Numerical Semigroups and Alegebraic
Geometry Codes

Maria Bras-Amorés

CIMPA Research School
Algebraic Methods in Coding Theory
Ubatuba, July 3-7, 2017



Contents

One-point codes and their decoding
m One-point codes
m Decoding one-point codes

The v sequence, classical codes, and Feng-Rao improved codes
m The v sequence and the minimum distance of classical codes
m On the order bound on the minimum distance

m The v sequence and Feng-Rao improved codes

m On the improvement of Feng-Rao improved codes

The 7 sequence and codes guaranteeing correction of generic errors

m Generic errors

m Conditions for correcting generic errors

m Comparison of improved codes and classical codes correcting generic ¢
m Comparison of improved codes correcting generic errors and Feng-Rac



«o

>

DA



Linear codes

A linear code C of length 1 over the alphabet [, is a vector subspace
of 7.
q



Linear codes

A linear code C of length 1 over the alphabet [, is a vector subspace
of 7.
q

Its elements are called code words.



Linear codes

A linear code C of length 1 over the alphabet [, is a vector subspace
of 7.
q

Its elements are called code words.

The dimension k of the code is the dimension of C as a subspace of IFj.



Linear codes

A linear code C of length 1 over the alphabet [, is a vector subspace
of 7.
q

Its elements are called code words.

The dimension k of the code is the dimension of C as a subspace of IFj.

ThedualcodeofCisCL:{UEF;:U-C:OforallceC}.



Linear codes

A linear code C of length 1 over the alphabet [, is a vector subspace
of 7.
q

Its elements are called code words.

The dimension k of the code is the dimension of C as a subspace of IFj.

ThedualcodeofCisCL:{UEF;:U-C:OforallceC}.

The Hamming distance between two vectors of the same length is the
number of positions in which they differ.



Linear codes

A linear code C of length 1 over the alphabet [, is a vector subspace
of 7.
q

Its elements are called code words.

The dimension k of the code is the dimension of C as a subspace of IFj.

ThedualcodeofCisCl:{UEF;:U-C:OforallceC}.

The Hamming distance between two vectors of the same length is the
number of positions in which they differ.

The weight of a vector is the number of its non-zero components or,
equivalently, its Hamming distance to the zero vector.
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Linear codes

The minimum distance d of a linear code C is the minimum
Hamming distance between two code words in C.

Equivalently, it is the minimum weight of all code words in C.

The correction capability of a code is the maximum number of errors
that can be added to any code word, with the code word being still
uniquelly identifiable.

The correction capability of a linear code with minimum distance d is
15
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One-point codes

Let AF be defined over F,.

Let Pe Xr, with Weierstrass semigroup A= {Ag =0, A1, ... }.
Let A =, L(mP).

The order of f € A\ {0} is p(f) =sif vp(f) = —As

(p(0) = —1).

There exists an infinite basis zg, z1, . . . of A with vp(z;) = —\;
(p(zi) =)

For P,...,P, € Xp\Plet

n

q

F
(f(Pl)v cee 7f(Pn))

ev: A —

ev(f)



Exercise

Consider the Hermitian curve #,

m What is the Weierstrass semigroup at Poo?

m Find a basis zg, z1, . .. of Awithvp(z;) = —)\;

Pr=(0:0:1)=(0,0),P,=(0:1:1)=(0,1),Ps=(1:a:1) = (1,a),Ps =
1:0?2:1)=(1,0%),P5=(a:a:1) = (a,a),Ps=(a:a?:1) = (a,a?),P; =
(0?:a:1)=(a?,a),Pg = (a?: a2 : 1) = (a?,0?)



