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Linear codes

A linear code C of length n over the alphabet Fq is a vector subspace
of Fn

q .

Its elements are called code words.

The dimension k of the code is the dimension of C as a subspace of Fn
q .

The dual code of C is C⊥ = {v ∈ F
n
q : v · c = 0 for all c ∈ C}.

The Hamming distance between two vectors of the same length is the
number of positions in which they differ.

The weight of a vector is the number of its non-zero components or,
equivalently, its Hamming distance to the zero vector.
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Linear codes

The minimum distance d of a linear code C is the minimum
Hamming distance between two code words in C.

Equivalently, it is the minimum weight of all code words in C.

The correction capability of a code is the maximum number of errors
that can be added to any code word, with the code word being still
uniquelly identifiable.

The correction capability of a linear code with minimum distance d is
⌊ d−1

2 ⌋.
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One-point codes

Let XF be defined over Fq.

Let P∈ XF, with Weierstrass semigroup Λ= {λ0 = 0, λ1, . . . }.

Let A =
⋃

m>0 L(mP).

The order of f ∈ A \ {0} is ρ(f ) = s if vP(f ) = −λs

(ρ(0) = −1).

There exists an infinite basis z0, z1, . . . of A with vP(zi) = −λi

(ρ(zi) = i).

For P1, . . . ,Pn ∈ XF \ P let

ev : A −→ Fq
n

ev(f ) = (f (P1), . . . , f (Pn))



Exercise

Consider the Hermitian curve H2

What is the Weierstrass semigroup at P∞?

Find a basis z0, z1, . . . of A with vP(zi) = −λi

Find the matrix








ev(z0)
ev(z1)
ev(z2)

...








for the points

P1 = (0 : 0 : 1) ≡ (0, 0), P2 = (0 : 1 : 1) ≡ (0, 1), P3 = (1 : α : 1) ≡ (1, α), P4 =
(1 : α2 : 1) ≡ (1, α2), P5 = (α : α : 1) ≡ (α, α), P6 = (α : α2 : 1) ≡ (α, α2), P7 =
(α2 : α : 1) ≡ (α2, α), P8 = (α2 : α2 : 1) ≡ (α2, α2)



Exercise

Consider the Hermitian curve H2

What is the Weierstrass semigroup at P∞? {0, 2, 3, 4, 5 . . . }

Find a basis z0, z1, . . . of A with vP(zi) = −λi

z0 = 1, z1 = x, z2 = y, z3 = x2, z4 = xy, z5 = x3, z6 = x2y, z7 = x4, z8 = x3y, z9 = x5, . . .

Find the matrix








ev(z0)
ev(z1)
ev(z2)

...








for the points

P1 = (0 : 0 : 1) ≡ (0, 0), P2 = (0 : 1 : 1) ≡ (0, 1), P3 = (1 : α : 1) ≡ (1, α), P4 =
(1 : α2 : 1) ≡ (1, α2), P5 = (α : α : 1) ≡ (α, α), P6 = (α : α2 : 1) ≡ (α, α2), P7 =
(α2 : α : 1) ≡ (α2, α), P8 = (α2 : α2 : 1) ≡ (α2, α2)





























1 1 1 1 1 1 1 1

0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2

0 0 1 1 α2 α2 α α

0 0 α α2 α2 1 1 α

0 0 1 1 1 1 1 1

.

.

.




























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One-point codes

For W ⊆ N0 define the one-point code

CW =< ev(zi) : i ∈ W >⊥=< (zi(P1), . . . , zi(Pn)) : i ∈ W >⊥ .

We say that W is the set of parity checks of CW.

Example

Following the previous exercise, C{0,2,5} is the linear code over F4 with parity

check matrix





1 1 1 1 1 1 1 1
0 1 α

2
α α α

2
α

2
α

0 0 1 1 1 1 1 1







One-point codes

For W ⊆ N0 define the one-point code

CW =< ev(zi) : i ∈ W >⊥=< (zi(P1), . . . , zi(Pn)) : i ∈ W >⊥ .

