Numerical Semigroups and Alegebraic Geometry Codes

Maria Bras-Amorós

CIMPA Research School
Algebraic Methods in Coding Theory
Ubatuba, July 3-7, 2017

Contents

1 One-point codes and their decoding
■ One-point codes
■ Decoding one-point codes
2 The ν sequence, classical codes, and Feng-Rao improved codes

- The ν sequence and the minimum distance of classical codes
- On the order bound on the minimum distance
- The ν sequence and Feng-Rao improved codes

■ On the improvement of Feng-Rao improved codes
3 The τ sequence and codes guaranteeing correction of generic errors
\square Generic errors

- Conditions for correcting generic errors

■ Comparison of improved codes and classical codes correcting generic ϵ
■ Comparison of improved codes correcting generic errors and Feng-Rac

One-point codes and their decoding

Linear codes

A linear code C of length n over the alphabet \mathbb{F}_{q} is a vector subspace of \mathbb{F}_{q}^{n}.

Linear codes

A linear code C of length n over the alphabet \mathbb{F}_{q} is a vector subspace of \mathbb{F}_{q}^{n}.
Its elements are called code words.

Linear codes

A linear code C of length n over the alphabet \mathbb{F}_{q} is a vector subspace of \mathbb{F}_{q}^{n}.
Its elements are called code words.
The dimension k of the code is the dimension of C as a subspace of \mathbb{F}_{q}^{n}.

Linear codes

A linear code C of length n over the alphabet \mathbb{F}_{q} is a vector subspace of \mathbb{F}_{q}^{n}.
Its elements are called code words.
The dimension k of the code is the dimension of C as a subspace of \mathbb{F}_{q}^{n}.
The dual code of C is $C^{\perp}=\left\{v \in \mathbb{F}_{q}^{n}: v \cdot c=0\right.$ for all $\left.c \in C\right\}$.

Linear codes

A linear code C of length n over the alphabet \mathbb{F}_{q} is a vector subspace of \mathbb{F}_{q}^{n}.
Its elements are called code words.
The dimension k of the code is the dimension of C as a subspace of \mathbb{F}_{q}^{n}.
The dual code of C is $C^{\perp}=\left\{v \in \mathbb{F}_{q}^{n}: v \cdot c=0\right.$ for all $\left.c \in C\right\}$.
The Hamming distance between two vectors of the same length is the number of positions in which they differ.

Linear codes

A linear code C of length n over the alphabet \mathbb{F}_{q} is a vector subspace of \mathbb{F}_{q}^{n}.
Its elements are called code words.
The dimension k of the code is the dimension of C as a subspace of \mathbb{F}_{q}^{n}.
The dual code of C is $C^{\perp}=\left\{v \in \mathbb{F}_{q}^{n}: v \cdot c=0\right.$ for all $\left.c \in C\right\}$.
The Hamming distance between two vectors of the same length is the number of positions in which they differ.
The weight of a vector is the number of its non-zero components or, equivalently, its Hamming distance to the zero vector.

Linear codes

The minimum distance d of a linear code C is the minimum
Hamming distance between two code words in C.

Linear codes

The minimum distance d of a linear code C is the minimum
Hamming distance between two code words in C.
Equivalently, it is the minimum weight of all code words in C.

Linear codes

The minimum distance d of a linear code C is the minimum Hamming distance between two code words in C.
Equivalently, it is the minimum weight of all code words in C.
The correction capability of a code is the maximum number of errors that can be added to any code word, with the code word being still uniquelly identifiable.

Linear codes

The minimum distance d of a linear code C is the minimum Hamming distance between two code words in C.
Equivalently, it is the minimum weight of all code words in C.
The correction capability of a code is the maximum number of errors that can be added to any code word, with the code word being still uniquelly identifiable.
The correction capability of a linear code with minimum distance d is $\left\lfloor\frac{d-1}{2}\right\rfloor$.

One-point codes

Let \mathcal{X}_{F} be defined over \mathbb{F}_{q}.

One-point codes

Let \mathcal{X}_{F} be defined over \mathbb{F}_{q}.
Let $P \in \mathcal{X}_{F}$,

One-point codes

Let \mathcal{X}_{F} be defined over \mathbb{F}_{q}.
Let $P \in \mathcal{X}_{F}$, with Weierstrass semigroup $\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \ldots\right\}$.

One-point codes

Let \mathcal{X}_{F} be defined over \mathbb{F}_{q}.
Let $P \in \mathcal{X}_{F}$, with Weierstrass semigroup $\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \ldots\right\}$.
Let $A=\bigcup_{m \geqslant 0} L(m P)$.

One-point codes

Let \mathcal{X}_{F} be defined over \mathbb{F}_{q}.
Let $P \in \mathcal{X}_{F}$, with Weierstrass semigroup $\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \ldots\right\}$.
Let $A=\bigcup_{m \geqslant 0} L(m P)$.
The order of $f \in A \backslash\{0\}$ is $\rho(f)=s$ if $v_{P}(f)=-\lambda_{s}$

One-point codes

Let \mathcal{X}_{F} be defined over \mathbb{F}_{q}.
Let $P \in \mathcal{X}_{F}$, with Weierstrass semigroup $\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \ldots\right\}$.
Let $A=\bigcup_{m \geqslant 0} L(m P)$.
The order of $f \in A \backslash\{0\}$ is $\rho(f)=s$ if $v_{P}(f)=-\lambda_{s}$
$(\rho(0)=-1)$.

One-point codes

Let \mathcal{X}_{F} be defined over \mathbb{F}_{q}.
Let $P \in \mathcal{X}_{F}$, with Weierstrass semigroup $\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \ldots\right\}$.
Let $A=\bigcup_{m \geqslant 0} L(m P)$.
The order of $f \in A \backslash\{0\}$ is $\rho(f)=s$ if $v_{P}(f)=-\lambda_{s}$ ($\rho(0)=-1$).
There exists an infinite basis z_{0}, z_{1}, \ldots of A with $v_{P}\left(z_{i}\right)=-\lambda_{i}$ ($\rho\left(z_{i}\right)=i$).

One-point codes

Let \mathcal{X}_{F} be defined over \mathbb{F}_{q}.
Let $P \in \mathcal{X}_{F}$, with Weierstrass semigroup $\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \ldots\right\}$.
Let $A=\bigcup_{m \geqslant 0} L(m P)$.
The order of $f \in A \backslash\{0\}$ is $\rho(f)=s$ if $v_{P}(f)=-\lambda_{s}$
($\rho(0)=-1$).
There exists an infinite basis z_{0}, z_{1}, \ldots of A with $v_{P}\left(z_{i}\right)=-\lambda_{i}$ ($\rho\left(z_{i}\right)=i$).
For $P_{1}, \ldots, P_{n} \in \mathcal{X}_{F} \backslash P$ let

$$
\begin{aligned}
A & \longrightarrow \mathbb{F}_{q}{ }^{n} \\
\operatorname{ev}(f) & =\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

Exercise

Consider the Hermitian curve \mathcal{H}_{2}
■ What is the Weierstrass semigroup at P_{∞} ?
■ Find a basis z_{0}, z_{1}, \ldots of A with $v_{P}\left(z_{i}\right)=-\lambda_{i}$

- Find the matrix $\left(\begin{array}{c}\operatorname{ev}\left(z_{0}\right) \\ \operatorname{ev}\left(z_{1}\right) \\ \operatorname{ev}\left(z_{2}\right) \\ \vdots\end{array}\right)$ for the points

$$
\begin{aligned}
& P_{1}=(0: 0: 1) \equiv(0,0), P_{2}=(0: 1: 1) \equiv(0,1), P_{3}=(1: \alpha: 1) \equiv(1, \alpha), P_{4}= \\
& \left(1: \alpha^{2}: 1\right) \equiv\left(1, \alpha^{2}\right), P_{5}=(\alpha: \alpha: 1) \equiv(\alpha, \alpha), P_{6}=\left(\alpha: \alpha^{2}: 1\right) \equiv\left(\alpha, \alpha^{2}\right), P_{7}= \\
& \left(\alpha^{2}: \alpha: 1\right) \equiv\left(\alpha^{2}, \alpha\right), P_{8}=\left(\alpha^{2}: \alpha^{2}: 1\right) \equiv\left(\alpha^{2}, \alpha^{2}\right)
\end{aligned}
$$

