codes were recently determined by Carvalho, López and Neumann

(see [7]).

Appendix A

Here we show how one may arrive at the concept of Gröbner basis start-

ing from the definition of footprint of an ideal (see Definition 2.11). We

endow the set of monomials of M ∈ k[X] with a monomial order � and

also with a partial order ≤ defined by: Xα ≤ Xβ if Xβ is a multiple of

Xα. Let I ⊂ k[X] be a nonzero ideal and let ∆(I) be the footprint of I with

respect to �. Let Γ(I) be set of minimal elements ofM\∆(I) with respect

to the partial order ≤ so that every monomial in M\∆(I) is a multiple of

some monomial in Γ(I).

Theorem A.1. Let (Γ(I)) denote the ideal generated by the monomi-

als in Γ(I), then there exists a subset {M1, . . . ,Ms} ⊂ Γ(I) such that

(M1, . . . ,Ms) = (Γ(I)).

Proof. This is a consequence of the fact that k[X] is a noetherian

ring, so every ideal is finitely generated and from the definition of (Γ(I)) the

generators may be chosen among the elements of Γ(I). �

Corollary A.2. Γ(I) = {M1, . . . ,Ms}.
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Proof. Let M ∈ Γ(I) ⊂ (Γ(I)), then M =
∑s

i=1 piMi where pi ∈
k[X] for all i = 1, . . . , s and since M is a monomial it must be one of the

monomials which appear in pjMj for some j ∈ {1, . . . , s}. ThusMj ≤M and

since M is a minimal element with respect to ≤ we must have M = Mj . �

Definition A.3. Let G(I) ⊂ I be a set of polynomials {g1, . . . , gs} such

that for every monomial M ∈ Γ(I) there is exactly one polynomial in G(I)

having M as leading monomial. Then G(I) is a Gröbner basis for I (with

respect to �).

The above theorem shows that there exists a Gröbner basis for any

nonzero ideal of k[X], and the next result proves that this is the same

concept defined in text (see Definition 2.5).

Proposition A.4. Let G(I) be a Gröbner basis for I. Then G(I) is a

basis for the ideal I with the property that for any f ∈ I, f 6= 0 we have that

lm(f) is a multiple of lm(gi) for some i ∈ {1, . . . , s}.

Proof. Let G(I) = {g1, . . . , gs} and let f ∈ I. In the division of f by

the elements of G(I) the remainder r is a sum of terms whose monomials

are in ∆(I), and since r ∈ I we must have r = 0, otherwise r would be a

polynomial in I whose leading monomial is in ∆(I). This proves that G(I)

is a basis for the ideal I. The last assertion is a consequence of the definition

of Γ(I) and the fact that Γ(I) = {lm(g1), . . . , lm(gs)}.. �

Strictly speaking, since the leading monomials of the Gröbner basis G(I)

defined above are not multiple one of another we have proved that from the
footprint of I we may arrive at what is called in the literature a minimal

Gröbner basis for I (provided that we choose g1, . . . , gs to be monic polyno-

mials).
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