We say that W is the set of parity checks of CW.

Example

Following the previous exercise, C{0,2,5} is the linear code over F4 with parity

check matrix





1 1 1 1 1 1 1 1
0 1 α

2
α α α

2
α

2
α

0 0 1 1 1 1 1 1





The one-point codes for which W = {0, 1, . . . ,m} are called classical
one-point codes. In this case we write Cm for CW .
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Decoding one-point codes

Let c ∈ CW, u = c + e, t = weight(e).

Definition

A polynomial f is an error-locator of e if f (Pi) = 0 whenever ei 6= 0.

The footprint of e is the set ∆e = N0 \ {ρ(f ) : f is an error-locator}.

Lemma

#∆e = t.



Decoding one-point codes

Definition

The kth syndrome of e is the vector e times the kth row of the parity
check matrix, that is,

sk =
(

zk(P1) zk(P2) . . . zk(Pn)
)


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...
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Decoding one-point codes

Definition

The kth syndrome of e is the vector e times the kth row of the parity
check matrix, that is,

sk =
(

zk(P1) zk(P2) . . . zk(Pn)
)




e1

e2

...
en


 =

n∑

l=1

zk(Pl)el.

For correcting u we need a number of syndromes.
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Decoding one-point codes

If k ∈ W, then sk is known since

sk =

n∑

l=1

zk(Pl)el =

n∑

l=1

zk(Pl)ul −

n∑

l=1

zk(Pl)cl =

n∑

l=1

zk(Pl)ul.

Otherwise, sk can be obtained through the so-called majority voting if
the majority voting condition holds:

νk > 2#(D(k) ∩∆e),

where D(k) = {j ∈ N0 : λk − λj ∈ Λ} (#D(k) = νk).

Theorem

If νi > 2#(D(i) ∩∆e) for all i 6∈ W then e is correctable by CW.



The ν sequence, classical codes, and

Feng-Rao improved codes



Order bound on the minimum distance

From the equality #∆e = t we deduce the next lemma.

Lemma

If the number t of errors in e satisfies t 6 ⌊ νi−1
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Order bound on the minimum distance

From the equality #∆e = t we deduce the next lemma.

Lemma

If the number t of errors in e satisfies t 6 ⌊ νi−1
2 ⌋, then νi > 2#(D(i) ∩∆e).

Definition

The order (or Feng-Rao) bound on the minimum distance of Cm is

dORD(Cm) = min{νi : i > m}.

Lemma

d(Cm) > dORD(Cm).
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Order bound on the minimum distance

Definition

A refined version of the order bound is

dP1,...,Pn

ORD (Cm) = min{νi : i > m,Ci 6= Ci+1}.

While dORD only depends on the Weierstrass semigroup, dP1,...,Pn

ORD

depends also on the points P1, . . . ,Pn.
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Order bound on the minimum distance

Lemma

If i > 2c − g − 1 (equiv. to lambdai > 2c − 1), then νi+1 6 νi+2.

Consequently, dORD(Ci) = νi+1 for all i > 2c − g − 1.
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Order bound on the minimum distance

Aim: smallest m for which dORD(Ci) = νi+1 for all i > m.

For a non-ordinary semigroup Λ = [0] ∪ [ck, dk] ∪ · · · ∪ [c1, d1] ∪ [c0,∞)
define the conductor c = c0, the subconductor c′ = c1, the dominant
d = d1, and the subdominant d′ = d2.

Theorem

Let Λ be a non-ordinary acute semigroup and let

m = min{λ−1(c + c′ − 2), λ−1(2d)}. (1)

Then,

1 νm > νm+1

2 νi 6 νi+1 for all i > m.



Order bound on the minimum distance

Corollary

Let Λ be a non-ordinary acute numerical semigroup and let

m = min{λ−1(c + c′ − 2), λ−1(2d)}.

Then, m is the smallest integer for which

dORD(Ci) = νi+1

for all i > m.