Exercise

Consider the Hermitian curve \mathcal{H}_{2}
■ What is the Weierstrass semigroup at P_{∞} ? $\{0,2,3,4,5 \ldots\}$
■ Find a basis z_{0}, z_{1}, \ldots of A with $v_{P}\left(z_{i}\right)=-\lambda_{i}$
$z_{0}=1, z_{1}=x, z_{2}=y, z_{3}=x^{2}, z_{4}=x y, z_{5}=x^{3}, z_{6}=x^{2} y, z_{7}=x^{4}, z_{8}=x^{3} y, z_{9}=x^{5}, \ldots$

- Find the matrix $\left(\begin{array}{c}e v\left(z_{0}\right) \\ e v\left(z_{1}\right) \\ e v\left(z_{2}\right) \\ \vdots\end{array}\right)$ for the points

$$
\begin{aligned}
& P_{1}=(0: 0: 1) \equiv(0,0), P_{2}=(0: 1: 1) \equiv(0,1), P_{3}=(1: \alpha: 1) \equiv(1, \alpha), P_{4}= \\
& \left(1: \alpha^{2}: 1\right) \equiv\left(1, \alpha^{2}\right), P_{5}=(\alpha: \alpha: 1) \equiv(\alpha, \alpha), P_{6}=\left(\alpha: \alpha^{2}: 1\right) \equiv\left(\alpha, \alpha^{2}\right), P_{7}= \\
& \left(\alpha^{2}: \alpha: 1\right) \equiv\left(\alpha^{2}, \alpha\right), P_{8}=\left(\alpha^{2}: \alpha^{2}: 1\right) \equiv\left(\alpha^{2}, \alpha^{2}\right)
\end{aligned}
$$

$$
\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & \alpha & \alpha & \alpha^{2} & \alpha^{2} \\
0 & 1 & \alpha & \alpha^{2} & \alpha & \alpha^{2} & \alpha & \alpha^{2} \\
0 & 0 & 1 & 1 & \alpha^{2} & \alpha^{2} & \alpha & \alpha \\
0 & 0 & \alpha & \alpha^{2} & \alpha^{2} & 1 & 1 & \alpha \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
& & & \vdots & & & &
\end{array}\right)
$$

One-point codes

For $W \subseteq \mathbb{N}_{0}$ define the one-point code

$$
C_{W}=<e v\left(z_{i}\right): i \in W>^{\perp}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in W>^{\perp} .
$$

One-point codes

For $W \subseteq \mathbb{N}_{0}$ define the one-point code

$$
C_{W}=<e v\left(z_{i}\right): i \in W>^{\perp}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in W>^{\perp} .
$$

We say that W is the set of parity checks of C_{W}.

One-point codes

For $W \subseteq \mathbb{N}_{0}$ define the one-point code

$$
C_{W}=<\operatorname{ev}\left(z_{i}\right): i \in W>^{\perp}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in W>^{\perp} .
$$

We say that W is the set of parity checks of C_{W}.

Example

Following the previous exercise, $C_{\{0,2,5\}}$ is the linear code over \mathbb{F}_{4} with parity check matrix $\left(\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & \alpha^{2} & \alpha & \alpha & \alpha^{2} & \alpha^{2} & \alpha \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$

One-point codes

For $W \subseteq \mathbb{N}_{0}$ define the one-point code

$$
C_{W}=<\operatorname{ev}\left(z_{i}\right): i \in W>^{\perp}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in W>^{\perp} .
$$

We say that W is the set of parity checks of C_{W}.

Example

Following the previous exercise, $C_{\{0,2,5\}}$ is the linear code over \mathbb{F}_{4} with parity check matrix $\left(\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & \alpha^{2} & \alpha & \alpha & \alpha^{2} & \alpha^{2} & \alpha \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$

The one-point codes for which $W=\{0,1, \ldots, m\}$ are called classical one-point codes. In this case we write C_{m} for C_{W}.

Decoding one-point codes

Let $c \in C_{W}, u=c+e, t=\operatorname{weight}(e)$.

Decoding one-point codes

Let $c \in C_{W}, u=c+e, t=\operatorname{weight}(e)$.

Definition

A polynomial f is an error-locator of e if $f\left(P_{i}\right)=0$ whenever $e_{i} \neq 0$.

Decoding one-point codes

Let $c \in C_{W}, u=c+e, t=\operatorname{weight}(e)$.

Definition

A polynomial f is an error-locator of e if $f\left(P_{i}\right)=0$ whenever $e_{i} \neq 0$.

The footprint of e is the set $\Delta_{e}=\mathbb{N}_{0} \backslash\{\rho(f): f$ is an error-locator $\}$.

Decoding one-point codes

Let $c \in C_{W}, u=c+e, t=\operatorname{weight}(e)$.

Definition

A polynomial f is an error-locator of e if $f\left(P_{i}\right)=0$ whenever $e_{i} \neq 0$.

The footprint of e is the set $\Delta_{e}=\mathbb{N}_{0} \backslash\{\rho(f): f$ is an error-locator $\}$.

Lemma
$\# \Delta_{e}=t$.

Decoding one-point codes

Definition

The k th syndrome of e is the vector e times the k th row of the parity check matrix, that is,

$$
s_{k}=\left(\begin{array}{llll}
z_{k}\left(P_{1}\right) & z_{k}\left(P_{2}\right) & \ldots & z_{k}\left(P_{n}\right)
\end{array}\right)\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right)=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) e_{l} .
$$

Decoding one-point codes

Definition

The k th syndrome of e is the vector e times the k th row of the parity check matrix, that is,

$$
s_{k}=\left(\begin{array}{llll}
z_{k}\left(P_{1}\right) & z_{k}\left(P_{2}\right) & \ldots & z_{k}\left(P_{n}\right)
\end{array}\right)\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right)=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) e_{l} .
$$

For correcting u we need a number of syndromes.

Decoding one-point codes

If $k \in W$, then s_{k} is known since

$$
s_{k}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) e_{l}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) u_{l}-\sum_{l=1}^{n} z_{k}\left(P_{l}\right) c_{l}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) u_{l} .
$$

Decoding one-point codes

If $k \in W$, then s_{k} is known since

$$
s_{k}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) e_{l}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) u_{l}-\sum_{l=1}^{n} z_{k}\left(P_{l}\right) c_{l}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) u_{l} .
$$

Otherwise, s_{k} can be obtained through the so-called majority voting if the majority voting condition holds:

$$
\nu_{k}>2 \#\left(D(k) \cap \Delta_{e}\right),
$$

where $D(k)=\left\{j \in \mathbb{N}_{0}: \lambda_{k}-\lambda_{j} \in \Lambda\right\}\left(\# D(k)=\nu_{k}\right)$.

Decoding one-point codes

If $k \in W$, then s_{k} is known since

$$
s_{k}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) e_{l}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) u_{l}-\sum_{l=1}^{n} z_{k}\left(P_{l}\right) c_{l}=\sum_{l=1}^{n} z_{k}\left(P_{l}\right) u_{l} .
$$

Otherwise, s_{k} can be obtained through the so-called majority voting if the majority voting condition holds:

$$
\nu_{k}>2 \#\left(D(k) \cap \Delta_{e}\right),
$$

where $D(k)=\left\{j \in \mathbb{N}_{0}: \lambda_{k}-\lambda_{j} \in \Lambda\right\}\left(\# D(k)=\nu_{k}\right)$.

Theorem

If $\nu_{i}>2 \#\left(D(i) \cap \Delta_{e}\right)$ for all $i \notin W$ then e is correctable by C_{W}.

The ν sequence, classical codes, and Feng-Rao improved codes

Order bound on the minimum distance

From the equality $\# \Delta_{e}=t$ we deduce the next lemma.

Lemma

If the number t of errors in e satisfies $t \leqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$, then $\nu_{i}>2 \#\left(D(i) \cap \Delta_{e}\right)$.

Order bound on the minimum distance

From the equality $\# \Delta_{e}=t$ we deduce the next lemma.

Lemma

If the number t of errors in e satisfies $t \leqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$, then $\nu_{i}>2 \#\left(D(i) \cap \Delta_{e}\right)$.

