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Numerical semigroups

Definition

A numerical semigroup is a subset Λ of N0 satisfying

0 ∈ Λ

Λ + Λ ⊆ Λ

#(N0 \ Λ) is finite (genus:=g:= #(N0 \ Λ))

Gaps: N0 \ Λ, non-gaps: Λ.

The third condition implies that there exist

Conductor := the unique integer c with c − 1 6∈ Λ, c + N0 ⊆ Λ

Frobenius number := the largest gap = c − 1

Dominant := the non-gap previous to c.



Cash point

The amounts of money one can obtain from a cash point
(divided by 10)

Illustration: Agnès Capella Sala



Cash point

amount amount/10

0 0

10 impossible!

20 2

30 impossible!

40 + 4

50 5

60 + + 6

70 + 7

80 + + + 8

90 + + 9

100 + 10

110 + + + 11
...

...
...



Cash point

amount amount/10

0 0

gap

20 2

gap

40 + 4

50 5

60 + + 6

70 + 7

80 + + + 8

90 + + 9

100 + 10

110 + + + 11
...

...
...



Cash point

amount amount/10

0 0

20 2

(3)

40 + 4

50 5

60 + + 6

70 + 7

80 + + + 8

90 + + 9

100 + 10

110 + + + 11
...

...
...



Cash point

amount amount/10

0 0

20 2

40 + 4

50 5

60 + + 6

70 + 7

80 + + + 8

90 + + 9

100 + 10

110 + + + 11
...

...
...



Cash point

amount amount/10

0 0

20 2

40 + 4

50 5

60 + + 6

70 + 7

80 + + + 8

90 + + 9

100 + 10

110 + + + 11
...

...
...



Enumeration of a numerical semigroup
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Enumeration of a numerical semigroup

The inclusion Λ ⊆ N0 implies that there exists

Enumeration := the unique bijective increasing map λ : N0 → Λ
(Λ = {λ0 = 0 < λ1 < λ2 . . . })



Cash point

amount amount/10

0 0 λ0

20 2 λ1

40 + 4 λ2

50 5 λ3

60 + + 6 λ4

70 + 7 λ5

80 + + + 8 λ6

90 + + 9 λ7

100 + 10 λ8

110 + + + 11 λ9

...
...

...
...



Enumeration of a numerical semigroup

Lemma

Let Λ be a numerical semigroup with conductor c, genus g, and enumeration
λ. The following are equivalent.

(i) λi > c

(ii) i > c − g

(iii) λi = g + i



Enumeration of a numerical semigroup

Lemma

Let Λ be a numerical semigroup with conductor c, genus g, and enumeration
λ. The following are equivalent.

(i) λi > c

(ii) i > c − g

(iii) λi = g + i

Proof: Let g(i) be the number of gaps smaller than λi. Then
λi = g(i) + i.

(i)⇔(iii) λi > c ⇐⇒ g(i) = g ⇐⇒ g(i) + i = g + i ⇐⇒ λi = g + i.

(i)⇔(ii) c = λc−g and λi > c = λc−g if and only if i > c − g.



Generators

The generators of a numerical semigroup are those non-gaps which
can not be obtained as a sum of two smaller non-gaps.
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Generators

The generators of a numerical semigroup are those non-gaps which
can not be obtained as a sum of two smaller non-gaps.

If a1, . . . , al are the generators of a semigroup Λ then

Λ = {n1a1 + · · ·+ nlal : n1, . . . , nl ∈ N0}

So, a1, . . . , al are necessarily coprime.

If a1, . . . , al are coprime we define the semigroup generated by
a1, . . . , al as

〈a1, . . . , an〉 := {n1a1 + · · ·+ nlal : n1, . . . , nl ∈ N0}.
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Apéry set

The non-gap λ1 is always a generator. It is called the multiplicity of Λ.

For each integer i from 0 to λ1 − 1 let wi be the smallest non-gap in Λ
that is congruent to i modulo λ1.

Each non-gap of Λ can be expressed as wi + kλ1 for some
i ∈ {0, . . . , λ1 − 1} and some k ∈ N0.

So, the generators different from λ1 must be in {w1, . . . ,wλ1−1}.

In particular, there is always a finite number of generators.

The set {w0,w1, . . . ,wλ1−1} is called the Apéry set of Λ.



Exercise

Consider the set
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, . . .}.

1 Prove that H is a numerical semigroup.

2 What are its parameters?

conductor,
Frobenius number,
genus,
dominant,
Apéry set,
generators.



Exercise

Consider the set
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, . . .}.