Example with the Klein quartic

i λi νi dORD(Ci)
0 0 1 2
1 3 2 2
2 5 2 2
3 6 3 2
4 7 2 4
5 8 4 4
6 9 4 5
7 10 5 6
8 11 6 7
9 12 7 8
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Example with the Klein quartic

i λi νi dORD(Ci)
0 0 1 2
1 3 2 2
2 5 2 2
3 6 3 2
4 7 2 4
5 8 4 4
6 9 4 5
7 10 5 6
8 11 6 7
9 12 7 8

In this example, c = 5, d = 3 and c′ = 3.

So, λ−1(c + c′ − 2) = λ−1(2d) = 3

and m = min{λ−1(c + c′ − 2), λ−1(2d)} = 3.



Example with the Hermitian curve

i λi νi dORD(Ci)
0 0 1 2
1 4 2 2
2 5 2 3
3 8 3 3
4 9 4 3
5 10 3 4
6 12 4 4
7 13 6 4
8 14 6 4
9 15 4 5

10 16 5 8
11 17 8 8
12 18 9 8
13 19 8 9
14 20 9 10
15 21 10 12
16 22 12 12
17 23 12 13
18 24 13 14
19 25 14 15
20 26 15 16

In this case c = 12, d = 10, c′ = 8. λ−1(c + c′ − 2) = 12 and
λ−1(2d) = 14. So m = 12 is largest with νm > νm+1 and with
dORD(Ci) = νi+1 for all i > m.

Furthermore, in this example there are 64 rational points on the curve
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Extending to near-acute semigroups

Munuera and Torres, and Oneto and Tamone proved that for any
numerical semigroup

m 6 min{λ−1(c + c′ − 2 − g), λ−1(2d − g)}.

Notice that for acute semigroups this inequality is an equality.

Munuera and Torres proved that the formula
m = min{λ−1(c + c′ − 2 − g), λ−1(2d − g)} not only applies for acute
semigroups but also for near-acute semigroups.

Definition

[Munuera, Torres] A numerical semigroup with conductor c,
dominant d and subdominant d′ is said to be a near-acute semigroup
if either c − d 6 d − d′ or 2d − c + 1 6∈ Λ.



Extending to near-acute semigroups

Oneto and Tamone proved that
m = min{λ−1(c + c′ − 2 − g), λ−1(2d − g)} if and only if c + c′ − 2 6 2d
or 2d − c + 1 6∈ Λ.
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Extending to near-acute semigroups

Oneto and Tamone proved that
m = min{λ−1(c + c′ − 2 − g), λ−1(2d − g)} if and only if c + c′ − 2 6 2d
or 2d − c + 1 6∈ Λ.

Lemma

For a numerical semigroup the following are equivalent

1 c − d 6 d − d′ or 2d − c + 1 6∈ Λ (near-acute condition),

2 c + c′ − 2 6 2d or 2d − c + 1 6∈ Λ.

Proof: Let us see first that (1) implies (2). If 2d − c + 1 6∈ Λ then it is
obvious. Otherwise the condition c − d 6 d − d′ is equivalent to
d′ 6 2d − c which, together with 2d − c + 1 ∈ Λ implies c′ 6 2d − c + 1
by definition of c′. This in turn implies that c+ c′ − 2 < c+ c′ − 1 6 2d.

To see that (1) is a consequence of (2) notice that by definition,
d′ 6 c′ − 2. Then, if c + c′ − 2 6 2d, we have d − d′ > d− c′ + 2 > c − d.



Extending to near-acute semigroups

One concludes the next theorem.

Theorem (Munuera, Torres, Oneto, Tamone)

1 For any numerical semigroup
m 6 min{λ−1(c + c′ − 2 − g), λ−1(2d − g)}.

2 m = min{λ−1(c + c′ − 2 − g), λ−1(2d − g)} if and only if the
corresponding numerical semigroup is near-acute.



Extending to near-acute semigroups

One concludes the next theorem.

Theorem (Munuera, Torres, Oneto, Tamone)

1 For any numerical semigroup
m 6 min{λ−1(c + c′ − 2 − g), λ−1(2d − g)}.

2 m = min{λ−1(c + c′ − 2 − g), λ−1(2d − g)} if and only if the
corresponding numerical semigroup is near-acute.