Definition

The order (or Feng-Rao) bound on the minimum distance of C_{m} is

$$
d_{\text {ORD }}\left(C_{m}\right)=\min \left\{\nu_{i}: i>m\right\} .
$$

Order bound on the minimum distance

From the equality $\# \Delta_{e}=t$ we deduce the next lemma.

Lemma

If the number t of errors in e satisfies $t \leqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$, then $\nu_{i}>2 \#\left(D(i) \cap \Delta_{e}\right)$.

Definition

The order (or Feng-Rao) bound on the minimum distance of C_{m} is

$$
d_{\text {ORD }}\left(C_{m}\right)=\min \left\{\nu_{i}: i>m\right\} .
$$

Lemma

$$
d\left(C_{m}\right) \geqslant d_{O R D}\left(C_{m}\right) .
$$

Order bound on the minimum distance

Definition

A refined version of the order bound is

$$
d_{O R D}^{P_{1}, \ldots, P_{n}}\left(C_{m}\right)=\min \left\{\nu_{i}: i>m, C_{i} \neq C_{i+1}\right\} .
$$

Order bound on the minimum distance

Definition

A refined version of the order bound is

$$
d_{O R D}^{P_{1}, \ldots, P_{n}}\left(C_{m}\right)=\min \left\{\nu_{i}: i>m, C_{i} \neq C_{i+1}\right\} .
$$

While $d_{O R D}$ only depends on the Weierstrass semigroup, $d_{O R D}^{P_{1}, \ldots, P_{n}}$ depends also on the points P_{1}, \ldots, P_{n}.

Order bound on the minimum distance

Lemma

If $i \geqslant 2 c-g-1$ (equiv. to lambda $a_{i} \geqslant 2 c-1$), then $\nu_{i+1} \leqslant \nu_{i+2}$.

Order bound on the minimum distance

Lemma

If $i \geqslant 2 c-g-1$ (equiv. to lambda $a_{i} \geqslant 2 c-1$), then $\nu_{i+1} \leqslant \nu_{i+2}$.
Consequently, $d_{\text {ORD }}\left(C_{i}\right)=\nu_{i+1}$ for all $i \geqslant 2 c-g-1$.

Order bound on the minimum distance

Aim: smallest m for which $d_{\text {ORD }}\left(C_{i}\right)=\nu_{i+1}$ for all $i \geqslant m$.

Order bound on the minimum distance

Aim: smallest m for which $d_{\text {ORD }}\left(C_{i}\right)=\nu_{i+1}$ for all $i \geqslant m$.
For a non-ordinary semigroup $\Lambda=[0] \cup\left[c_{k}, d_{k}\right] \cup \cdots \cup\left[c_{1}, d_{1}\right] \cup\left[c_{0}, \infty\right)$ define the conductor $c=c_{0}$, the subconductor $c^{\prime}=c_{1}$, the dominant $d=d_{1}$, and the subdominant $d^{\prime}=d_{2}$.

Order bound on the minimum distance

Aim: smallest m for which $d_{\text {ORD }}\left(C_{i}\right)=\nu_{i+1}$ for all $i \geqslant m$.
For a non-ordinary semigroup $\Lambda=[0] \cup\left[c_{k}, d_{k}\right] \cup \cdots \cup\left[c_{1}, d_{1}\right] \cup\left[c_{0}, \infty\right)$ define the conductor $c=c_{0}$, the subconductor $c^{\prime}=c_{1}$, the dominant $d=d_{1}$, and the subdominant $d^{\prime}=d_{2}$.

Theorem

Let Λ be a non-ordinary acute semigroup and let

$$
\begin{equation*}
m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2\right), \lambda^{-1}(2 d)\right\} . \tag{1}
\end{equation*}
$$

Then,
$1 \nu_{m}>\nu_{m+1}$
$2 \nu_{i} \leqslant \nu_{i+1}$ for all $i>m$.

Order bound on the minimum distance

Corollary

Let Λ be a non-ordinary acute numerical semigroup and let

$$
m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2\right), \lambda^{-1}(2 d)\right\} .
$$

Then, m is the smallest integer for which

$$
d_{\text {ORD }}\left(C_{i}\right)=\nu_{i+1}
$$

for all $i \geqslant m$.

Example with the Klein quartic

i	λ_{i}	ν_{i}	$d_{\mathrm{ORD}}\left(C_{i}\right)$
0	0	1	2
1	3	2	2
2	5	2	2
3	6	3	2
4	7	2	4
5	8	4	4
6	9	4	5
7	10	5	6
8	11	6	7
9	12	7	8

Example with the Klein quartic

i	λ_{i}	ν_{i}	$d_{\mathrm{ORD}}\left(C_{i}\right)$
0	0	1	2
1	3	2	2
2	5	2	2
3	6	3	2
4	7	2	4
5	8	4	4
6	9	4	5
7	10	5	6
8	11	6	7
9	12	7	8

In this example, $c=5, d=3$ and $c^{\prime}=3$.

Example with the Klein quartic

i	λ_{i}	ν_{i}	$d_{\mathrm{ORD}}\left(C_{i}\right)$
0	0	1	2
1	3	2	2
2	5	2	2
3	6	3	2
4	7	2	4
5	8	4	4
6	9	4	5
7	10	5	6
8	11	6	7
9	12	7	8

In this example, $c=5, d=3$ and $c^{\prime}=3$.
So, $\lambda^{-1}\left(c+c^{\prime}-2\right)=\lambda^{-1}(2 d)=3$

Example with the Klein quartic

i	λ_{i}	ν_{i}	$d_{\text {ORD }}\left(C_{i}\right)$
0	0	1	2
1	3	2	2
2	5	2	2
3	6	3	2
4	7	2	4
5	8	4	4
6	9	4	5
7	10	5	6
8	11	6	7
9	12	7	8

In this example, $c=5, d=3$ and $c^{\prime}=3$.
So, $\lambda^{-1}\left(c+c^{\prime}-2\right)=\lambda^{-1}(2 d)=3$
and $m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2\right), \lambda^{-1}(2 d)\right\}=3$.

Example with the Hermitian curve

i	λ_{i}	ν_{i}	$d_{\text {ORD }}\left(C_{i}\right)$
0	0	1	2
1	4	2	2
2	5	2	3
3	8	3	3
4	9	4	3
5	10	3	4
6	12	4	4
7	13	6	4
8	14	6	4
9	15	4	5
10	16	5	8
11	17	8	8
12	18	9	8
13	19	8	9
14	20	9	10
15	21	10	12
16	22	12	12
17	23	12	13
18	24	13	14
19	25	14	15
20	26	15	16

In this case $c=12, d=10, c^{\prime}=8 . \lambda^{-1}\left(c+c^{\prime}-2\right)=12$ and $\lambda^{-1}(2 d)=14$. So $m=12$ is largest with $\nu_{m}>\nu_{m+1}$ and with $d_{\mathrm{ORD}}\left(C_{i}\right)=\nu_{i+1}$ for all $i \geqslant m$.

Extending to near-acute semigroups

Munuera and Torres, and Oneto and Tamone proved that for any numerical semigroup

$$
m \leqslant \min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}
$$

Extending to near-acute semigroups

Munuera and Torres, and Oneto and Tamone proved that for any numerical semigroup

$$
m \leqslant \min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\} .
$$

Notice that for acute semigroups this inequality is an equality.

Extending to near-acute semigroups

Munuera and Torres, and Oneto and Tamone proved that for any numerical semigroup

$$
m \leqslant \min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\} .
$$

Notice that for acute semigroups this inequality is an equality.
Munuera and Torres proved that the formula
$m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}$ not only applies for acute semigroups but also for near-acute semigroups.

Definition

[Munuera, Torres] A numerical semigroup with conductor c, dominant d and subdominant d^{\prime} is said to be a near-acute semigroup if either $c-d \leqslant d-d^{\prime}$ or $2 d-c+1 \notin \Lambda$.

Extending to near-acute semigroups

Oneto and Tamone proved that
$m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}$ if and only if $c+c^{\prime}-2 \leqslant 2 d$ or $2 d-c+1 \notin \Lambda$.

Extending to near-acute semigroups

Oneto and Tamone proved that $m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}$ if and only if $c+c^{\prime}-2 \leqslant 2 d$ or $2 d-c+1 \notin \Lambda$.