1 Prove that H is a numerical semigroup.

2 What are its parameters?

conductor, 45
Frobenius number, 44
genus, 33
dominant, 43
Apéry set, {0, 49, 38, 51, 28, 53, 42, 19, 56, 45, 34, 47}
= {0, 19, 28, 34, (38 = 19 + 19), 42, 45, (47 = 19 + 28), 49, 51, (53 = 19 + 34), (56 = 28 + 28)}

generators. {12, 19, 28, 34, 42, 45, 49, 51}



Classical problems



Frobenius’ coin exchange problem
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Frobenius’ coin exchange problem

Frobenius’ problem

What is the largest monetary amount that can not be obtained using
only coins of specified denominations a1, . . . , an.

If a1, . . . , an are coprime then the set of amounts that can be obtained
is the semigroup 〈a1, . . . , an〉 and the question is determining the
Frobenius number.

n = 2: Sylvester’s formula a1a2 − a1 − a2.

n > 2?

Theorem (Curtis)

There is no finite set of polynomials {f1, . . . , fn} such that for each choice of
a1, a2, a3 ∈ N, there is some i such that the Frobenius number of a1, a2, a3 is
fi(a1, a2, a3).



Frobenius’ coin exchange problem

Some refences on Frobenius’ coin exchange problem:

J. L. Ramírez Alfonsín. The Diophantine Frobenius
problem, volume 30 of Oxford Lecture Series in Math-
ematics and its Applications. Oxford University Press,
Oxford, 2005.

Frank Curtis. On formulas for the Frobenius number of
a numerical semi- group. Math. Scand., 67(2):190–192,
1990.



Hurwitz question

Hurwitz problems

Determining whether there exist non-Weierstrass numerical
semigroups, (Buchweitz gave a positive answer)

Characterizing Weierstrass semigroups

Some references:

Fernando Torres. On certain N -sheeted coverings of curves
and numerical semigroups which cannot be realized as Weier-
strass semigroups. Comm. Algebra, 23(11):4211–4228, 1995.

Seon Jeong Kim. Semigroups which are not Weierstrass semi-
groups. Bull. Korean Math. Soc., 33(2):187–191, 1996.

Jiryo Komeda. Non-Weierstrass numerical semigroups. Semi-
group Forum, 57(2):157–185, 1998.

N. Kaplan and L. Ye. The proportion of Weierstrass semi-
groups, J. Algebra 373:377–391, 2013.
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Wilf’s conjecture

The number e of generators of a numerical semigroup of genus g and
conductor c satisfies

e >
c

c − g
.



Wilf’s conjecture

Wilf’s conjecture

The number e of generators of a numerical semigroup of genus g and
conductor c satisfies

e >
c

c − g
.

Example: If c = 2g (symmetric semigroups) then c
c−g =

2g
g = 2.



Wilf’s conjecture

Some references:

H. Wilf. A circle-of-lights algorithm for the money-changing problem,
American Mathematical Monthly 85 (1978) 562–565.

D. E. Dobbs, G. L. Matthews. On a question of Wilf concerning numer-
ical semigroups. International Journal of Commutative Rings, 3(2),
2003.

A. Zhai. An asymptotic result concerning a question of Wilf Alex Zhai,
arXiv:1111.2779.

A. Sammartano. Numerical semigroups with large embedding dimen-
sion satisfy Wilf’s conjecture, Semigroup Forum 85 (2012) 439–447.

N. Kaplan. Counting numerical semigroups by genus and some cases
of a question of Wilf, J. Pure Appl. Algebra 216 (2012) 1016–1032.

A. Moscariello, A. Sammartano. On a conjecture by Wilf about the
Frobenius number, Math. Z. 280 (2015) 47–53.

S. Eliahou. Wilf’s conjecture and Macaulay’s theorem.
arXiv:1703.01761

M. Delgado, On a question of Eliahou and a conjecture of Wilf.
arXiv:1608.01353



Wilf conjecture

For brute approach:

M. Bras-Amorós. Fibonacci-like behavior of the number of numerical
semigroups of a given genus. Semigroup Forum, 76(2):379–384, 2008.

J. Fromentin, F. Hivert. Exploring the tree of numerical semigroups.
Mathematics of Computation 85 (2016), no. 301, 2553–2568.



Wilf’s conjecture

Exercise

Check Wilf’s conjecture for
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, . . .}.



Wilf’s conjecture

Exercise

Check Wilf’s conjecture for
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, . . .}.

e = 8
c

c−g = 45
45−33 = 45

12 6 4



Classification



Symmetric semigroups

Definition

A numerical semigroup with conductor c and genus g is symmetric if
c = 2g.



Symmetric semigroups

Definition

A numerical semigroup with conductor c and genus g is symmetric if
c = 2g.

Example:
The Weierstrass semigroup at point P∞ of
the Hermitian curve H4 is symmetric.