Conjecture (Oneto, Tamone)

For any numerical semigroup,

m > λ−1(c + d − g − λ1).



Feng-Rao improved codes

Recall that if t 6 ⌊ νi−1
2 ⌋ for all i 6∈ W then e is correctable by CW.

Definition

Given a rational point P of an algebraic smooth curve XF defined over
Fq with Weierstrass semigroup Λ and sequence ν with associated
basis z0, z1, . . . and given n other different points P1, . . . ,Pn of XF, the
associated Feng-Rao improved code guaranteeing correction of t
errors is defined as

CR̃(t) =< (zi(P1), . . . , zi(Pn)) : i ∈ R̃(t) >⊥,

where
R̃(t) = {i ∈ N0 : νi < 2t + 1}.



Feng-Rao improved codes

Recall that if t 6 ⌊ νi−1
2 ⌋ for all i 6∈ W then e is correctable by CW.

Definition

Given a rational point P of an algebraic smooth curve XF defined over
Fq with Weierstrass semigroup Λ and sequence ν with associated
basis z0, z1, . . . and given n other different points P1, . . . ,Pn of XF, the
associated Feng-Rao improved code guaranteeing correction of t
errors is defined as

CR̃(t) =< (zi(P1), . . . , zi(Pn)) : i ∈ R̃(t) >⊥,

where
R̃(t) = {i ∈ N0 : νi < 2t + 1}.

Feng-Rao improved codes will actually improve classical codes only
if νi is decreasing at some i. So, we are interested in the monotonicity
of νi.



On the improvement of Feng-Rao improved codes

Lemma

If Λ is an ordinary numerical semigroup with enumeration λ then

νi =





1 if i = 0,
2 if 1 6 i 6 λ1,
i − λ1 + 2 if i > λ1.



On the improvement of Feng-Rao improved codes

Lemma

If Λ is an ordinary numerical semigroup with enumeration λ then

νi =





1 if i = 0,
2 if 1 6 i 6 λ1,
i − λ1 + 2 if i > λ1.

Proof: It is obvious that ν0 = 1 and that νi = 2 whenever 0 < λi < 2λ1.
So, since 2λ1 = λλ1+1, we have that νi = 2 for all 1 6 i 6 λ1. Finally, if
λi > 2λ1 then all non-gaps up to λi − λ1 are in D(i) as well as λi, and
none of the remaining non-gaps are in D(i). Now, if the genus of Λ is
g, then νi = λi − λ1 + 2 − g and λi = i + g. So, νi = i − λ1 + 2.
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If ν is non-decreasing then Λ is Arf.



On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.

Proof: Let λ be the enumeration of Λ. Let us see by induction on i that

(i) D(λ−1(2λi)) = {j ∈ N0 : j 6 i} ⊔ {λ−1(2λi − λj) : 0 6 j < i},

(ii) D(λ−1(λi + λi+1)) = {j ∈ N0 : j 6 i} ⊔ {λ−1(λi + λi+1 − λj) : 0 6 j 6 i}.



On the improvement of Feng-Rao improved codes

Lemma

If ν is non-decreasing then Λ is Arf.

Proof: Let λ be the enumeration of Λ. Let us see by induction on i that

(i) D(λ−1(2λi)) = {j ∈ N0 : j 6 i} ⊔ {λ−1(2λi − λj) : 0 6 j < i},

(ii) D(λ−1(λi + λi+1)) = {j ∈ N0 : j 6 i} ⊔ {λ−1(λi + λi+1 − λj) : 0 6 j 6 i}.

Notice that if (i) is satisfied for all i, then {j ∈ N0 : j 6 i} ⊆ D(λ−1(2λi)) for all
i, and hence Λ is Arf (Campillo, Farran, Munuera).