Lemma

For a numerical semigroup the following are equivalent
$1 c-d \leqslant d-d^{\prime}$ or $2 d-c+1 \notin \Lambda$ (near-acute condition),
$2 c+c^{\prime}-2 \leqslant 2 d$ or $2 d-c+1 \notin \Lambda$.

Extending to near-acute semigroups

Oneto and Tamone proved that $m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}$ if and only if $c+c^{\prime}-2 \leqslant 2 d$ or $2 d-c+1 \notin \Lambda$.

Lemma

For a numerical semigroup the following are equivalent
$1 c-d \leqslant d-d^{\prime}$ or $2 d-c+1 \notin \Lambda$ (near-acute condition),
2 $c+c^{\prime}-2 \leqslant 2 d$ or $2 d-c+1 \notin \Lambda$.

Proof: Let us see first that (1) implies (2). If $2 d-c+1 \notin \Lambda$ then it is obvious. Otherwise the condition $c-d \leqslant d-d^{\prime}$ is equivalent to $d^{\prime} \leqslant 2 d-c$ which, together with $2 d-c+1 \in \Lambda$ implies $c^{\prime} \leqslant 2 d-c+1$ by definition of c^{\prime}. This in turn implies that $c+c^{\prime}-2<c+c^{\prime}-1 \leqslant 2 d$.
To see that (1) is a consequence of (2) notice that by definition, $d^{\prime} \leqslant c^{\prime}-2$. Then, if $c+c^{\prime}-2 \leqslant 2 d$, we have $d-d^{\prime} \geqslant d-c^{\prime}+2 \geqslant c-d$.

Extending to near-acute semigroups

One concludes the next theorem.

Theorem (Munuera, Torres, Oneto, Tamone)

1 For any numerical semigroup $m \leqslant \min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}$.
$2 m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}$ if and only if the corresponding numerical semigroup is near-acute.

Extending to near-acute semigroups

One concludes the next theorem.

Theorem (Munuera, Torres, Oneto, Tamone)

1 For any numerical semigroup

$$
m \leqslant \min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}
$$

$2 m=\min \left\{\lambda^{-1}\left(c+c^{\prime}-2-g\right), \lambda^{-1}(2 d-g)\right\}$ if and only if the corresponding numerical semigroup is near-acute.

Conjecture (Oneto, Tamone)

For any numerical semigroup,

$$
m \geqslant \lambda^{-1}\left(c+d-g-\lambda_{1}\right)
$$

Feng-Rao improved codes

Recall that if $t \leqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \notin W$ then e is correctable by C_{W}.

Definition

Given a rational point P of an algebraic smooth curve \mathcal{X}_{F} defined over \mathbb{F}_{q} with Weierstrass semigroup Λ and sequence ν with associated basis z_{0}, z_{1}, \ldots and given n other different points P_{1}, \ldots, P_{n} of \mathcal{X}_{F}, the associated Feng-Rao improved code guaranteeing correction of t errors is defined as

$$
C_{\tilde{R}(t)}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in \tilde{R}(t)>^{\perp}
$$

where

$$
\tilde{R}(t)=\left\{i \in \mathbb{N}_{0}: \nu_{i}<2 t+1\right\} .
$$

Feng-Rao improved codes

Recall that if $t \leqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \notin W$ then e is correctable by C_{W}.

Definition

Given a rational point P of an algebraic smooth curve \mathcal{X}_{F} defined over \mathbb{F}_{q} with Weierstrass semigroup Λ and sequence ν with associated basis z_{0}, z_{1}, \ldots and given n other different points P_{1}, \ldots, P_{n} of \mathcal{X}_{F}, the associated Feng-Rao improved code guaranteeing correction of t errors is defined as

$$
C_{\tilde{R}(t)}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in \tilde{R}(t)>^{\perp}
$$

where

$$
\tilde{R}(t)=\left\{i \in \mathbb{N}_{0}: \nu_{i}<2 t+1\right\} .
$$

Feng-Rao improved codes will actually improve classical codes only if ν_{i} is decreasing at some i. So, we are interested in the monotonicity of ν_{i}.

On the improvement of Feng-Rao improved codes

Lemma

If Λ is an ordinary numerical semigroup with enumeration λ then

$$
\nu_{i}= \begin{cases}1 & \text { if } i=0 \\ 2 & \text { if } 1 \leqslant i \leqslant \lambda_{1} \\ i-\lambda_{1}+2 & \text { if } i>\lambda_{1}\end{cases}
$$

On the improvement of Feng-Rao improved codes

Lemma

If Λ is an ordinary numerical semigroup with enumeration λ then

$$
\nu_{i}= \begin{cases}1 & \text { if } i=0, \\ 2 & \text { if } 1 \leqslant i \leqslant \lambda_{1}, \\ i-\lambda_{1}+2 & \text { if } i>\lambda_{1} .\end{cases}
$$

Proof: It is obvious that $\nu_{0}=1$ and that $\nu_{i}=2$ whenever $0<\lambda_{i}<2 \lambda_{1}$. So, since $2 \lambda_{1}=\lambda_{\lambda_{1}+1}$, we have that $\nu_{i}=2$ for all $1 \leqslant i \leqslant \lambda_{1}$. Finally, if $\lambda_{i} \geqslant 2 \lambda_{1}$ then all non-gaps up to $\lambda_{i}-\lambda_{1}$ are in $D(i)$ as well as λ_{i}, and none of the remaining non-gaps are in $D(i)$. Now, if the genus of Λ is g, then $\nu_{i}=\lambda_{i}-\lambda_{1}+2-g$ and $\lambda_{i}=i+g$. So, $\nu_{i}=i-\lambda_{1}+2$.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Notice that if (i) is satisfied for all i, then $\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \subseteq D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)$ for all i, and hence Λ is Arf (Campillo, Farran, Munuera).

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

If $i=0 \mathrm{ok}$.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Suppose $i>0$.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Suppose $i>0$. By the induction hypothesis, $\nu_{\lambda-1\left(\lambda_{i-1}+\lambda_{i}\right)}=2 i$.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Suppose $i>0$. By the induction hypothesis, $\nu_{\lambda-1\left(\lambda_{i-1}+\lambda_{i}\right)}=2 i$.
$\left(\nu_{i}\right)$ not decreasing and $2 \lambda_{i}>\lambda_{i-1}+\lambda_{i} \Rightarrow \nu_{\lambda-1}\left(2 \lambda_{i}\right) \geqslant 2 i$.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Suppose $i>0$. By the induction hypothesis, $\nu_{\lambda^{-1}\left(\lambda_{i-1}+\lambda_{i}\right)}=2 i$.
$\left(\nu_{i}\right)$ not decreasing and $2 \lambda_{i}>\lambda_{i-1}+\lambda_{i} \Rightarrow \nu_{\lambda-1\left(2 \lambda_{i}\right)} \geqslant 2 i$.
If $j \leqslant k$ satisfy $\lambda_{j}+\lambda_{k}=2 \lambda_{i}$ then $\lambda_{j} \leqslant \lambda_{i}$ and $\lambda_{k} \geqslant \lambda_{i}$.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Suppose $i>0$. By the induction hypothesis, $\nu_{\lambda-1\left(\lambda_{i-1}+\lambda_{i}\right)}=2 i$.
$\left(\nu_{i}\right)$ not decreasing and $2 \lambda_{i}>\lambda_{i-1}+\lambda_{i} \Rightarrow \nu_{\lambda-1}\left(2 \lambda_{i}\right) \geqslant 2 i$.
If $j \leqslant k$ satisfy $\lambda_{j}+\lambda_{k}=2 \lambda_{i}$ then $\lambda_{j} \leqslant \lambda_{i}$ and $\lambda_{k} \geqslant \lambda_{i}$.
Consequently, $\lambda\left(D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)\right) \subseteq\left\{\lambda_{j}: 0 \leqslant j \leqslant i\right\} \sqcup\left\{2 \lambda_{i}-\lambda_{j}: 0 \leqslant j<i\right\}$ and

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Suppose $i>0$. By the induction hypothesis, $\nu_{\lambda-1}{ }^{1}\left(\lambda_{i-1}+\lambda_{i}\right)=2 i$.
(ν_{i}) not decreasing and $2 \lambda_{i}>\lambda_{i-1}+\lambda_{i} \Rightarrow \nu_{\lambda-1\left(2 \lambda_{i}\right)} \geqslant 2 i$.
If $j \leqslant k$ satisfy $\lambda_{j}+\lambda_{k}=2 \lambda_{i}$ then $\lambda_{j} \leqslant \lambda_{i}$ and $\lambda_{k} \geqslant \lambda_{i}$.
Consequently, $\lambda\left(D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)\right) \subseteq\left\{\lambda_{j}: 0 \leqslant j \leqslant i\right\} \sqcup\left\{2 \lambda_{i}-\lambda_{j}: 0 \leqslant j<i\right\}$ and
$\nu_{\lambda^{-1}\left(2 \lambda_{i}\right)} \geqslant 2 i \Leftrightarrow D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$.