Its conductor is c = 12 and its genus is
g = 6.

i λi

0 0
← 3 gaps

1 4
2 5

← 2 gaps

3 8
4 9
5 10

← 1 gap

6 12 ← c = 12
7 13
8 14
9 15

10 16
...

...



Semigroups generated by two integers

Definition

Semigroups generated by two integers are the semigroups of the form

Λ = 〈a, b〉 = {ma + nb : a, b ∈ N0}
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Semigroups generated by two integers

Definition

Semigroups generated by two integers are the semigroups of the form

Λ = 〈a, b〉 = {ma + nb : a, b ∈ N0}

Hermitian’s curve H4 has Weierstrass semigroup equal to 〈4, 5〉.

Geil’s norm-trace curve over Fqr is defined by the affine equation

x(qr−1)/(q−1) = yqr−1

+ yqr−2

+ · · ·+ y

where q is a prime power.

It has a single rational point P∞ at infinity and the Weierstrass
semigroup at P∞ is

〈(qr − 1)/(q − 1), qr−1〉.



Semigroups generated by two integers

Lemma (Sylvester)

1 The conductor of 〈a, b〉 is (a − 1)(b − 1)

2 The genus of 〈a, b〉 is (a−1)(b−1)
2



Semigroups generated by two integers

Lemma (Sylvester)

1 The conductor of 〈a, b〉 is (a − 1)(b − 1)

2 The genus of 〈a, b〉 is (a−1)(b−1)
2

Hence, semigroups generated by two integers are symmetric.



Symmetric semigroups

Lemma

A numerical semigroup Λ is symmetric if and only if for any non-negative
integer i,

i 6∈ Λ ⇐⇒ c − 1 − i ∈ Λ.

i λi

0 0
11-10
11-9
11-8

1 4
2 5

11-5
11-4

3 8
4 9
5 10

11-0
6 12
...

...



Pseudo-symmetric semigroups

Definition

A numerical semigroup with conductor c and genus g is
pseudo-symmetric if c = 2g − 1.



Pseudo-symmetric semigroups

Definition

A numerical semigroup with conductor c and genus g is
pseudo-symmetric if c = 2g − 1.

Example:
The Weierstrass semigroup at point P0 of
the Klein curve is pseudo-symmetric.

Its conductor is c = 5 and its genus is
g = 3.

i λi

0 0
← 2 gaps

1 3
← 1 gaps

2 5 ← c = 5
3 6
4 7
5 8
...

...



Pseudo-symmetric semigroups

Lemma

A numerical semigroup Λ with odd conductor c is pseudo-symmetric if and
only if for any integer i different from (c − 1)/2,

i 6∈ Λ ⇐⇒ c − 1 − i ∈ Λ.

i λi

0 0
4-3

(c− 1)/2

1 3
4-0

2 5
3 6
4 7
5 8
...

...



Irreducible semigroups

Definition

Irreducible semigroups are the semigroups that can not be expressed
as a proper intersection of two numerical semigroups.



Irreducible semigroups

Definition

Irreducible semigroups are the semigroups that can not be expressed
as a proper intersection of two numerical semigroups.

Theorem (Rosales,Branco,2003)

The set of irreducible semigroups is the union of the set of symmetric
semigroups and the set of pseudo-symmetric semigroups.



Arf semigroups

Definition

A numerical semigroup Λ is Arf if for any a, b, c ∈ Λ with a > b > c
we have a + b − c ∈ Λ.



Arf semigroups

Definition

A numerical semigroup Λ is Arf if for any a, b, c ∈ Λ with a > b > c
we have a + b − c ∈ Λ.

Example
The Weierstrass semigroup at
point P of the Klein quartic is Arf.

i λi

0 0

1 3

2 5
3 6
4 7
5 8
6 9 7 + 5− 3 = 9 ∈ Λ
7 10
...

...



Arf semigroups

Lemma

Suppose Λ is Arf. If i, i + j ∈ Λ for some i, j ∈ N0, then i + kj ∈ Λ for all
k ∈ N0. Consequently, if Λ is Arf and i, i + 1 ∈ Λ, then i > c.



Arf semigroups

Lemma

Suppose Λ is Arf. If i, i + j ∈ Λ for some i, j ∈ N0, then i + kj ∈ Λ for all
k ∈ N0. Consequently, if Λ is Arf and i, i + 1 ∈ Λ, then i > c.

Proof: Let us prove this by induction on k. It is obvious for k = 0 and
k = 1. If k > 0 and i, i + j, i + kj ∈ Λ then
(i + j) + (i + kj)− i = i + (k + 1)j ∈ Λ.



Arf semigroups

Lemma

Suppose Λ is Arf. If i, i + j ∈ Λ for some i, j ∈ N0, then i + kj ∈ Λ for all
k ∈ N0. Consequently, if Λ is Arf and i, i + 1 ∈ Λ, then i > c.