Exercise

Consider the Hermitian curve #,

m What is the Weierstrass semigroup at Poo? {0.2,3.4,5. ..}

m Find a basis zg, z1, . .. of Awithvp(z;) = —)\;
zg =1,z =x,2p = y,23 = xz,:4 =xy,z5 = ,\3.26 = xz}/.27 = x4,:8 = ,\3}/.29 = xs, 00a
ev(zo)
ev(z1)

m Find the matrix | ev(z;) | for the points

Pr=(0:0:1)=(0,0),P,=(0:1:1)=(0,1),Ps=(1::1) = (1,0),Py =
1:0?2:1)=(1,0%),P5=(a:a:1) = (a,a),Ps=(a:a?:1) = (a,a?),P; =
(0?:a:1)=(a?,a),Pg = (a?: a2 : 1) = (a?,0?)

111 1 111

0 0 1 1 a a o o?

0 1 a a? a2 o a?

000 1 1 & o a o«

0 0 a o a 1 1«

0 0 1 11 1 1
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One-point codes

For W C Ny define the one-point code
Cw=<ev(zi):ieW >t=c (zi(P1),...,zi(Py)):ie W >+

We say that W is the set of parity checks of Cy.

Example
Following the previous exercise, Cyg » 53 is the linear code over F4 with parity

11 1 1 1 1 1 1
check matrix 01 &> a a & & «a
1 1

0 0 1 1 1 1



One-point codes

For W C Ny define the one-point code

Cw =<ev(z):i€W>t=<(z(P1),...,zi(P;)) :i € W >+,

We say that W is the set of parity checks of Cy.

Following the previous exercise, Cyg » 53 is the linear code over F4 with parity

1 1 1 1 1 1 1 1
checkmatrix [ 0 1 o> a a o o «
o0 1 1 1 1 1 1
The one-point codes for which W = {0, 1, ..., m} are called classical

one-point codes. In this case we write C,, for Cyy.
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Decoding one-point codes

Letc € Cw, u = c + ¢, t = weight(e).

Definition

A polynomial f is an error-locator of e if f (P;) = 0 whenever e; # 0.

The footprint of e is the set A, = Ny \ {p(f) : f is an error-locator}.

Lemma

#A, =t



Decoding one-point codes

The kth syndrome of e is the vector e times the kth row of the parity
check matrix, that is,

sc=(zP1) %P ... =@P))| . | =Dz
=1



Decoding one-point codes

The kth syndrome of e is the vector e times the kth row of the parity
check matrix, that is,

€1

o= ((2(Pr) z(P2) ... z(Py) ) 6:2 =5 z(Ppe.
. I=1
€n

For correcting # we need a number of syndromes.
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Decoding one-point codes

If k € W, then s is known since
sz (P)e = sz (P)u; — sz (P)e = sz (Pu

Otherwise, s; can be obtained through the so-called majority voting if
the majority voting condition holds:

v > 24(D(k) N A),

where D(k) = {j € No : \x = \j € A} (#D(k) = ).



Decoding one-point codes

If k € W, then s is known since
sz Pl 61 sz Pl ul sz Pl Cl sz Pl

Otherwise, sx can be obtained through the so-called majority voting if
the majority voting condition holds:

v > 24(D(K) N Ay),

where D(k) = {j € No : \x = \j € A} (#D(k) = ).

Theorem

Ifvi > 2#(D(i) N A,) forall i ¢ W then e is correctable by Cyy.
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Order bound on the minimum distance

From the equality #A, = t we deduce the next lemma.

Lemma

If the number t of errors in e satisfies t < L”"Z_lj, then v; > 2#(D(i) N A,).

The order (or Feng-Rao) bound on the minimum distance of C,, is

dORD(Cm) = l’nin{l/,‘ ti> m}

Lemma

d(Cy) = dorp(Ci)-



Order bound on the minimum distance

A refined version of the order bound is

A" (Cn) = minfvi i > m, Ci # Ciga}.



Order bound on the minimum distance

A refined version of the order bound is

A" (Cn) = minfvi i > m, Ci # Ciga}.

While dogp only depends on the Weierstrass semigroup, dog;” "

depends also on the points Py, ..., P,.
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Order bound on the minimum distance

Lemma

Ifi > 2c — g — 1 (equiv. to lambda; > 2c — 1), then viy1 < vigo.