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Suppose $i>0$. By the induction hypothesis, $\nu_{\lambda-1}{ }^{1}\left(\lambda_{i-1}+\lambda_{i}\right)=2 i$.
$\left(\nu_{i}\right)$ not decreasing and $2 \lambda_{i}>\lambda_{i-1}+\lambda_{i} \Rightarrow \nu_{\lambda-1}\left(2 \lambda_{i}\right) \geqslant 2 i$.
If $j \leqslant k$ satisfy $\lambda_{j}+\lambda_{k}=2 \lambda_{i}$ then $\lambda_{j} \leqslant \lambda_{i}$ and $\lambda_{k} \geqslant \lambda_{i}$.
Consequently, $\lambda\left(D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)\right) \subseteq\left\{\lambda_{j}: 0 \leqslant j \leqslant i\right\} \sqcup\left\{2 \lambda_{i}-\lambda_{j}: 0 \leqslant j<i\right\}$ and
$\nu_{\lambda^{-1}\left(2 \lambda_{i}\right)} \geqslant 2 i \Leftrightarrow D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$.
This proves (i).

On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.
Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
(i) $D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$,
(ii) $D\left(\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(\lambda_{i}+\lambda_{i+1}-\lambda_{j}\right): 0 \leqslant j \leqslant i\right\}$.

Suppose $i>0$. By the induction hypothesis, $\nu_{\lambda-1\left(\lambda_{i-1}+\lambda_{i}\right)}=2 i$.
$\left(\nu_{i}\right)$ not decreasing and $2 \lambda_{i}>\lambda_{i-1}+\lambda_{i} \Rightarrow \nu_{\lambda-1}\left(2 \lambda_{i}\right) \geqslant 2 i$.
If $j \leqslant k$ satisfy $\lambda_{j}+\lambda_{k}=2 \lambda_{i}$ then $\lambda_{j} \leqslant \lambda_{i}$ and $\lambda_{k} \geqslant \lambda_{i}$.
Consequently, $\lambda\left(D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)\right) \subseteq\left\{\lambda_{j}: 0 \leqslant j \leqslant i\right\} \sqcup\left\{2 \lambda_{i}-\lambda_{j}: 0 \leqslant j<i\right\}$ and
$\nu_{\lambda^{-1}\left(2 \lambda_{i}\right)} \geqslant 2 i \Leftrightarrow D\left(\lambda^{-1}\left(2 \lambda_{i}\right)\right)=\left\{j \in \mathbb{N}_{0}: j \leqslant i\right\} \sqcup\left\{\lambda^{-1}\left(2 \lambda_{i}-\lambda_{j}\right): 0 \leqslant j<i\right\}$.
This proves (i).
Finally, (i) implies $\nu_{\lambda^{-1}\left(2 \lambda_{i}\right)}=2 i+1$ and (ii) follows by an analogous argumentation.

On the improvement of Feng-Rao improved codes

Theorem

The unique numerical semigroups for which the ν sequence is non-decreasing are ordinary numerical semigroups.

On the improvement of Feng-Rao improved codes

Theorem

The unique numerical semigroups for which the ν sequence is non-decreasing are ordinary numerical semigroups.

Corollary

The unique numerical semigroup for which the ν sequence is strictly increasing is the trivial numerical semigroup.

On the improvement of Feng-Rao improved codes

Theorem

> The unique numerical semigroups for which the ν sequence is non-decreasing are ordinary numerical semigroups.

Corollary

The unique numerical semigroup for which the ν sequence is strictly increasing is the trivial numerical semigroup.

The unique numerical semigroups for which the associated classical codes are not improved by the Feng-Rao improved codes, at least for one value of t, are the ordinary semigroups.

The τ sequence and codes guaranteeing correction of generic errors

Generic errors

Definition

The points $P_{i_{1}}, \ldots, P_{i_{t}}$ are generically distributed if no element $f \in A$, $f \neq 0$ generated by z_{0}, \ldots, z_{t-1} vanishes in all of them.

Generic errors

Definition

The points $P_{i_{1}}, \ldots, P_{i_{t}}$ are generically distributed if no element $f \in A$, $f \neq 0$ generated by z_{0}, \ldots, z_{t-1} vanishes in all of them.

Generic errors are those errors whose non-zero positions correspond to generically distributed points.

Generic errors

Definition

The points $P_{i_{1}}, \ldots, P_{i_{t}}$ are generically distributed if no element $f \in A$, $f \neq 0$ generated by z_{0}, \ldots, z_{t-1} vanishes in all of them.

Generic errors are those errors whose non-zero positions correspond to generically distributed points.

Equivalently, e is generic if and only if $\Delta_{e}=\Delta_{t}:=\{0, \ldots, t-1\}$.

Generic errors

Definition

The points $P_{i_{1}}, \ldots, P_{i_{t}}$ are generically distributed if no element $f \in A$, $f \neq 0$ generated by z_{0}, \ldots, z_{t-1} vanishes in all of them.

Generic errors are those errors whose non-zero positions correspond to generically distributed points.

Equivalently, e is generic if and only if $\Delta_{e}=\Delta_{t}:=\{0, \ldots, t-1\}$.
Generic errors of weight t can be a very large portion of all possible errors of weight t [Hansen, 2001].

Generic errors

Definition

The points $P_{i_{1}}, \ldots, P_{i_{t}}$ are generically distributed if no element $f \in A$, $f \neq 0$ generated by z_{0}, \ldots, z_{t-1} vanishes in all of them.

Generic errors are those errors whose non-zero positions correspond to generically distributed points.

Equivalently, e is generic if and only if $\Delta_{e}=\Delta_{t}:=\{0, \ldots, t-1\}$.
Generic errors of weight t can be a very large portion of all possible errors of weight t [Hansen, 2001].
By restricting the errors to be corrected to generic errors the decoding requirements become weaker and we are still able to correct almost all errors.

Example: generic sets of points in $\mathcal{H}_{q}\left(x^{q+1}=y^{q}+y\right)$

Recall \mathcal{H}_{q} has affine equation $x^{q+1}=y^{q}+y$.

Example: generic sets of points in $\mathcal{H}_{q}\left(x^{q+1}=y^{q}+y\right)$

Recall \mathcal{H}_{q} has affine equation $x^{q+1}=y^{q}+y$.
The unique point at infinity is $P_{\infty}=(0: 1: 0)$.

Example: generic sets of points in $\mathcal{H}_{q}\left(x^{q+1}=y^{q}+y\right)$

Recall \mathcal{H}_{q} has affine equation $x^{q+1}=y^{q}+y$.
The unique point at infinity is $P_{\infty}=(0: 1: 0)$.
$b \in \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b)=0 \Rightarrow$ the unique affine point with $y=b$ is $(0, b)$.
There are a total of q points (a, b) with $b \in \mathbb{F}_{q}$.

Example: generic sets of points in $\mathcal{H}_{q}\left(x^{q+1}=y^{q}+y\right)$

Recall \mathcal{H}_{q} has affine equation $x^{q+1}=y^{q}+y$.
The unique point at infinity is $P_{\infty}=(0: 1: 0)$.
$b \in \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b)=0 \Rightarrow$ the unique affine point with $y=b$ is $(0, b)$.
There are a total of q points (a, b) with $b \in \mathbb{F}_{q}$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b) \in \mathbb{F}_{q} \backslash\{0\} \Rightarrow$ there are $q+1$ solutions of $x^{q+1}=b^{q}+b$.