Proof: Let us prove this by induction on k. It is obvious for k = 0 and
k = 1. If k > 0 and i, i + j, i + kj ∈ Λ then
(i + j) + (i + kj)− i = i + (k + 1)j ∈ Λ.

Consequently, Arf semigroups are sparse semigroups [Munuera,
Torres, Villanueva, 2008], that is, there are no two consecutive
non-gaps smaller than the conductor.



Hyperelliptic semigroups

Definition

Hyperelliptic numerical semigroups are the numerical semigroups
generated by 2 and an odd integer.
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Definition

Hyperelliptic numerical semigroups are the numerical semigroups
generated by 2 and an odd integer.

They are of the form

Λ = {0, 2, 4, . . . , 2k − 2, 2k, 2k + 1, 2k + 2, 2k + 3, . . . }

for some positive integer k.



Hyperelliptic semigroups

Definition

Hyperelliptic numerical semigroups are the numerical semigroups
generated by 2 and an odd integer.

They are of the form

Λ = {0, 2, 4, . . . , 2k − 2, 2k, 2k + 1, 2k + 2, 2k + 3, . . . }

for some positive integer k.

Lemma (Campillo, Farran, Munuera, 2000)

The unique Arf symmetric semigroups are hyperelliptic semigroups.



Semigroups generated by an interval

Definition

A numerical semigroup is generated by an interval if its set of
generators is {i, i + 1, . . . , j} for some i, j ∈ N0.



Semigroups generated by an interval

Definition

A numerical semigroup is generated by an interval if its set of
generators is {i, i + 1, . . . , j} for some i, j ∈ N0.

Example
The Weierstrass semigroup at
point P∞ of the Hermitian curve
H4 is generated by the interval
{4, 5}.

i λi

0 0

1 4
2 5

3 8 = 4 + 4
4 9 = 4 + 5
5 10 = 5 + 5

6 12 = 4 + 4 + 4
7 13 = 4 + 4 + 5
8 14 = 4 + 5 + 5
9 15 = 5 + 5 + 5

10 16 = 4 + 4 + 4 + 4
...

...
...



Exercise

Lemma

The unique numerical semigroups which are generated by an interval and
Arf, are the semigroups which are equal to {0} ∪ {i ∈ N0 : i > c} for some
non-negative integer c.

Lemma

The unique Arf pseudo-symmetric semigroups are {0, 3, 4, 5, 6, . . .} and
{0, 3, 5, 6, 7, . . .} (corresponding to the Klein quartic).



Exercise

Lemma

The unique numerical semigroup which is pseudo-symmetric and generated
by an interval is {0, 3, 4, 5, 6, . . .}.

Lemma

Λ{i,...,j} is symmetric if and only if i ≡ 2 mod j − i.



Acute semigroups

Definition

A numerical semigroup is ordinary if it is equal to

{0} ∪ {i ∈ N0 : i > c},

for some non-negative integer c.



Acute semigroups

Definition

A numerical semigroup is ordinary if it is equal to

{0} ∪ {i ∈ N0 : i > c},

for some non-negative integer c.

Definition

A numerical semigroup is acute if it is ordinary or if its last interval of
gaps is smaller than or equal to the previous one.



Acute semigroups

Example

The Weierstrass semigroup at point P0 of the Klein quartic is acute.

i λi

0 0
← 2 gaps

1 3
← 1 gap

2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 12
...

...



Acute semigroups

Example

The Weierstrass semigroup at point P∞ of the Hermitian curve H4 is
acute.

i λi

0 0

1 4
2 5

← 2 gaps
3 8
4 9
5 10

← 1 gap
6 12
7 13
8 14
...

...



Symmetric semigroups are acute

Lemma

All symmetric semigroups are acute.

Proof: Let Λ be a non-ordinary symmetric semigroup.

Since 1 6∈ Λ, by the lemma on symmetric semigroups c − 2 ∈ Λ.

Thus, the last interval of gaps consists of one gap (c − 1).

The semigroup must therefore be acute.



Arf semigroups are acute

Lemma

All Arf semigroups are acute.

Proof: Let Λ be a non-ordinary Arf semigroup.

Consider c, c′, d, d′ as in the example, where
c′, c′ + 1, . . . , d is the last interval of non-gaps
before the conductor.

d > c′ > d′ =⇒ d + c′ − d′ ∈ Λ.

i λi

0 0 ←− d′

←−
c’

1 3
←− d

2 5 ←− c
3 6
4 7
5 8
6 9
7 10
...

...

d + c′ − d′ ∈ Λ
d + c′ − d′ > d

}

=⇒ d + c′ − d′
> c =⇒ c− d 6 c′ − d′.