Consequently, dorp(C;) = viyq foralli > 2c — g — 1.
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Order bound on the minimum distance

Aim: smallest m for which dorp(C;) = vjy1 foralli > m.

For a non-ordinary semigroup A = [0] U [ck, di] U - - - U [c1,d1] U [co, 00)
define the conductor ¢ = ¢y, the subconductor ¢’ = ¢;, the dominant
d = dq, and the subdominant d’ = d5.

Let A be a non-ordinary acute semigroup and let

m=min{\"'(c+ ¢ —2),A7'(2d)}. (1)
Then,

Um > Vmp+1
Vi < Vigq foralli > m.



Order bound on the minimum distance

Corollary
Let A be a non-ordinary acute numerical semigroup and let
m=min{\"'(c+ ¢ —2),A7'(2d)}.
Then, m is the smallest integer for which
dorp(Ci) = Viy1

foralli > m.



Example with the Klein quartic
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In this example, c =5,d =3 and ¢’ = 3.
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Example with the Klein quartic

()

AS
[
]
=
o}

O XU WN - Of~.
—_

Mmoo YU WOl
N Ul N WNN -
N O UTkERNNNN

In this example, c =5,d =3 and ¢’ = 3.
So, A" e+ —2)=X"12d) =3
and m = min{\"!(c+ ¢’ —2),A71(2d)} = 3.



Example with the Hermitian curve

i | N | v | doro(Ci)
0 0 1 2
1 4 2 2
2 512 3
3 8 3 3
4 9 | 4 3
5|10| 3 4
6 |12 | 4 4
7 13| 6 4
8 |14 | 6 4
9 |15 4 5
10|16 | 5 8
11117 | 8 8
12118 9 8
13119 8 9
14120 9 10
15|21 | 10 12
16 | 22 | 12 12
17 | 23 | 12 13
18|24 | 13 14
19 | 25| 14 15
20| 26 | 15 16

In this case c = 12,d = 10, ¢’ =8. A" (c + ¢’ —2) = 12 and
A1(2d) = 14. Som = 121is largest with v, > vy,41 and with
dorp(Ci) = viyq foralli > m.
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Extending to near-acute semigroups

Munuera and Torres, and Oneto and Tamone proved that for any
numerical semigroup

m<min{fA\ " (c+c —2-¢), A" 1(2d - ¢)}.

Notice that for acute semigroups this inequality is an equality.

Munuera and Torres proved that the formula
m=min{\"!(c+c —2—g¢),\"1(2d — ¢)} not only applies for acute
semigroups but also for near-acute semigroups.

[Munuera, Torres] A numerical semigroup with conductor c,
dominant d and subdominant d’ is said to be a near-acute semigroup
ifeitherc —d<d—d or2d—c+1¢&A.
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Extending to near-acute semigroups

Oneto and Tamone proved that
m=min{A\ " (c+c —2-g),A"1(2d —g)}ifand only ifc+ ¢’ —2 < 2d
or2d —c+1¢&A.

Lemma

For a numerical semigroup the following are equivalent

c—d<d—d or 2d—c+1 ¢ A (near-acute condition),
c+c —2<2dor2d—c+1¢A.

Proof: Let us see first that (1) implies (2). If 2d —c+ 1 &€ A then itis
obvious. Otherwise the condition ¢ — d < d — d’ is equivalent to

d’ < 2d — ¢ which, together with 2d —c+1 € A implies¢’ <2d —c+1
by definition of ¢’. This in turn implies thatc+c¢ —2 <c+c' —1 < 2d.

To see that (1) is a consequence of (2) notice that by definition,
d <c —2.Then,ifc+c —2 <2d,wehaved —d' >d—c +2>c—d.
(I



Extending to near-acute semigroups

One concludes the next theorem.

Theorem (Munuera, Torres, Oneto, Tamone)

For any numerical semigroup
m<min{A\"(c+c —2-g¢),\"1(2d-g¢)}.
m=min{\"(c+c —2—g¢),\"1(2d — g)} ifand only if the
corresponding numerical semigroup is near-acute.