On the improvement of Feng-Rao improved codes
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Proof: Let λ be the enumeration of Λ. Let us see by induction on i that
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Finally, (i) implies νλ−1(2λi)
= 2i + 1 and (ii) follows by an analogous

argumentation.
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Theorem

The unique numerical semigroups for which the ν sequence is
non-decreasing are ordinary numerical semigroups.

Corollary

The unique numerical semigroup for which the ν sequence is strictly
increasing is the trivial numerical semigroup.

The unique numerical semigroups for which the associated classical
codes are not improved by the Feng-Rao improved codes, at least for
one value of t, are the ordinary semigroups.



The τ sequence and codes

guaranteeing correction of generic

errors
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Definition

The points Pi1 , . . . ,Pit are generically distributed if no element f ∈ A,
f 6= 0 generated by z0, . . . , zt−1 vanishes in all of them.

Generic errors are those errors whose non-zero positions correspond
to generically distributed points.

Equivalently, e is generic if and only if ∆e = ∆t := {0, . . . , t − 1}.

Generic errors of weight t can be a very large portion of all possible
errors of weight t [Hansen, 2001].

By restricting the errors to be corrected to generic errors the decoding
requirements become weaker and we are still able to correct almost
all errors.
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Recall Hq has affine equation xq+1 = yq + y.

The unique point at infinity is P∞ = (0 : 1 : 0).

b ∈ Fq ⇒ bq + b = Tr(b) = 0 ⇒ the unique affine point with y = b is
(0, b).
There are a total of q points (a, b) with b ∈ Fq.

b ∈ Fq2 \ Fq ⇒ bq + b = Tr(b) ∈ Fq \ {0} ⇒ there are q + 1 solutions of

xq+1 = bq + b.

b ∈ Fq2 \ Fq ⇒ there are q + 1 different affine points with y = b.

There are a total of (q2 − q)(q + 1) points (a, b) with b ∈ Fq2 \ Fq.

Total number of affine points = q + (q2 − q)(q + 1) = q3.

If we distinguish the point P∞, we can take z0 = 1, z1 = x, z2 = y,
z3 = x2, z4 = xy, z5 = y2. . .
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(xq+1
= yq

+ y)

Non-generic sets of two points are pairs of points satisfying
xq+1 = yq + y and simultaneously vanishing at f = z1 + az0 = x + a for
some a ∈ Fq2 .

x + a represents a line with q points.

There are q2 such lines.

There are a total of q2
(

q
2

)
pairs of colinear points over lines of the form

x + a and so q2
(

q
2

)
non-generic errors.

Consequently, the portion of non-generic errors of weight 2 is

q2
(

q
2

)
(

q3

2

) =
1

q2 + q + 1
.
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On one hand, a point on Hq and on the line y + ax + b must satisfy
xq+1 = −(ax)q − ax − bq − b ⇒ at most q + 1 points.

On the other hand there are a total of
(
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pairs of affine points.

Each pair meets only in one line.

The number of pairs sharing lines of type 1 is q2
(
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)
, the number of

pairs sharing lines of type 2 is 0 and the number of pairs sharing lines

of type 3 is at most q3(q − 1)
(

q+1
2

)
, with equality only if all lines of

type 3 have q + 1 points.

Since q2
(

q
2

)
+ q3(q − 1)

(
q+1

2

)
=

(
q3

2

)
, we deduce that all the lines of type

3 must have q + 1 points.



Example: generic sets of THREE points in Hq

(xq+1
= yq

+ y)

A set of three points is non-generic if the points satisfy xq+1 = yq + y
and simultaneously vanish at f = z1 + az0 = x + a for some a ∈ Fq2 or
at f = z2 + az1 + bz0 = y + ax + b for some a, b ∈ Fq2 .

lines of type 1: x + a
number of lines of type 1: q2

number of points per line of type 1: q

lines of type 2: y + ax + b with aq+1 = bq + b
number of lines of type 2: q3

number of points per line of type 2: 1

lines of type 3: y + ax + b with aq+1 6= bq + b
number of lines of type 3: q4 − q3

number of points per line of type 3: q + 1



Example: generic sets of THREE points in Hq

(xq+1
= yq

+ y)

There are q2
(

q
3

)
sets of three points sharing a line of type 1 and

(q4 − q3)
(

q+1
3

)
sets of three points sharing a line of type 3.