Example: generic sets of points in $\mathcal{H}_{q}\left(x^{q+1}=y^{q}+y\right)$

Recall \mathcal{H}_{q} has affine equation $x^{q+1}=y^{q}+y$.
The unique point at infinity is $P_{\infty}=(0: 1: 0)$.
$b \in \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b)=0 \Rightarrow$ the unique affine point with $y=b$ is $(0, b)$.
There are a total of q points (a, b) with $b \in \mathbb{F}_{q}$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b) \in \mathbb{F}_{q} \backslash\{0\} \Rightarrow$ there are $q+1$ solutions of $x^{q+1}=b^{q}+b$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow$ there are $q+1$ different affine points with $y=b$.

Example: generic sets of points in $\mathcal{H}_{q}\left(x^{q+1}=y^{q}+y\right)$

Recall \mathcal{H}_{q} has affine equation $x^{q+1}=y^{q}+y$.
The unique point at infinity is $P_{\infty}=(0: 1: 0)$.
$b \in \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b)=0 \Rightarrow$ the unique affine point with $y=b$ is $(0, b)$.
There are a total of q points (a, b) with $b \in \mathbb{F}_{q}$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b) \in \mathbb{F}_{q} \backslash\{0\} \Rightarrow$ there are $q+1$ solutions of $x^{q+1}=b^{q}+b$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow$ there are $q+1$ different affine points with $y=b$.
There are a total of $\left(q^{2}-q\right)(q+1)$ points (a, b) with $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$.

Example: generic sets of points in $\mathcal{H}_{q}\left(x^{q+1}=y^{q}+y\right)$

Recall \mathcal{H}_{q} has affine equation $x^{q+1}=y^{q}+y$.
The unique point at infinity is $P_{\infty}=(0: 1: 0)$.
$b \in \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b)=0 \Rightarrow$ the unique affine point with $y=b$ is $(0, b)$.
There are a total of q points (a, b) with $b \in \mathbb{F}_{q}$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b) \in \mathbb{F}_{q} \backslash\{0\} \Rightarrow$ there are $q+1$ solutions of $x^{q+1}=b^{q}+b$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow$ there are $q+1$ different affine points with $y=b$.
There are a total of $\left(q^{2}-q\right)(q+1)$ points (a, b) with $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$.
Total number of affine points $=q+\left(q^{2}-q\right)(q+1)=q^{3}$.

Example: generic sets of points in $\mathcal{H}_{q}\left(x^{q+1}=y^{q}+y\right)$

Recall \mathcal{H}_{q} has affine equation $x^{q+1}=y^{q}+y$.
The unique point at infinity is $P_{\infty}=(0: 1: 0)$.
$b \in \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b)=0 \Rightarrow$ the unique affine point with $y=b$ is $(0, b)$.
There are a total of q points (a, b) with $b \in \mathbb{F}_{q}$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow b^{q}+b=\operatorname{Tr}(b) \in \mathbb{F}_{q} \backslash\{0\} \Rightarrow$ there are $q+1$ solutions of $x^{q+1}=b^{q}+b$.
$b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} \Rightarrow$ there are $q+1$ different affine points with $y=b$.
There are a total of $\left(q^{2}-q\right)(q+1)$ points (a, b) with $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$.
Total number of affine points $=q+\left(q^{2}-q\right)(q+1)=q^{3}$.
If we distinguish the point P_{∞}, we can take $z_{0}=1, z_{1}=x, z_{2}=y$, $z_{3}=x^{2}, z_{4}=x y, z_{5}=y^{2} \ldots$

Example: generic sets of TWO points in \mathcal{H}_{q}

 $\left(x^{q+1}=y^{q}+y\right)$Non-generic sets of two points are pairs of points satisfying $x^{q+1}=y^{q}+y$ and simultaneously vanishing at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$.

Example: generic sets of TWO points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Non-generic sets of two points are pairs of points satisfying $x^{q+1}=y^{q}+y$ and simultaneously vanishing at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$.
$x+a$ represents a line with q points.

Example: generic sets of TWO points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Non-generic sets of two points are pairs of points satisfying $x^{q+1}=y^{q}+y$ and simultaneously vanishing at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$.
$x+a$ represents a line with q points.
There are q^{2} such lines.

Example: generic sets of TWO points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Non-generic sets of two points are pairs of points satisfying $x^{q+1}=y^{q}+y$ and simultaneously vanishing at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$.
$x+a$ represents a line with q points.
There are q^{2} such lines.
There are a total of $q^{2}\binom{q}{2}$ pairs of colinear points over lines of the form $x+a$ and so $q^{2}\binom{q}{2}$ non-generic errors.

Example: generic sets of TWO points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Non-generic sets of two points are pairs of points satisfying $x^{q+1}=y^{q}+y$ and simultaneously vanishing at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$.
$x+a$ represents a line with q points.
There are q^{2} such lines.
There are a total of $q^{2}\binom{q}{2}$ pairs of colinear points over lines of the form $x+a$ and so $q^{2}\binom{q}{2}$ non-generic errors.
Consequently, the portion of non-generic errors of weight 2 is

$$
\frac{q^{2}\binom{q}{2}}{\binom{q^{3}}{2}}=\frac{1}{q^{2}+q+1} .
$$

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

A set of three points is non-generic if the points satisfy $x^{q+1}=y^{q}+y$ and simultaneously vanish at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$ or at $f=z_{2}+a z_{1}+b z_{0}=y+a x+b$ for some $a, b \in \mathbb{F}_{q^{2}}$.

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

A set of three points is non-generic if the points satisfy $x^{q+1}=y^{q}+y$ and simultaneously vanish at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$ or at $f=z_{2}+a z_{1}+b z_{0}=y+a x+b$ for some $a, b \in \mathbb{F}_{q^{2}}$.
lines of type 1 :

$$
x+a
$$

number of lines of type 1 :
number of points per line of type 1: q

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

A set of three points is non-generic if the points satisfy $x^{q+1}=y^{q}+y$ and simultaneously vanish at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$ or at $f=z_{2}+a z_{1}+b z_{0}=y+a x+b$ for some $a, b \in \mathbb{F}_{q^{2}}$.
lines of type 1 :

$$
x+a
$$

number of lines of type 1 :
number of points per line of type 1 :
q^{2}
lines of type 2:
number of lines of type 2:
$y+a x+b$ with $a^{q+1}=b^{q}+b$
q^{3}
number of points per line of type 2 :

Example: generic sets of THREE points in \mathcal{H}_{q}
 $\left(x^{q+1}=y^{q}+y\right)$

A set of three points is non-generic if the points satisfy $x^{q+1}=y^{q}+y$ and simultaneously vanish at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$ or at $f=z_{2}+a z_{1}+b z_{0}=y+a x+b$ for some $a, b \in \mathbb{F}_{q^{2}}$.
lines of type 1 :
number of lines of type 1 :
number of points per line of type 1 :

$$
\begin{aligned}
& x+a \\
& q^{2}
\end{aligned}
$$

lines of type 2:
number of lines of type 2 :
$y+a x+b$ with $a^{q+1}=b^{q}+b$
q^{3}
number of points per line of type 2 :
lines of type 3 :

$$
\begin{aligned}
& y+a x+b \text { with } a^{q+1} \neq b^{q}+b \\
& q^{4}-q^{3}
\end{aligned}
$$

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 2? $\left(y+a x+b\right.$ with $\left.a^{q+1}=b^{q}+b\right)$

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 2? $\left(y+a x+b\right.$ with $\left.a^{q+1}=b^{q}+b\right)$
A point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=(-a x-b)^{q}+(-a x-b)=-(a x)^{q}-a x-a^{q+1}$.

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 2? $\left(y+a x+b\right.$ with $\left.a^{q+1}=b^{q}+b\right)$
A point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=(-a x-b)^{q}+(-a x-b)=-(a x)^{q}-a x-a^{q+1}$.
Notice that $\left(x+a^{q}\right)^{q+1}=\left(x+a^{q}\right)^{q}\left(x+a^{q}\right)=\left(x^{q}+a\right)\left(x+a^{q}\right)=x^{q+1}+x^{q} a^{q}+a x+a^{q+1}$.