Extending to near-acute semigroups

One concludes the next theorem.

Theorem (Munuera, Torres, Oneto, Tamone)

For any numerical semigroup
m<min{A\"(c+c —2-g¢),\"1(2d-g¢)}.
m=min{\"(c+c —2—g¢),\"1(2d — g)} ifand only if the
corresponding numerical semigroup is near-acute.

Conjecture (Oneto, Tamone)

For any numerical semigroup,

m=A"e+d—g— ).



Feng-Rao improved codes

Recall that if f < L”’T*lj for all i ¢ W then e is correctable by Cyy.

Given a rational point P of an algebraic smooth curve Ar defined over
[F, with Weierstrass semigroup A and sequence v with associated
basis zg, z1, . . . and given n other different points Ps, ..., P, of A, the
associated Feng-Rao improved code guaranteeing correction of ¢
errors is defined as

Cirey =< (@i(P1), .-, 2i(Py)) : i € R(t) >,

where ~
Rt)={ieNp:v; <2t+1}.



Feng-Rao improved codes

Recall that if f < L”’T*lj for all i ¢ W then e is correctable by Cyy.

Definition

Given a rational point P of an algebraic smooth curve Ar defined over
[F, with Weierstrass semigroup A and sequence v with associated
basis zo, z1, . . . and given n other different points Ps, ..., P, of A, the
associated Feng-Rao improved code guaranteeing correction of ¢
errors is defined as

Cirey =< (@i(P1), .-, 2i(Py)) : i € R(t) >,

where ~
Rt)={ieNp:v; <2t+1}.

Feng-Rao improved codes will actually improve classical codes only
if v; is decreasing at some i. So, we are interested in the monotonicity
of Vj.



On the improvement of Feng-Rao improved codes

Lemma

If A is an ordinary numerical semigroup with enumeration \ then

1 ifi=0,
Vv = 2 @f1<1<)\1,
i—M+2 ifi> A



On the improvement of Feng-Rao improved codes

Lemma

If A is an ordinary numerical semigroup with enumeration \ then

1 ifi=0,
Vv = 2 §f1<1<)\1,
i—M+2 ifi> A

Proof: It is obvious that 1y = 1 and that v; = 2 whenever 0 < \; < 2.
So, since 21 = Ay, +1, we have that v; = 2 for all 1 <i < A;. Finally, if
Ai = 2 then all non-gaps up to \; — A are in D(i) as well as \;, and
none of the remaining non-gaps are in D(i). Now, if the genus of A is
gtheny;=XN—-AM+2—-gand \; =i+ g. S0, v; =i— A\ + 2. O
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On the improvement of Feng-Rao improved codes

Lemma

If v is non-decreasing then A is Arf.

Proof: Let A be the enumeration of A. Let us see by induction on i that
D) DTN ={eNoj<itu{A"@y—N):0<j<i},
() DTN+ A1) = €N j <iFU{AT N+ A1 — A) 1 0<j < i}

Notice that if (i) is satisfied for all i, then {j € Ng : j < i} C D()\’l(Z/\i)) for all
i, and hence A is Arf (Campillo, Farran, Munuera).



On the improvement of Feng-Rao improved codes

Lemma

If v is non-decreasing then A is Arf.

Proof: Let A be the enumeration of A. Let us see by induction on i that

D) DTN ={eNoj<itu{A"@y—N):0<j<i},
() DTN+ A1) = €N j <iFU{AT N+ A1 — A) 1 0<j < i}

If i = 0 ok.



On the improvement of Feng-Rao improved codes

Lemma

If v is non-decreasing then A is Arf.

Proof: Let A be the enumeration of A. Let us see by induction on i that

(D) DTN ={eNoj<itu{Ayn—X):0<j< i},
(i) DA N+ A1) = €No: j <UD i+ A — ) 0<j < i}

Suppose i > 0.
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On the improvement of Feng-Rao improved codes

Lemma

If v is non-decreasing then A is Arf.