Semigroups generated by an interval are acute

Lemma

[García-Sánchez, Rosales, 1999]
The numerical semigroup Λ{i,...,j} generated by the interval {i, i + 1, . . . , j}
satisfies

Λ{i,...,j} =
⋃

k>0

{ki, ki + 1, ki + 2, . . . , kj}.

Lemma

All semigroups generated by an interval are acute.

Proof: It is enough to see that the length of the gap intervals strictly
decreases.



Acute semigroups

Theorem

The set of acute semigroups is a proper subset of the whole set of
numerical semigroups.

It properly includes

Symmetric and pseudo-symmetric semigroups,
Arf semigroups,
Semigroups generated by an interval.



numerical semigroups

acute semigroups

irreducible semigroups

symmetric semigroups

EX: Hermitian curve
norm-trace curves

pseudo-symmetric semigroups

EX: Klein quartic

Arf semigroups

EX: Klein quartic

Garcia-Stichtenoth tower

Λ{i,...,j}

EX: Hermitian curve

Klein quartic

{0, 3, 5, . . . }

hyperelliptic semigroups

Campillo, Farran,

Munuera

ordinary semigroups
Λ
{i,...,

(k+1)i−2
k

}

García-Sánchez,

Rosales {0, 3, 4, . . . }

trivial semigroup: N0



Characterization



Homomorphisms

Definition

Homomorphisms of numerical semigroups are the maps f such that

f (a + b) = f (a) + f (b).



Homomorphisms

Definition

Homomorphisms of numerical semigroups are the maps f such that

f (a + b) = f (a) + f (b).

Lemma

1 Homomorphisms of numerical semigroups are exactly the scale maps
f (a) = ka for all a, for some constant k,

2 The unique surjective homomorphism is the identity.



Homomorphisms

Definition

Homomorphisms of numerical semigroups are the maps f such that

f (a + b) = f (a) + f (b).

Lemma

1 Homomorphisms of numerical semigroups are exactly the scale maps
f (a) = ka for all a, for some constant k,

2 The unique surjective homomorphism is the identity.

Indeed, if f is a homomorphism then
f (a)

a is constant since

f (ab) = a · f (b) = b · f (a).

Furthermore, for a semigroup Λ, the set kΛ is a numerical semigroup
only if k = 1.



⊕ operation

Definition

Given a numerical semigroup Λ define the associated ⊕ operation

⊕Λ : N0 × N0 → N0

by
i ⊕Λ j = λ−1(λi + λj).

Equivalently,
λi + λj = λi⊕Λj.



⊕ operation

Definition

Given a numerical semigroup Λ define the associated ⊕ operation

⊕Λ : N0 × N0 → N0

by
i ⊕Λ j = λ−1(λi + λj).

Equivalently,
λi + λj = λi⊕Λj.

The operation ⊕ is compatible with the natural order of N0. That is,

a < b ⇒

{
a ⊕ c < b ⊕ c
c ⊕ a < c ⊕ b

for any c ∈ N0.



⊕ operation

Example

For the numerical semigroup Λ = {0, 4, 5, 8, 9, 10, 12, 13, 14, . . .} the
first values of ⊕ are given in the next table:

⊕ 0 1 2 3 4 5 6 7 . . .
0 0 1 2 3 4 5 6 7 . . .
1 1 3 4 6 7 8 10 11 . . .
2 2 4 5 7 8 9 11 12 . . .
3 3 6 7 10 11 12 14 15 . . .
4 4 7 8 11 12 13 15 16 . . .
5 5 8 9 12 13 14 16 17 . . .
6 6 10 11 14 15 16 18 19 . . .
7 7 11 12 15 16 17 19 20 . . .
...

...
...

...
...

...
...

...
...

. . .



Characterization of a semigroup by ⊕

Lemma

The ⊕ operation uniquely determines a semigroup.



Characterization of a semigroup by ⊕

Lemma

The ⊕ operation uniquely determines a semigroup.

Proof: Suppose that Λ = {λ0 < λ1 < . . . } and Λ′ = {λ′
0 < λ′

1 < . . . }
have the same associated operation ⊕.

Define the map
f (λi) = λ′

i.

It is obviously surjective and it is a homomorphism since

f (λi + λj) = f (λi⊕j) = λ′
i⊕j = λ′

i + λ′
j = f (λi) + f (λj).

So, Λ = Λ′.



Characterization of a semigroup by ⊕

Lemma

Define Λ′ = dΛ ∪ {i ∈ N : i > dλa⊕b}.

Then i ⊕Λ′ j = i ⊕Λ j for all i 6 a and all j 6 b, and Λ′ 6= Λ.



Characterization of a semigroup by ⊕

Lemma

Define Λ′ = dΛ ∪ {i ∈ N : i > dλa⊕b}.