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 2? $\left(y+a x+b\right.$ with $\left.a^{q+1}=b^{q}+b\right)$
A point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=(-a x-b)^{q}+(-a x-b)=-(a x)^{q}-a x-a^{q+1}$.
Notice that

$$
\left(x+a^{q}\right)^{q+1}=\left(x+a^{q}\right)^{q}\left(x+a^{q}\right)=\left(x^{q}+a\right)\left(x+a^{q}\right)=x^{q+1}+x^{q} a^{q}+a x+a^{q+1} .
$$

So, $x=-a^{q}$ is the unique solution to $x^{q+1}=-(a x)^{q}-a x-a^{q+1}$ and so the unique point of \mathcal{H}_{q} on the line $y+a x+b$ is $\left(-a^{q}, a^{q+1}-b\right)$.

Example: generic sets of THREE points in \mathcal{H}_{q}
 $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 2? $\left(y+a x+b\right.$ with $\left.a^{q+1}=b^{q}+b\right)$
A point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=(-a x-b)^{q}+(-a x-b)=-(a x)^{q}-a x-a^{q+1}$.
Notice that $\left(x+a^{q}\right)^{q+1}=\left(x+a^{q}\right)^{q}\left(x+a^{q}\right)=\left(x^{q}+a\right)\left(x+a^{q}\right)=x^{q+1}+x^{q} a^{q}+a x+a^{q+1}$.
So, $x=-a^{q}$ is the unique solution to $x^{q+1}=-(a x)^{q}-a x-a^{q+1}$ and so the unique point of \mathcal{H}_{q} on the line $y+a x+b$ is $\left(-a^{q}, a^{q+1}-b\right)$.
Lines of type 2 have 1 point

Example: generic sets of THREE points in \mathcal{H}_{q}
 $\left(x^{q+1}=y^{q}+y\right)$

A set of three points is non-generic if the points satisfy $x^{q+1}=y^{q}+y$ and simultaneously vanish at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$ or at $f=z_{2}+a z_{1}+b z_{0}=y+a x+b$ for some $a, b \in \mathbb{F}_{q^{2}}$.
lines of type 1 :
number of lines of type 1 :
number of points per line of type 1 :

$$
\begin{aligned}
& x+a \\
& q^{2} \\
& q
\end{aligned}
$$

lines of type 2:
number of lines of type 2:
number of points per line of type 2 :
lines of type 3:
$y+a x+b$ with $a^{q+1} \neq b^{q}+b$
number of lines of type 3:
$y+a x+b$ with $a^{q+1}=b^{q}+b$
q^{3}
1
number of points per line of type 3 :

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type $3 ?\left(y+a x+b\right.$ with $\left.a^{q+1} \neq b^{q}+b\right)$

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 3 ? $\left(y+a x+b\right.$ with $\left.a^{q+1} \neq b^{q}+b\right)$
Counting argument:

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type $3 ?\left(y+a x+b\right.$ with $\left.a^{q+1} \neq b^{q}+b\right)$
Counting argument:
On one hand, a point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=-(a x)^{q}-a x-b^{q}-b \Rightarrow$ at most $q+1$ points.

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 3 ? $\left(y+a x+b\right.$ with $\left.a^{q+1} \neq b^{q}+b\right)$
Counting argument:
On one hand, a point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=-(a x)^{q}-a x-b^{q}-b \Rightarrow$ at most $q+1$ points.
On the other hand there are a total of $\binom{q^{3}}{2}$ pairs of affine points.

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 3 ? $\left(y+a x+b\right.$ with $\left.a^{q+1} \neq b^{q}+b\right)$
Counting argument:
On one hand, a point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=-(a x)^{q}-a x-b^{q}-b \Rightarrow$ at most $q+1$ points.
On the other hand there are a total of $\binom{q^{3}}{2}$ pairs of affine points.
Each pair meets only in one line.

Example: generic sets of THREE points in \mathcal{H}_{q}
 $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 3 ? $\left(y+a x+b\right.$ with $\left.a^{q+1} \neq b^{q}+b\right)$
Counting argument:
On one hand, a point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=-(a x)^{q}-a x-b^{q}-b \Rightarrow$ at most $q+1$ points.
On the other hand there are a total of $\binom{q^{3}}{2}$ pairs of affine points.
Each pair meets only in one line.
The number of pairs sharing lines of type 1 is $q^{2}\binom{q}{2}$, the number of pairs sharing lines of type 2 is 0 and the number of pairs sharing lines of type 3 is at most $q^{3}(q-1)\binom{q+1}{2}$, with equality only if all lines of type 3 have $q+1$ points.

Example: generic sets of THREE points in \mathcal{H}_{q}
 $\left(x^{q+1}=y^{q}+y\right)$

Number of points of lines of type 3 ? $\left(y+a x+b\right.$ with $\left.a^{q+1} \neq b^{q}+b\right)$
Counting argument:
On one hand, a point on \mathcal{H}_{q} and on the line $y+a x+b$ must satisfy $x^{q+1}=-(a x)^{q}-a x-b^{q}-b \Rightarrow$ at most $q+1$ points.
On the other hand there are a total of $\binom{q^{3}}{2}$ pairs of affine points.
Each pair meets only in one line.
The number of pairs sharing lines of type 1 is $q^{2}\binom{q}{2}$, the number of pairs sharing lines of type 2 is 0 and the number of pairs sharing lines of type 3 is at most $q^{3}(q-1)\binom{q+1}{2}$, with equality only if all lines of type 3 have $q+1$ points.
Since $q^{2}\binom{q}{2}+q^{3}(q-1)\binom{q+1}{2}=\binom{q^{3}}{2}$, we deduce that all the lines of type 3 must have $q+1$ points.

Example: generic sets of THREE points in \mathcal{H}_{q}
 $\left(x^{q+1}=y^{q}+y\right)$

A set of three points is non-generic if the points satisfy $x^{q+1}=y^{q}+y$ and simultaneously vanish at $f=z_{1}+a z_{0}=x+a$ for some $a \in \mathbb{F}_{q^{2}}$ or at $f=z_{2}+a z_{1}+b z_{0}=y+a x+b$ for some $a, b \in \mathbb{F}_{q^{2}}$.
lines of type 1 :

$$
x+a
$$

number of lines of type 1 :
number of points per line of type 1: q
lines of type 2:
number of lines of type 2:
number of points per line of type 2 :
$y+a x+b$ with $a^{q+1}=b^{q}+b$
q^{3}
lines of type 3 :
$y+a x+b$ with $a^{q+1} \neq b^{q}+b$
$q^{4}-q^{3}$
$q+1$
number of lines of type 3:
number of points per line of type 3 :

Example: generic sets of THREE points in \mathcal{H}_{q} $\left(x^{q+1}=y^{q}+y\right)$

There are $q^{2}\binom{q}{3}$ sets of three points sharing a line of type 1 and $\left(q^{4}-q^{3}\right)\binom{q+1}{3}$ sets of three points sharing a line of type 3 .
The portion of non-generic errors of weight 3 is then

$$
\frac{q^{2}\binom{q}{3}+q^{3}(q-1)\binom{q+1}{3}}{\binom{q^{3}}{3}}=\frac{1}{q^{2}+q+1} .
$$

Conditions for correcting generic errors

Lemma

The following conditions are equivalent.
$1 \nu_{k}>2 \#\left(D(k) \cap \Delta_{t}\right)$,
(2) $\tau_{k} \geqslant t$.

Conditions for correcting generic errors

Lemma

The following conditions are equivalent.

$$
\begin{aligned}
& 1 \quad \nu_{k}>2 \#\left(D(k) \cap \Delta_{t}\right), \\
& 2 \quad \tau_{k} \geqslant t .
\end{aligned}
$$

Proof: Suppose $D_{k, j}<t \leqslant D_{k, j+1}$
If $\tau_{k}<t$

$$
D(k)=\{\underbrace{\overbrace{D_{k, 1}<D_{k, 2}<\cdots<D_{k, i}=\tau_{k}}^{\left\lceil\frac{\nu_{k}}{2}\right\rceil} \leqslant D_{k, i+1}<\cdots<D_{k, j}}_{D(k) \cap \Delta_{t}}<D_{k, j+1} \cdots<D_{k, \nu_{k}}\}
$$

If $\tau_{k} \geqslant t$

$$
D(k)=\{\underbrace{\overbrace{D_{k, 1}<D_{k, 2}<\cdots<D_{k, j}}^{\left\lceil\frac{\nu_{k}}{2}\right\rceil}<D_{k, j+1} \cdots<D_{k, i}=\tau_{k}}_{D(k) \cap \Delta_{t}} \leqslant \overbrace{D_{k, i+1}<\cdots<D_{k, \nu_{k}}}^{\left\lfloor\frac{\nu_{k}}{2}\right\rfloor}\}
$$

Codes guaranteeing correction of generic errors

We have seen that if $t \leqslant \tau_{i}$ for all $i \notin W$ then e is correctable by C_{W}.