Proof: Let A be the enumeration of A. Let us see by induction on i that

(D) DTN ={eNoj<itu{Ayn—X):0<j< i},

(i) DA N+ A1) = €No: j <UD i+ A — ) 0<j < i}
Suppose i > 0. By the induction hypothesis, vy -1(, 4,y = 2i.

(vi) not decreasing and 2\; > \i_1 + A\, = Ux-10x)) 2 2i.



On the improvement of Feng-Rao improved codes

Lemma

If v is non-decreasing then A is Arf.

Proof: Let A be the enumeration of A. Let us see by induction on i that
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On the improvement of Feng-Rao improved codes

Lemma

If v is non-decreasing then A is Arf.

Proof: Let A be the enumeration of A. Let us see by induction on i that
(D) DTN ={eNoj<itu{Ayn—X):0<j< i},
(i) DA N+ A1) = €No: j <UD i+ A — ) 0<j < i}
Suppose i > 0. By the induction hypothesis, vy -1(, 4,y = 2i.
(vi) not decreasing and 2\; > \i_1 + A\, = Ux-10x)) 2 2i.
If j < ksatisfy A; + A = 2); then Ay < Ajand Ax > A
Consequently, A(D(A'(2X))) C {N: 0<j <i}uU {2\ — )\ : 0<j<i}and
Un-1ay 2 209 DA (2N) = {j € No:j <FU{ATT RN = A) : 0<j < i}



On the improvement of Feng-Rao improved codes

Lemma

If v is non-decreasing then A is Arf.

Proof: Let A be the enumeration of A. Let us see by induction on i that

(D) DTN ={eNoj<itu{Ayn—X):0<j< i},

(i) DA N+ A1) = €No: j <UD i+ A — ) 0<j < i}
Suppose i > 0. By the induction hypothesis, vy -1(, 4,y = 2i.
(vi) not decreasing and 2\; > \i_1 + A\, = Ux-10x)) 2 2i.
If j < ksatisfy A; + A = 2); then Ay < Ajand Ax > A
Consequently, A(D(A'(2X))) C {N: 0<j <i}uU {2\ — )\ : 0<j<i}and
Un-1ay 2 209 DA (2N) = {j € No:j <FU{ATT RN = A) : 0<j < i}
This proves (i).



On the improvement of Feng-Rao improved codes

Lemma

If v is non-decreasing then A is Arf.

Proof: Let A be the enumeration of A. Let us see by induction on i that

(D) DTN ={eNoj<itu{Ayn—X):0<j< i},

(i) DA N+ A1) = €No: j <UD i+ A — ) 0<j < i}
Suppose i > 0. By the induction hypothesis, vy -1(, 4,y = 2i.
(vi) not decreasing and 2\; > \i_1 + A\, = Ux-10x)) 2 2i.
If j < ksatisfy A; + A = 2); then Ay < Ajand Ax > A
Consequently, A(D(A'(2X))) C {N: 0<j <i}uU {2\ — )\ : 0<j<i}and
Un-1ay 2 209 DA (2N) = {j € No:j <FU{ATT RN = A) : 0<j < i}
This proves (i).

Finally, (i) implies v -1(,5,y = 2i + 1 and (ii) follows by an analogous
argumentation. O
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On the improvement of Feng-Rao improved codes

The unique numerical semigroups for which the v sequence is
non-decreasing are ordinary numerical semigroups.

Corollary

The unique numerical semigroup for which the v sequence is strictly
increasing is the trivial numerical semigroup.

The unique numerical semigroups for which the associated classical
codes are not improved by the Feng-Rao improved codes, at least for
one value of t, are the ordinary semigroups.
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Generic errors

The points P; , ..., P; are generically distributed if no element f € A,
f # 0 generated by zo, . . ., z;—1 vanishes in all of them.

Generic errors are those errors whose non-zero positions correspond
to generically distributed points.

Equivalently, e is generic if and only if A, = A; :={0,...,f —1}.
Generic errors of weight t can be a very large portion of all possible

errors of weight t [Hansen, 2001].

