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Max integer not in a semigroup (Frobenius number)

A numerical semigroup Λ is a subset of N0 such that

Λ contains 0,

Λ is closed under addition,

Λ has a finite complement in N0.

0 4 5 8 9 10 12 13 14 15 16 17 18 19 20 . . .

The elements in this complement are called the gaps of the
semigroup and the number of gaps is the genus.

The maximum gap is the Frobenius number of the semigroup and the
conductor is the Frobenius number plus one.

Lemma

1 F 6 2g − 1 (pigeonhole principle)

2 F = 2g − 1 ⇐⇒ Λ symmetric (that is, i ∈ Λ ⇐⇒ F − i 6∈ Λ).
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Maximun integer not in an ideal

Ideals of a numerical semigroup

A subset I ⊆ Λ is an ideal of a numerical semigroup if and only if

I + Λ ⊆ I.

In particular, Λ \ I is finite.

Goal: max(N0 \ I).

Example

If I = Λ then max(N0 \ I) = F. In particular,

1 max(N0 \ I) 6 2g − 1

2 max(N0 \ I) = 2g − 1 ⇐⇒ Λ symmetric.
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Preliminaries: Barucci’s theorem

Suppose Λ = {λ0 = 0 < λ1 < λ2 . . . }.

Divisors of λi: D(i) = {λj 6 λi : λi − λj ∈ Λ}, and we set νi = #D(i)
(different than yesterday!)

Example

In Λ = {0, 4, 5, 8, 9, 10, 12,→}, D(6) = {0, 4, 8, 12}, ν6 = 4.

Theorem (Barucci)

Any ideal of a numerical semigroup is an intersection of irreducible ideals
and irreducible ideals have the form Λ \ D(i) for some i.

Example

Λ \ D(6) = {5, 9, 10, 13,→} is an irreducible ideal of Λ.
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Preliminaries: Hoholdt, van Lint, Pellikaan’s Lemma

G(i): number of pairs of gaps adding up to λi.

Example

In {0, 4, 5, 8, 9, 10, 12,→}, G(6) = 3 since λ6 = 12 = 1 + 11 = 6 + 6 = 11 + 1.

g(i): number of gaps smaller than λi.

Example

In {0, 4, 5, 8, 9, 10, 12,→}, g(3) = #{gaps smaller than λ3(= 8)} = 5.

Lemma (Hoholdt, van Lint, Pellikaan)

νi = i − g(i) + G(i) + 1



Bound

Difference of I: #(Λ \ I)

Theorem

The maximum integer not belonging to an ideal I of a semigroup Λ of genus
g with difference d is at most d+ 2g− 1. That is, d+ 2g+ i ∈ I for all i > 0.



Bound

Difference of I: #(Λ \ I)

Theorem

The maximum integer not belonging to an ideal I of a semigroup Λ of genus
g with difference d is at most d+ 2g− 1. That is, d+ 2g+ i ∈ I for all i > 0.

Proof: If I, I′ satisfy the result then I ∩ I′ also satisfies it.

By Barucci’s Theorem it is then enough to prove the result for I = Λ \ D(i).

In this case

{

d = νi

max(N0 \ I) = max{c − 1, λi}.

We need to see that νi + 2g > max{c, λi + 1} (c the conductor).

If c > λi + 1 then we are done since 2g > c.

If c < λi + 1 then g(i) = g, λi = i + g, and hence, by HvLP’s Lemma,

νi + 2g = (i − g + G(i) + 1) + 2g = i + g + 1 + G(i) = λi + 1 + G(i) > λi + 1.
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Characterization of ideals attaining the bound

Lemma

If G(i) = 0 then λi > c.

Proof: Suppose G(i) = 0. Then, 1, . . . , λ1 − 1 gaps =⇒ λi − λ1 + 1, . . . , λi − 1
non-gaps.

But λi ∈ Λ =⇒ [λi − λ1 + 1, . . . , λi] ⊆ Λ.

Now, by adding multiples of λ1 to the elements in this interval we get the whole set of
integers λi + k with k > 0.

Then λi > c.
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Characterization of ideals attaining the bound

Theorem

The next statements are equivalent:

1 The maximum integer not belonging to I is exactly d + 2g − 1.

2 I = Λ \ D(i) for some i with G(i) = 0.

Proof: Suppose first that I = Λ \ D(i) for some i with G(i) = 0.

Then d = νi.