Then i ⊕Λ′ j = i ⊕Λ j for all i 6 a and all j 6 b, and Λ′ 6= Λ.

Proof:

Let λ, λ′ be the enumerations of Λ,Λ′.

For all k 6 a ⊕Λ b, λ′
k = dλk.

In particular, if i 6 a and j 6 b then λ′
i = dλi and λ′

j = dλj.

Hence, λ′
i⊕Λ′ j = λ′

i + λ′
j = dλi + dλj = dλi⊕Λj = λ′

i⊕Λj.

This implies i ⊕Λ′ j = i ⊕Λ j.



Characterization of a semigroup by ⊕

Lemma

Define Λ′ = dΛ ∪ {i ∈ N : i > dλa⊕b}.

Then i ⊕Λ′ j = i ⊕Λ j for all i 6 a and all j 6 b, and Λ′ 6= Λ.

Proof:

Let λ, λ′ be the enumerations of Λ,Λ′.

For all k 6 a ⊕Λ b, λ′
k = dλk.

In particular, if i 6 a and j 6 b then λ′
i = dλi and λ′

j = dλj.

Hence, λ′
i⊕Λ′ j = λ′

i + λ′
j = dλi + dλj = dλi⊕Λj = λ′

i⊕Λj.

This implies i ⊕Λ′ j = i ⊕Λ j.

Consequently Λ is not determined by any finite subset of ⊕ values.



ν sequence

Given a numerical semigroup Λ define its ν sequence as

νi = #{j ∈ N0 : λi − λj ∈ Λ}



ν sequence

Given a numerical semigroup Λ define its ν sequence as

νi = #{j ∈ N0 : λi − λj ∈ Λ}

Example

Klein quartic

i λi νi
0 0 1 {0}

1 3 2 {0, 3}

2 5 2 {0, 5}
3 6 3 {0, 3, 6}
4 7 2 {0, 7}
5 8 4 {0, 3, 5, 8}
6 9 4 {0, 3, 6, 9}
7 10 5 {0, 3, 5, 7, 10}
8 11 6 {0, 3, 5, 6, 8, 11}
9 12 7 {0, 3, 5, 6, 7, 9, 12}

10 13 8 {0, 3, 5, 6, 7, 8, 10, 13}

.

.

.

.

.

.

.

.

.

.

.

.



τ sequence

Given a numerical semigroup Λ define its τ sequence as

τi = max{j ∈ N0 : exists k with j 6 k and λj + λk = λi}



τ sequence

Given a numerical semigroup Λ define its τ sequence as

τi = max{j ∈ N0 : exists k with j 6 k and λj + λk = λi}

Example

Klein quartic

i λi τi
0 0 0 0 + 0 = 0

1 3 0 0 + 3 = 3

2 5 0 0 + 5 = 5
3 6 1 3 + 3 = 6
4 7 0 0 + 7 = 7
5 8 1 3 + 5 = 8
6 9 1 3 + 6 = 9
7 10 2 5 + 5 = 10
8 11 2 5 + 6 = 11
9 12 3 6 + 6 = 12
10 13 3 6 + 7 = 13

.

.

.

.

.

.

.

.

.

.

.

.



Exercise

Find the ν-sequence and the τ -sequence of
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . .}.



Exercise

i λi {λj : λi − λj ∈ Λ} ν τ

0 0 {0} 1 0
1 12 {0, 12} 2 0
2 19 {0, 19} 2 0
3 24 {0, 12, 24} 3 1
4 28 {0, 28} 2 0
5 31 {0, 12, 19, 31} 4 1
6 34 {0, 34} 2 0
7 36 {0, 12, 24, 36} 4 1
8 38 {0, 19, 38} 3 2
9 40 {0, 12, 28, 40} 4 1
10 42 {0, 42} 2 0
11 43 {0, 12, 19, 24, 31, 43} 6 2
12 45 {0, 45} 2 0
13 46 {0, 12, 34, 46} 4 1
14 47 {0, 19, 28, 47} 4 2
15 48 {0, 12, 24, 36, 48} 5 3
16 49 {0, 49} 2 0
17 50 {0, 12, 19, 31, 38, 50} 6 2
18 51 {0, 51} 2 0
19 52 {0, 12, 24, 28, 40, 52} 6 3
20 53 {0, 19, 34, 53} 4 2
21 54 {0, 12, 42, 54} 4 1
22 55 {0, 12, 19, 24, 31, 36, 43, 55} 8 3
23 56 {0, 28, 56} 3 4
24 57 {0, 12, 19, 38, 45, 57} 6 2
25 58 {0, 12, 24, 34, 46, 58} 6 3
26 59 {0, 12, 19, 28, 31, 40, 47, 59} 8 4
27 60 {0, 12, 24, 36, 48, 60} 6 3
28 61 {0, 12, 19, 42, 49, 61} 6 2
29 62 {0, 12, 19, 24, 28, 31, 34, 38, 43, 50, 62} 11 5
30 63 {0, 12, 51, 63} 4 1
31 64 {0, 12, 19, 24, 28, 36, 40, 45, 52, 64} 10 4
32 65 {0, 12, 19, 31, 34, 46, 53, 65} 8 5
33 66 {0, 12, 19, 24, 28, 38, 42, 66} 8 4
34 67 {0, 12, 19, 24, 31, 36, 43, 48, 55, 67} 10 5
35 68 {0, 12, 19, 28, 34, 40, 49, 56, 68} 9 6
36 69 {0, 12, 19, 24, 31, 38, 45, 50, 57, 69} 10 5
37 70 {0, 12, 19, 24, 28, 34, 36, 42, 46, 51, 58, 70} 12 6
38 71 {0, 12, 19, 24, 28, 31, 40, 43, 47, 52, 59, 71} 12 5