Codes guaranteeing correction of generic errors

We have seen that if $t \leqslant \tau_{i}$ for all $i \notin W$ then e is correctable by C_{W}.

Definition

Given a rational point P of an algebraic smooth curve \mathcal{X}_{F} defined over \mathbb{F}_{q} with Weierstrass semigroup Λ and sequence ν with associated basis z_{0}, z_{1}, \ldots and given n other different points P_{1}, \ldots, P_{n} of \mathcal{X}_{F}, the associated improved code guaranteeing correction of t generic errors is defined as

$$
C_{\tilde{R}^{*}(t)}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in \tilde{R}^{*}(t)>^{\perp}
$$

where

$$
\tilde{R}^{*}(t)=\left\{i \in \mathbb{N}_{0}: \tau_{i}<t\right\} .
$$

Comparison of improved codes and classical codes correcting generic errors

Definition

The classical evaluation code with maximum dimension correcting t generic errors is defined by the set of checks

$$
R^{*}(t)=\left\{i \in \mathbb{N}_{0}: i \leqslant m(t)\right\}
$$

where $m(t)=\max \left\{i \in \mathbb{N}_{0}: \tau_{i}<t\right\}$.

Comparison of improved codes and classical codes correcting generic errors

Definition

The classical evaluation code with maximum dimension correcting t generic errors is defined by the set of checks

$$
R^{*}(t)=\left\{i \in \mathbb{N}_{0}: i \leqslant m(t)\right\}
$$

where $m(t)=\max \left\{i \in \mathbb{N}_{0}: \tau_{i}<t\right\}$.
By studying the monotonicity of the τ sequence we can compare $\widetilde{R}^{*}(t)$ and $R^{*}(t)$ and the associated codes.

Monotonicity of τ

The τ sequence of \mathbb{N}_{0} is

$$
0,0,1,1,2,2,3,3,4,4,5,5, \ldots
$$

Monotonicity of τ

The τ sequence of \mathbb{N}_{0} is

$$
0,0,1,1,2,2,3,3,4,4,5,5, \ldots
$$

The τ sequence of the semigroup $\{0\} \cup[c, \infty)$ with $c>0$ is

$$
\overbrace{0, \ldots, 0}^{(c+1)}, 1,1,2,2,3,3,4,4, \ldots
$$

Monotonicity of τ

The τ sequence of \mathbb{N}_{0} is

$$
0,0,1,1,2,2,3,3,4,4,5,5, \ldots
$$

The τ sequence of the semigroup $\{0\} \cup[c, \infty)$ with $c>0$ is

$$
\overbrace{0, \ldots, 0}^{(c+1)}, 1,1,2,2,3,3,4,4, \ldots
$$

Lemma

For a non-ordinary semigroup with conductor c, genus g and dominant d (non-gap previous to c) let $m=\lambda^{-1}(2 d)$. Then

- $\tau_{m}=c-g-1>\tau_{m+1}$
- $\tau_{i} \leqslant \tau_{i+1}$ for all $i>m$.

Comparison of improved codes and classical codes correcting generic errors

Corollary

1 The unique numerical semigroups with non-decreasing τ sequence are ordinary semigroups.

Comparison of improved codes and classical codes correcting generic errors

Corollary

1 The unique numerical semigroups with non-decreasing τ sequence are ordinary semigroups.
2. $\widetilde{R}^{*}(t)=R^{*}(t)$ for all $t \in \mathbb{N}_{0}$ if and only if the associated numerical semigroup is ordinary.

Comparison of improved codes correcting generic errors and Feng-Rao improved codes

Feng-Rao improved code correcting t errors:

$$
C_{\tilde{R}(t)}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in \tilde{R}(t)>^{\perp}
$$

where

$$
\tilde{R}(t)=\left\{i \in \mathbb{N}_{0}:\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor<t\right\} .
$$

Comparison of improved codes correcting generic errors and Feng-Rao improved codes

Feng-Rao improved code correcting t errors:

$$
C_{\tilde{R}(t)}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in \tilde{R}(t)>^{\perp}
$$

where

$$
\tilde{R}(t)=\left\{i \in \mathbb{N}_{0}:\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor<t\right\} .
$$

Improved code correcting t generic errors: is defined as

$$
C_{\tilde{R}^{*}(t)}=<\left(z_{i}\left(P_{1}\right), \ldots, z_{i}\left(P_{n}\right)\right): i \in \tilde{R}^{*}(t)>^{\perp}
$$

where

$$
\tilde{R}^{*}(t)=\left\{i \in \mathbb{N}_{0}: \tau_{i}<t\right\} .
$$

Comparing ν and τ

Lemma

- $\tau_{i} \geqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \in \mathbb{N}_{0}$
- $\tau_{i}=\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \geqslant 2 c-g-1$
- $\tau_{i}=\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \in \mathbb{N}_{0}$ if and only if Λ is Arf.

Comparing ν and τ

Lemma

- $\tau_{i} \geqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \in \mathbb{N}_{0}$
- $\tau_{i}=\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \geqslant 2 c-g-1$
- $\tau_{i}=\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \in \mathbb{N}_{0}$ if and only if Λ is Arf.

Corollary

$1 \widetilde{R}^{*}(t) \subseteq \widetilde{R}(t)$ for all $t \in \mathbb{N}_{0}$.
$2 \widetilde{R}^{*}(t)=\widetilde{R}(t)$ for all targe enough.
3 $\widetilde{R}^{*}(t)=\widetilde{R}(t)$ for all $t \in \mathbb{N}_{0}$ if and only if the associated numerical semigroup is Arf.

Hermitian Codes Redundancy $\left(\mathbb{F}_{7^{2}}\right)$

Exercise

Consider the numerical semigroup
$H=\{0,12,19,24,28,31,34,36,38,40,42,43,45,46,47, \ldots\}$.
Check that

- $\tau_{i} \geqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \in \mathbb{N}_{0}$
- $\tau_{i}=\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \geqslant 2 c-g-1$

Consider the numerical semigroup $H=\{0,12,19,24,28,31,34,36,38,40,42,43,45,46,47, \ldots\}$.

Check that

- $\tau_{i} \geqslant\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \in \mathbb{N}_{0}$
- $\tau_{i}=\left\lfloor\frac{\nu_{i}-1}{2}\right\rfloor$ for all $i \geqslant 2 c-g-1$

i	λ_{i}	$\left\{\lambda_{j}: \lambda_{i}-\lambda_{j} \in \Lambda\right\}$	ν	τ
0	0	$\{0\}$	1	0
1	12	$\{0,12\}$	2	0
2	19	$\{0,19\}$	2	0
3	24	$\{0,12,24\}$	3	1
4	28	$\{0,28\}$	2	0
5	31	$\{0,12,19,31\}$	4	1
6	34	$\{0,34\}$	2	0
7	36	$\{0,12,24,36\}$	4	1
8	38	$\{0,19,38\}$	3	2
9	40	$\{0,12,28,40\}$	4	1
10	42	$\{0,42\}$	2	0
11	43	$\{0,12,19,24,31,43\}$	6	2
12	45	$\{0,45\}$	2	0
13	46	$\{0,12,34,46\}$	4	1
14	47	$\{0,19,28,47\}$	4	2
15	48	$\{0,12,24,36,48\}$	5	3
16	49	$\{0,49\}$	2	0
17	50	$\{0,12,19,31,38,50\}$	6	2
18	51	$\{0,51\}$	2	0
19	52	$\{0,12,24,28,40,52\}$	6	3
20	53	$\{0,19,34,53\}$	4	2
21	54	$\{0,12,42,54\}$	4	1
22	55	$\{0,12,19,24,31,36,43,55\}$	8	3
23	56	$\{0,28,56\}$	3	4