Also, G(i) = 0 =⇒ λi > c and so

g(i) = g

λi = i + g

Now, by HvLP’s Lemma,
d + 2g − 1 = (i − g(i) + G(i) + 1) + 2g − 1 = i − g + 0 + 1 + 2g − 1 = i + g = λi 6∈ I.



Characterization of ideals attaining the bound

Theorem

The next statements are equivalent:

1 The maximum integer not belonging to I is exactly d + 2g − 1.

2 I = Λ \ D(i) for some i with G(i) = 0.

Proof:

Conversely, suppose that the maximum integer not belonging to I is d + 2g − 1.

If I = I′ ∩ I′′, with I′, I′′ ideals, d′ = #(Λ \ I′), d′′ = #(Λ \ I′′), and I′, I′′ 6= I, then
d = #(Λ \ I) > d′, d′′.

If d + 2g − 1 6∈ I then d + 2g − 1 6∈ I′ or d + 2g − 1 6∈ I′′, but
d + 2g − 1 > d′ + 2g − 1, d′′ + 2g − 1, contradicting the previous bound.

By Barucci’s Theorem, I = Λ \ D(i) for some i. Also, d = νi.

If λi < c, then νi + 2g − 1 > 1 + 2g − 1 = 2g > c and so d + 2g − 1 ∈ I, a contradiction.

Therefore λi > c. Then νi = i − g + G(i) + 1 by HvLP’s Lemma.

So d + 2g − 1 = i + g + G(i) = λi + G(i). But d + 2g − 1 6∈ I =⇒ G(i) = 0.



Characterization of ideals attaining the bound

Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,→}.



Characterization of ideals attaining the bound

Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,→}.

The ideal I = Λ \ D(6) = {5, 9, 10, 13,→}



Characterization of ideals attaining the bound

Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,→}.

The ideal I = Λ \ D(6) = {5, 9, 10, 13,→} has difference equal to
ν6 = 4,



Characterization of ideals attaining the bound

Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,→}.

The ideal I = Λ \ D(6) = {5, 9, 10, 13,→} has difference equal to
ν6 = 4, but

d + 2g − 1 = 4 + 12 − 1 = 15 ∈ I.



Characterization of ideals attaining the bound

Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,→}.

The ideal I = Λ \ D(6) = {5, 9, 10, 13,→} has difference equal to
ν6 = 4, but

d + 2g − 1 = 4 + 12 − 1 = 15 ∈ I.

This is because, as already seen, G(6) 6= 0.



Characterization of ideals attaining the bound

Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,→}.

The ideal I = Λ \ D(6) = {5, 9, 10, 13,→} has difference equal to
ν6 = 4, but

d + 2g − 1 = 4 + 12 − 1 = 15 ∈ I.

This is because, as already seen, G(6) 6= 0.

The ideal I = Λ \ D(9) = {4, 8, 9, 12, 13, 14, 16,→}



Characterization of ideals attaining the bound

Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,→}.

The ideal I = Λ \ D(6) = {5, 9, 10, 13,→} has difference equal to
ν6 = 4, but

d + 2g − 1 = 4 + 12 − 1 = 15 ∈ I.

This is because, as already seen, G(6) 6= 0.

The ideal I = Λ \ D(9) = {4, 8, 9, 12, 13, 14, 16,→} has difference equal
to ν9 = #{0, 5, 10, 15} = 4,



Characterization of ideals attaining the bound

Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,→}.

The ideal I = Λ \ D(6) = {5, 9, 10, 13,→} has difference equal to
ν6 = 4, but

d + 2g − 1 = 4 + 12 − 1 = 15 ∈ I.

This is because, as already seen, G(6) 6= 0.

The ideal I = Λ \ D(9) = {4, 8, 9, 12, 13, 14, 16,→} has difference equal
to ν9 = #{0, 5, 10, 15} = 4, and

d + 2g − 1 = 4 + 12 − 1 = 15 6∈ I.



Characterization of ideals attaining the bound

Example

Consider the semigroup
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The ideal I = Λ \ D(6) = {5, 9, 10, 13,→} has difference equal to
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Characterization of ideals attaining the bound

Theorem

The next statements are equivalent:

1 The maximum integer not belonging to I is exactly d + 2g − 1.

2 I = Λ \ D(i) for some i with G(i) = 0.

3 Λ \ I = Λ ∩ ((d + 2g − 1)− Λ) = {λ ∈ Λ : d + 2g − 1 − λ ∈ Λ}

4 I = {λi − h : h ∈ Z \ Λ} for some i with G(i) = 0.

5 {a + h : h 6∈ Λ, F − h 6∈ Λ} ⊆ Λ and
I = (a + Λ) ∪ {a + h : h 6∈ Λ, F − h 6∈ Λ} for some a ∈ Λ, a > 0.
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Characterization of ideals attaining the bound

We call the ideals of the form a + Λ for some a ∈ Λ principal ideals.