Characterization of a semigroup by τ

Theorem

A numerical semigroup is completely determined by its τ sequence.

Proof: We can construct a numerical semigroup Λ from its τ sequence as follows:

Let k be the minimum integer such that for all i ∈ N0,

τk+2i = τk+2i+1

τk+2i+2 = τk+2i+1 + 1

Set

c = k − τk + 1
g = k − 2τk

This determines λi for all i > c − g

For i = c − g − 1 to 1, λi =
1
2

min{λj : τj = i}



Characterization of a semigroup by ν

Theorem

A numerical semigroup is completely determined by its ν sequence.

Proof: We can construct a numerical semigroup Λ from its ν sequence as follows:

If νi = i + 1 for all i ∈ N0 then Λ = N0

Otherwise let k = max{j : νj = νj+1} (it exists and it is unique)

Set g = k + 2 − νk and c =
k+g+2

2

0 ∈ Λ, 1, c − 1 6∈ Λ
For all i > c, i ∈ Λ

For i = c − 2 to i = 2,

Define D̃(i) = {l ∈ Λc : c − 1 + i − l ∈ Λc, i < l < c − 1}
i ∈ Λ if and only if νc−1+i−g = c + i − 2g +#D̃(i)



Semigroup characterization

Theorem

No numerical semigroup can be determined by any finite subset of

ν values

τ values

⊕ values



Semigroup characterization

Theorem

No numerical semigroup can be determined by any finite subset of

ν values

τ values

⊕ values

Exercise

Prove the theorem.



Counting



Counting semigroups by genus

Let ng denote the number of numerical semigroups of genus g.
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Let ng denote the number of numerical semigroups of genus g.
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n1 = 1, since the unique numerical semigroup of genus 1 is
N0 \ {1}



Counting semigroups by genus

Let ng denote the number of numerical semigroups of genus g.

n0 = 1, since the unique numerical semigroup of genus 0 is N0

n1 = 1, since the unique numerical semigroup of genus 1 is
N0 \ {1}

n2 = 2. Indeed the unique numerical semigroups of genus 2 are

{0, 3, 4, 5, . . .},

{0, 2, 4, 5, . . .}.



Counting semigroups by genus

Let ng denote the number of numerical semigroups of genus g.

n0 = 1, since the unique numerical semigroup of genus 0 is N0

n1 = 1, since the unique numerical semigroup of genus 1 is
N0 \ {1}

n2 = 2. Indeed the unique numerical semigroups of genus 2 are

{0, 3, 4, 5, . . .},

{0, 2, 4, 5, . . .}.

n3 = 4

n4 = 7

n5 = 12

n6 = 23

n7 = 39

n8 = 67
...



Counting semigroups by genus

Conjecture

[Bras-Amorós, 2008]

1 ng > ng−1 + ng−2

2 limg→∞

ng−1+ng−2

ng
= 1

limg→∞

ng

ng−1
= φ



Counting semigroups by genus

g ng ng−1 + ng−2
ng−1+ng−2

ng

ng

ng−1

0 1
1 1 1
2 2 2 1 2
3 4 3 0.75 2
4 7 6 0.857143 1.75
5 12 11 0.916667 1.71429
6 23 19 0.826087 1.91667
7 39 35 0.897436 1.69565
8 67 62 0.925373 1.71795
9 118 106 0.898305 1.76119