By restricting the errors to be corrected to generic errors the decoding
requirements become weaker and we are still able to correct almost
all errors.
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Example: generic sets of points in H,; (/"' = y7 + 1)

Recall H, has affine equation x1™ = y7 +y.
The unique point at infinity is P, = (0:1:0).

b€ F; = b1+ b = Tr(b) = 0 = the unique affine point with y = b is
(0,b).
There are a total of g points (a,b) with b € F,.

beFp\F;=b1+b=Trb) € F;\ {0} = there are q + 1 solutions of
X1t = b1 + b.

b € Fp \ F; = there are g + 1 different affine points with y = b.
There are a total of (7° — q)(q + 1) points (a,b) with b € F2 \ F,.
Total number of affine points = g + (4> — 9)(9 + 1) = ¢°.

If we distinguish the point P, we can take zg = 1,21 = x,z, =y,

2 2
23 =X°,24 = XY, 25 = Y°. ..
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Example: generic sets of TWO points in H,
It = y7 4 y)

Non-generic sets of two points are pairs of points satisfying
x1+1 = 47 4+ 1 and simultaneously vanishing at f = z; +azy = x + a for
somea € Fp.

x 4 a represents a line with g points.
There are ¢* such lines.

There are a total of 4?(]) pairs of colinear points over lines of the form
x + a and so ¢ (]) non-generic errors.

Consequently, the portion of non-generic errors of weight 2 is

7 () 1

7y PHq+1
(%)
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atf =z +az +bzp =y +ax + b for some a,b € Fp.
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Example: generic sets of THREE points in #,

@7 = yT+ )

A set of three points is non-generic if the points satisfy x7™! = 7 + y
and simultaneously vanish at f = z; + azp = x + a for some a € F,2 or
atf =z +az +bzp =y +ax + b for some a,b € Fp.

lines of type 1:
number of lines of type 1:

number of points per line of type 1:

lines of type 2:
number of lines of type 2:

number of points per line of type 2:

X+a
2

q
q

y+ax+bwitha®tl = + b
3
q



Example: generic sets of THREE points in #,

@t =y + 1)

A set of three points is non-generic if the points satisfy x7™! = 7 + y
and simultaneously vanish at f = z; + azp = x + a for some a € F,2 or
atf =z +az +bzp =y +ax + b for some a,b € Fp.
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lines of type 3:
number of lines of type 3:
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X+a
2

q
q

Y +ax +bwitha®™! = b7 + b
3
q

y+ax +bwitha®tl £ 4+ b
-
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Number of points of lines of type 2? (y + ax + b with a7™! = b1 + b)

A point on H,; and on the line y + ax + b must satisfy

x1H = (—ax — b)7 + (—ax — b) = —(ax)T — ax — a7t

Notice that
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So, x = —a' is the unique solution to x7*! = —(ax)? — ax — a”"! and so
the unique point of #, on the line y + ax + b is (—a%,a7t! — b).



Example: generic sets of THREE points in #,
1t =yl +y)

Number of points of lines of type 2? (y + ax + b with a9t = b7 + b)

A point on H,; and on the line y + ax + b must satisfy
1 = (—ax — b)T + (—ax — b) = —(ax)? — ax — a™L.

Notice that
(x+aT)1t1 = (x+a7)1(x+a7) = (xT+a)(x+aT) = 1T +x9a7 4+ ax + a7,

So, x = —a' is the unique solution to x7*! = —(ax)? — ax — a”"! and so
the unique point of 7, on the line y + ax + b is (—a7,a7t! — b).

Lines of type 2 have 1 point



Example: generic sets of THREE points in #,

@t =y + 1)

A set of three points is non-generic if the points satisfy x7™! = 7 + y
and simultaneously vanish at f = z; + azp = x + a for some a € F,2 or
atf =z +az +bzp =y +ax + b for some a,b € Fp.
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X+a
2

q
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y+ax+bwitha®tl = + b
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y+ax +bwitha®tl £ 4+ b
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Example: generic sets of THREE points in #,
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Number of points of lines of type 3? (y + ax + b with a9t1 £ b7 + b)
Counting argument:

On one hand, a point on H,; and on the line y + ax + b must satisfy
x1t1 = —(ax)7 — ax — b7 — b = at most g + 1 points.