Corollary

Let Λ be a symmetric numerical semigroup of genus g. Suppose that I is an
ideal of Λ with difference d. Then the largest integer not belonging to I is
d + 2g − 1 if and only if I is principal.
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Example

Consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13,→}.

The ideal I = Λ \ D(6) = {5, 9, 10, 13,→} has difference equal to
ν6 = 4, but

d + 2g − 1 = 4 + 12 − 1 = 15 ∈ I.

This is because, as already seen, G(6) 6= 0.

The ideal I = Λ \ D(9) = {4, 8, 9, 12, 13, 14, 16,→}has difference equal
to ν9 = #{0, 5, 10, 15} = 4, and

d + 2g − 1 = 4 + 12 − 1 = 15 6∈ I.

This is because G(9) = 0. Indeed, {15 − 1 = 14, 15 − 2 = 13, 15 − 3 =
12, 15 − 6 = 9, 15 − 7 = 8, 15 − 11 = 4} ⊆ Λ.
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Two codes C,D ⊆ F
n
q are said to be x-isometric, for x ∈ (F∗

q )
n if

D = {x ∗ c = (x1c1, . . . , xncn) : c ∈ C}.

Example

Consider the double-repetition code in F∗4
3

C = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 2), (1, 1, 0, 0), (1, 1, 1, 1), (1, 1, 2, 2), (2, 2, 0, 0), (2, 2, 1, 1), (2, 2, 2, 2)}

and the code

D = {(0, 0, 0, 0), (0, 0, 1, 2), (0, 0, 2, 1), (1, 2, 0, 0), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 0, 0), (2, 1, 1, 2), (2, 1, 2, 1)}

One can check that D is (1, 2, 1, 2)-isometric to C.

A sequence of codes (Ci)i=0,...,n is said to satisfy the isometry-dual
condition if there exists x ∈ (F∗

q )
n such that Ci is x-isometric to C⊥

n−i

for all i = 0, . . . , n.
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Sequences of pairwise isometric one-point AG codes

Let P1, . . . ,Pn,Q be different rational points of a (projective,
non-singular, geometrically irreducible) curve with genus g and
define

Cm = {(f (P1), . . . , f (Pn)) : f ∈ L(mQ)}(different than yesterday!)

W = {0} ∪ {m ∈ N : L(mQ) 6= L((m − 1)Q)}(Weierstrass semigroup),

W∗ = {0} ∪ {m ∈ N : Cm 6= Cm−1} = {m1 = 0,m2, . . . ,mn}.

Theorem (Geil, Munuera, Ruano, Torres)

W \ W∗ is an ideal of W,

{0},Cm1
, . . . ,Cmn satisfies the isometry-dual condition ⇔#W∗ + 2g − 1 ∈ W∗.
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The generalized Hamming weights of a linear code are, for each
given dimension, the minimum size of the support of the linear
subspaces of that dimension.



Generalized Hamming weights

The generalized Hamming weights of a linear code are, for each
given dimension, the minimum size of the support of the linear
subspaces of that dimension.

Example

C = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 2), (1, 1, 0, 0), (1, 1, 1, 1), (1, 1, 2, 2), (2, 2, 0, 0), (2, 2, 1, 1), (2, 2, 2, 2)}

Subspaces of dimension 1:

〈(1, 1, 0, 0)〉 supported on 2 coordinates

〈(0, 0, 1, 1)〉 supported on 2 coordinates

〈(1, 1, 1, 1)〉 supported on 4 coordinates

So, generalized Hamming weight of dimension 1 (= minimum distance) is 2.

Subspaces of dimension 2:

〈(1, 1, 0, 0), (0, 0, 1, 1)〉 supported on 4 coordinates

So, generalized Hamming weight of dimension 2 is 4.



Generalized Hamming weights

Generalized Hamming weights are used in

the wire-tap channel of type II

t-resilient functions

network coding

list decoding

bounding the covering radius of linear codes

secure secret sharing based on linear codes
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Order bounds for algebraic geometry codes

Algebraic geometry codes

Let P1, . . . ,Pn,Q be different rational points of a (projective,
non-singular, geometrically irreducible) curve with genus g and
define

Cm = {(f (P1), . . . , f (Pn)) : f ∈ L(mQ)}

W = {0} ∪ {m ∈ N : L(mQ) 6= L((m − 1)Q)}(Weierstrass semigr.)