The portion of non-generic errors of weight 3 is then

q2
(

q
3

)
+ q3(q − 1)

(
q+1

3

)
(

q3

3

) =
1

q2 + q + 1
.



Conditions for correcting generic errors

Lemma

The following conditions are equivalent.

1 νk > 2#(D(k) ∩∆t),

2 τk > t.



Conditions for correcting generic errors

Lemma

The following conditions are equivalent.

1 νk > 2#(D(k) ∩∆t),

2 τk > t.

Proof: Suppose Dk,j < t 6 Dk,j+1

If τk < t

D(k) = {

⌈
νk
2
⌉

︷ ︸︸ ︷

Dk,1 < Dk,2 < · · · < Dk,i = τk 6 Dk,i+1 < · · · < Dk,j
︸ ︷︷ ︸

D(k)∩∆t

< Dk,j+1 · · · < Dk,νk
}

If τk > t

D(k) = {

⌈
νk
2
⌉

︷ ︸︸ ︷

Dk,1 < Dk,2 < · · · < Dk,j
︸ ︷︷ ︸

D(k)∩∆t

< Dk,j+1 · · · < Dk,i = τk 6

⌊
νk
2
⌋

︷ ︸︸ ︷

Dk,i+1 < · · · < Dk,νk
}



Codes guaranteeing correction of generic errors

We have seen that if t 6 τi for all i 6∈ W then e is correctable by CW .



Codes guaranteeing correction of generic errors

We have seen that if t 6 τi for all i 6∈ W then e is correctable by CW .

Definition

Given a rational point P of an algebraic smooth curve XF defined over
Fq with Weierstrass semigroup Λ and sequence ν with associated
basis z0, z1, . . . and given n other different points P1, . . . ,Pn of XF, the
associated improved code guaranteeing correction of t generic errors
is defined as

CR̃∗(t) =< (zi(P1), . . . , zi(Pn)) : i ∈ R̃∗(t) >⊥,

where
R̃∗(t) = {i ∈ N0 : τi < t}.



Comparison of improved codes and classical codes

correcting generic errors

Definition

The classical evaluation code with maximum dimension correcting t
generic errors is defined by the set of checks

R∗(t) = {i ∈ N0 : i 6 m(t)}

where m(t) = max{i ∈ N0 : τi < t}.



Comparison of improved codes and classical codes

correcting generic errors

Definition

The classical evaluation code with maximum dimension correcting t
generic errors is defined by the set of checks

R∗(t) = {i ∈ N0 : i 6 m(t)}

where m(t) = max{i ∈ N0 : τi < t}.

By studying the monotonicity of the τ sequence we can compare

R̃∗(t) and R∗(t) and the associated codes.



Monotonicity of τ

The τ sequence of N0 is

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . .



Monotonicity of τ

The τ sequence of N0 is

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . .

The τ sequence of the semigroup {0} ∪ [c,∞) with c > 0 is

(c+1)︷ ︸︸ ︷
0, . . . , 0, 1, 1, 2, 2, 3, 3, 4, 4, . . .



Monotonicity of τ

The τ sequence of N0 is

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . .

The τ sequence of the semigroup {0} ∪ [c,∞) with c > 0 is

(c+1)︷ ︸︸ ︷
0, . . . , 0, 1, 1, 2, 2, 3, 3, 4, 4, . . .

Lemma

For a non-ordinary semigroup with conductor c, genus g and dominant d
(non-gap previous to c) let m = λ−1(2d). Then

τm = c − g − 1 > τm+1

τi 6 τi+1 for all i > m.