On the other hand there are a total of ('723) pairs of affine points.
Each pair meets only in one line.

The number of pairs sharing lines of type 1is 4*({), the number of
pairs sharing lines of type 2 is 0 and the number of pairs sharing lines
of type 3 is at most (g — 1) (7}"), with equality only if all lines of
type 3 have g + 1 points.



Example: generic sets of THREE points in #,
1t =yl +y)

Number of points of lines of type 3? (y + ax + b with a9t1 £ b7 + b)
Counting argument:

On one hand, a point on H,; and on the line y + ax + b must satisfy
x1tl = —(ax)7 — ax — b1 — b = at most g + 1 points.

On the other hand there are a total of ('723) pairs of affine points.
Each pair meets only in one line.

The number of pairs sharing lines of type 1is 4*({), the number of
pairs sharing lines of type 2 is 0 and the number of pairs sharing lines
of type 3 is at most ¢°(q — 1) (7}"), with equality only if all lines of
type 3 have g + 1 points.

3

Since (1) +4°(q — 1)("}") = (%), we deduce that all the lines of type
3 must have g + 1 points.



Example: generic sets of THREE points in #,

@t =y + 1)

A set of three points is non-generic if the points satisfy x7™! = 7 + y
and simultaneously vanish at f = z; + azp = x + a for some a € F,2 or
atf =z +az +bzp =y +ax + b for some a,b € Fp.
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Example: generic sets of THREE points in #,
1t =yl +y)

There are ¢*({) sets of three points sharing a line of type 1 and
(g* — ¢°)("1") sets of three points sharing a line of type 3.

The portion of non-generic errors of weight 3 is then

FE+7P@-D) 1
TR




Conditions for correcting generic errors

Lemma

The following conditions are equivalent.

v > 24 (D(k) N Ay),
Tk = L.



Conditions for correcting generic errors

Lemma

The following conditions are equivalent.

v > 2#(D(k) N Ay),
Tk 2 L.

Proof: Suppose Dy ; <t < Dy jy1
If T < t
4

D(k) = {Dg;1 < D2 <+ <Dgi =7 < Driy1 <+ <Dgj<Dgjy1- <Dy}

D(k)NA;
Ifne>t
R L%

D(k) = {Dk;1 < Dy < -+ < Dyj < Dgjy1-++ < Dg; =7 < Dgip1 <+ <Dy, }

D()NA,



Codes guaranteeing correction of generic errors

We have seen that if t < 7; for all i ¢ W then e is correctable by Cyy.



Codes guaranteeing correction of generic errors

We have seen that if t < 7; for all i ¢ W then e is correctable by Cyy.

Given a rational point P of an algebraic smooth curve Ar defined over
IF, with Weierstrass semigroup A and sequence v with associated
basis zg, z1, . . . and given n other different points Ps, ..., P, of A, the
associated improved code guaranteeing correction of t generic errors
is defined as

Ciepy =< @i(P1), - .-, 2i(Pn)) 11 € R*(t) >+,

where ~
R*(t)={ieNy: 7 <t}



Comparison of improved codes and classical codes
correcting generic errors

Definition

The classical evaluation code with maximum dimension correcting ¢
generic errors is defined by the set of checks

R () ={ieNy:i<m(t)}

where m(t) = max{i € Ny : 7; < t}.



Comparison of improved codes and classical codes
correcting generic errors

Definition

The classical evaluation code with maximum dimension correcting ¢
generic errors is defined by the set of checks

R () ={ieNy:i<m(t)}

where m(t) = max{i € Ny : 7; < t}.