Order bound on the minimum distance

The minimum distance of C⊥

λm
is lower bounded by the order bound:

δ(m) = min{νi : i > m}
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Define D(i) as before and D(i1, . . . , ir) = D(i1) ∪ · · · ∪ D(ir).



Order bounds for algebraic geometry codes

Define D(i) as before and D(i1, . . . , ir) = D(i1) ∪ · · · ∪ D(ir).

Order bound on generalized Hamming weights

The r-th generalized Hamming weight of C⊥

λm
is lower bounded by

the r-th order bound:

δr(m) = min{#D(i1, . . . , ir) : i1, . . . , ir > m}.
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Theorem (Farrán-Munuera)

For each numerical semigroup Λ and each integer r > 2 there exists a
constant Er = E(Λ, r), called r-th Feng-Rao number, such that

1 δr(m) = m + 2 − g + Er for all m such that λm > 2c − 2,

2 δr(m) > m + 2 − g + Er for any m such that λm > c,

where c and g are respectively the conductor and the genus of Λ.
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Farrán-Munuera’s Feng-Rao numbers

Theorem (Farrán-Munuera)

For each numerical semigroup Λ and each integer r > 2 there exists a
constant Er = E(Λ, r), called r-th Feng-Rao number, such that

1 δr(m) = m + 2 − g + Er for all m such that λm > 2c − 2,

2 δr(m) > m + 2 − g + Er for any m such that λm > c,

where c and g are respectively the conductor and the genus of Λ.

This is an extension of the Goppa bound for r = 1, with Er = 0.

Furthermore,

3 r 6 Er 6 λr−1 if g > 0 (and r > 2),

4 Er = λr−1 if r > c,

5 Er = r − 1 if g = 0.
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The perspective of ideals

Recall, δr(m) = min{#D(i1, . . . , ir) : i1, . . . , ir > m}.

By Farrán-Munuera’s theorem, δr(m) = m + 2 − g + Er for all m such
that λm > 2c − 2.

Suppose m < i1 < · · · < ir are such that δr(m) = #D(i1, . . . , ir).

Then
Λ\D(i1, . . . , ir) = Λ\ (D(i1)∪· · ·∪D(ir)) = (Λ\D(i1))∩· · ·∩ (Λ\D(ir))
is an ideal with

difference: #D(i1, . . . , ir) = δr(m) = m + 2 − g + Er

maximum integer not belonging to it: λir

So, λir 6 (m + 2 − g + Er) + 2g − 1 = m + g + 1 + Er = λm+1 + Er =⇒

Er > λir − λm+1 = ir − i1.



Bound on the Feng-Rao numbers

Theorem

Suppose that nℓ is the number of intervals of at least ℓ gaps of Λ. Then

Er > min{r − 2 +

⌈

r

ℓ− 1

⌉

, r − 1 +

⌈

(ℓ− 1)nℓ−1

ℓ

⌉

}.

In particular, if n is the number of intervals of Λ then
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Theorem

Suppose that nℓ is the number of intervals of at least ℓ gaps of Λ. Then

Er > min{r − 2 +

⌈

r

ℓ− 1

⌉

, r − 1 +

⌈

(ℓ− 1)nℓ−1

ℓ

⌉

}.

In particular, if n is the number of intervals of Λ then

Er > min{2(r − 1), r − 1 + ⌈n/2⌉}.

Remark

If r = 2 or n1 6 2 then our bound equals Er > r. In any other case our
bound is better.



Bound on the generalized Hamming weights

Corollary

Let m be such that λm > c and let ℓ > 2. Then

δr(m) > m + 2 − g + min{r − 2 +

⌈

r

ℓ− 1

⌉

, r − 1 +

⌈

(ℓ− 1)nℓ−1

ℓ

⌉

}.

Corollary

If Λ is a semigroup with conductor c and n intervals of gaps then, for any m
with λm > c,

δr(m) >

{

m − g + 2r if r 6 ⌈n/2⌉+ 1,
m − g + r + ⌈n/2⌉+ 1 otherwise.



Exercise

1 Prove the Lemma by Hoholdt, van Lint, and Pellikaan stating
νi = i − g(i) + G(i) + 1, where g(i) is the number of gaps smaller
than λi and G(i) is the number of pairs of gaps adding up to λi.

2 Find W∗ in the case of Hermitian codes.

Check that W \ W∗ is an ideal.
Prove that Hermitian codes satisfy the isoemtry dual property.
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