Comparison of improved codes and classical codes

correcting generic errors

Corollary

1 The unique numerical semigroups with non-decreasing τ sequence are
ordinary semigroups.



Comparison of improved codes and classical codes

correcting generic errors

Corollary

1 The unique numerical semigroups with non-decreasing τ sequence are
ordinary semigroups.

2 R̃∗(t) = R∗(t) for all t ∈ N0 if and only if the associated numerical
semigroup is ordinary.



Comparison of improved codes correcting generic

errors and Feng-Rao improved codes

Feng-Rao improved code correcting t errors:

CR̃(t) =< (zi(P1), . . . , zi(Pn)) : i ∈ R̃(t) >⊥,

where

R̃(t) = {i ∈ N0 :

⌊
νi − 1

2

⌋
< t}.



Comparison of improved codes correcting generic

errors and Feng-Rao improved codes

Feng-Rao improved code correcting t errors:

CR̃(t) =< (zi(P1), . . . , zi(Pn)) : i ∈ R̃(t) >⊥,

where

R̃(t) = {i ∈ N0 :

⌊
νi − 1

2

⌋
< t}.

Improved code correcting t generic errors: is defined as

CR̃∗(t) =< (zi(P1), . . . , zi(Pn)) : i ∈ R̃∗(t) >⊥,

where
R̃∗(t) = {i ∈ N0 : τi < t}.



Comparing ν and τ

Lemma

τi > ⌊ νi−1
2 ⌋ for all i ∈ N0

τi = ⌊ νi−1
2 ⌋ for all i > 2c − g − 1

τi = ⌊ νi−1
2 ⌋ for all i ∈ N0 if and only if Λ is Arf.



Comparing ν and τ

Lemma

τi > ⌊ νi−1
2 ⌋ for all i ∈ N0

τi = ⌊ νi−1
2 ⌋ for all i > 2c − g − 1

τi = ⌊ νi−1
2 ⌋ for all i ∈ N0 if and only if Λ is Arf.

Corollary

1 R̃∗(t) ⊆ R̃(t) for all t ∈ N0.

2 R̃∗(t) = R̃(t) for all t large enough.

3 R̃∗(t) = R̃(t) for all t ∈ N0 if and only if the associated numerical
semigroup is Arf.



Hermitian Codes Redundancy (F72)

✲ t0

20

• #R(t) •#R̃(t) •#R∗(t) • #R̃∗(t)

0 5 10

①①①①
①①①①

①①
①
① ①①

①

①

①
①
①

①

①①

①

①

①①

①
①

①

①①

①

①
①
①

①

①①

①
①

①①
①①



Exercise

Consider the numerical semigroup
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, . . .}.

Check that

τi > ⌊ νi−1
2 ⌋ for all i ∈ N0

τi = ⌊ νi−1
2 ⌋ for all i > 2c − g − 1



Exercise

Consider the numerical semigroup
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, . . .}.

Check that

τi > ⌊ νi−1
2 ⌋ for all i ∈ N0

τi = ⌊ νi−1
2 ⌋ for all i > 2c − g − 1

i λi {λj : λi − λj ∈ Λ} ν τ

0 0 {0} 1 0
1 12 {0, 12} 2 0
2 19 {0, 19} 2 0
3 24 {0, 12, 24} 3 1
4 28 {0, 28} 2 0
5 31 {0, 12, 19, 31} 4 1
6 34 {0, 34} 2 0
7 36 {0, 12, 24, 36} 4 1
8 38 {0, 19, 38} 3 2
9 40 {0, 12, 28, 40} 4 1
10 42 {0, 42} 2 0
11 43 {0, 12, 19, 24, 31, 43} 6 2
12 45 {0, 45} 2 0
13 46 {0, 12, 34, 46} 4 1
14 47 {0, 19, 28, 47} 4 2
15 48 {0, 12, 24, 36, 48} 5 3
16 49 {0, 49} 2 0
17 50 {0, 12, 19, 31, 38, 50} 6 2
18 51 {0, 51} 2 0
19 52 {0, 12, 24, 28, 40, 52} 6 3
20 53 {0, 19, 34, 53} 4 2
21 54 {0, 12, 42, 54} 4 1
22 55 {0, 12, 19, 24, 31, 36, 43, 55} 8 3
23 56 {0, 28, 56} 3 4
24 57 0 12 19 38 45 57 6 2
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