By studying the monotonicity of the T sequence we can compare
R*(t) and R*(t) and the associated codes.
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Monotonicity of 7

The 7 sequence of Ny is

0,0,1,1,2,2,3,3,4,4,5.,5, . ..

The 7 sequence of the semigroup {0} U [c, c0) with ¢ > 0is

(c+1)
——
0....0,1,1,2,2,3,3,4,4, ...

Lemma

For a non-ordinary semigroup with conductor c, genus g and dominant d
(non-gap previous to c) let m = \~1(2d). Then

BT, =c—9—1> 7T
B 7 < Tigq foralli > m.
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Corollary

The unique numerical semigroups with non-decreasing T sequence are
ordinary semigroups.



Comparison of improved codes and classical codes
correcting generic errors

Corollary

The unique numerical semigroups with non-decreasing T sequence are
ordinary semigroups.

R*(t) = R*(t) for all t € Ny if and only if the associated numerical
semigroup is ordinary.



Comparison of improved codes correcting generic
errors and Feng-Rao improved codes

Feng-Rao improved code correcting t errors:

Crey =< (@(P1),....zi(Py)) -1 € R() >+,

where
Vi —

f{(t):{ieNo:{ 1J<t‘}.



Comparison of improved codes correcting generic
errors and Feng-Rao improved codes

Feng-Rao improved code correcting t errors:

Crey =< (@(P1),....zi(Py)) -1 € R() >+,

where

N —
Rt)={ieNy: V’Z J < t}.
Improved code correcting t generic errors: is defined as
Cieqny =< (zi(P1),.,2zi(Pn)) 11 € R*(8) >+,

where R
R*(f)={ieNg: 7 < t}.



Comparing v and 7

Lemma

| %L | forall i € Ny
m= %1 foralli>2c—g—1
| % | for all i € Ny if and only if A is Arf.




Comparing v and 7

Lemma

| %L | forall i € Ny
m= %1 foralli>2c—g—1
| % | for all i € Ny if and only if A is Arf.

Corollary

B R()C R(t)for all t € Np.
B R*(t) = R(¢) for all t large enough.

(
3] R*(t) R(t) forall t € Ny if and only if the associated numerical
migroup is Arf.




Hermitian Codes Redundancy ([2)

20 L

e

® 4R(t)  #R(t) ® #R*(t) ® #R*(t)



Exercise

Consider the numerical semigroup
H ={0,12,19,24,28,31, 34,36, 38,40,42,43,45,46,47, ... }.

Check that

m7; > |4 forallie Ny

7= L”’T_lj foralli>2c—g—1



Exercise

Consider the numerical semigroup
H ={0,12,19,24,28,31, 34,36, 38,40,42,43,45,46,47, ... }.

Check that

m7; > |4 forallie Ny

7= L”’T_lj foralli>2c—g—1

i Aj {A/-:kIf)\jEA} v T
0 0 707 T 0
1| 12 {0, 12} 2 | o
2 | 19 {0,19} 2 | o
3 | 24 {0, 12, 24} 3 1
4 | 28 {0, 28} 2 | o
5 | 31 {0,12,19,31} 4|1
6 | 34 {0, 34} 2 | o
7 | 36 {0, 12, 24, 36} 4 |1
s | 38 {0,19, 38} 3 | 2
9 | 40 {0, 12, 28, 40} 4 1
10 42 ,42} 2 0
11 | 43 {0, 12,19, 24, 31, 43} 6 | 2
12 45 {0,45} 2 0
13 | 46 {0, 12, 34, 46} 4 1
14 | 47 {0, 19, 28, 47} 4 | 2
15 48 {0, 12, 24, 36, 48} 5] 3
16 49 5 2 0
17 50 {0, 12,19, 31, 38,50} 6 2
18 51 0,51 2 0
19 52 {0, 12, 24, 28, 40, 52} 6 3
20 | 53 {0, 19, 34,53} 4| 2
21 | 54 {0, 12, 42, 54} 4 1
22 55 {0, 12,19, 24, 31, 36, 43, 55} 8 3
23 | 56 10, 28,56} 3 | a
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