10 204 185 0.906863 1.72881
11 343 322 0.938776 1.68137
12 592 547 0.923986 1.72595
13 1001 935 0.934066 1.69088
14 1693 1593 0.940933 1.69131
15 2857 2694 0.942947 1.68754
16 4806 4550 0.946733 1.68218
17 8045 7663 0.952517 1.67395
18 13467 12851 0.954259 1.67396
19 22464 21512 0.957621 1.66808
20 37396 35931 0.960825 1.66471
21 62194 59860 0.962472 1.66312
22 103246 99590 0.964589 1.66006
23 170963 165440 0.967695 1.65588
24 282828 274209 0.969526 1.65432
25 467224 453791 0.971249 1.65197
26 770832 750052 0.973042 1.64981
27 1270267 1238056 0.974642 1.64792
28 2091030 2041099 0.976121 1.64613
29 3437839 3361297 0.977735 1.64409
30 5646773 5528869 0.979120 1.64254
31 9266788 9084612 0.980341 1.64108
32 15195070 14913561 0.981474 1.63973
33 24896206 24461858 0.982554 1.63844
34 40761087 40091276 0.983567 1.63724
35 66687201 65657293 0.984556 1.63605
36 109032500 107448288 0.985470 1.63498
37 178158289 175719701 0.986312 1.63399
38 290939807 287190789 0.987114 1.63304
39 474851445 469098096 0.987884 1.63213
40 774614284 765791252 0.988610 1.63128



Counting semigroups by genus

Behavior of
ng−1+ng−2

ng

g

ng−1+ng−2
ng

1

✲

✻

0

50

✉

✉

✉

✉

✉

✉

✉

✉ ✉

✉
✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉✉



Counting semigroups by genus

Behavior of
ng

ng−1

✲

✻

g

ng
ng−1

φ

0

50

✉

✉ ✉

✉
✉

✉

✉
✉

✉
✉

✉
✉

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉✉
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Counting semigroups by genus

What is known

Upper and lower bounds for ng

Dyck paths and Catalan bounds (w. de Mier), semigroup tree
and Fibonacci bounds, Elizalde’s improvements, and others

limg→∞
ng

ng−1
= φ

Alex Zhai (2013) with important contributions of Nathan
Kaplan, Yufei Zhao, and others

Weaker unsolved conjecture

ng is increasing



Dyck paths



Dyck paths

Definition

A Dyck path of order n is a staircase walk from (0, 0) to (n, n) that lies
over the diagonal x = y.
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Example

✻
✻
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✻
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✲



Dyck paths

Definition

A Dyck path of order n is a staircase walk from (0, 0) to (n, n) that lies
over the diagonal x = y.

Example

✻
✻
✲✻
✲✻
✻
✲✲✲✻

✲

The number of Dyck paths of order n is given by the
Catalan number

Cn =
1

n + 1

(
2n

n

)

.



Dyck paths

Definition

The square diagram of a numerical semigroup is the path

e(i) =

{
→ if i ∈ Λ,
↑ if i 6∈ Λ,

for 1 6 i 6 2g.
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Dyck paths

Definition

The square diagram of a numerical semigroup is the path

e(i) =

{
→ if i ∈ Λ,
↑ if i 6∈ Λ,

for 1 6 i 6 2g.

It always goes from (0, 0) to (g, g).

Example

The square diagram of the numerical semigroup
{0, 4, 5, 8, 9, 10, 12, . . .} is

✻
✻
✻
✲✲✻

✻
✲✲✲✻

✲



Dyck paths

Example

The square diagram of the numerical semigroup
{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, . . .} is

✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✲✻
✻
✻
✻
✻
✻
✲✻
✻
✻
✻
✲✻
✻
✻
✲✻
✻
✲✻
✻
✲✻
✲✻
✲✻
✲✻
✲✲✻

✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲



Dyck paths

Lemma

[Bras-Amorós, de Mier, 2007]
The square diagram of a numerical semigroup is a Dyck path.



Dyck paths

Lemma

[Bras-Amorós, de Mier, 2007]
The square diagram of a numerical semigroup is a Dyck path.

Corollary

The number of numerical semigroups of genus g is bounded by the Catalan

number Cg = 1
g+1

(
2g
g

)
.



Semigroup tree and Fibonacci

bounds



Tree of numerical semigroups

From genus g to genus g − 1

A semigroup of genus g together with its Frobenius number is
another semigroup of genus g − 1.

{0, 2, 4, 5, . . .} 7→ {0, 2, 3, 4, 5, . . .}



Tree of numerical semigroups

From genus g to genus g − 1

A semigroup of genus g together with its Frobenius number is
another semigroup of genus g − 1.

{0, 2, 4, 5, . . .} 7→ {0, 2, 3, 4, 5, . . .}

A set of semigroups may give the same semigroup when adjoining
their Frobenius numbers.

{0, 2, 4, 5, . . .}
{0, 3, 4, 5, . . .}

7→ {0, 2, 3, 4, 5, . . .}



Tree of numerical semigroups

From genus g − 1 to genus g

All semigroups giving Λ when adjoining to them their Frobenius
number can be obtained from Λ by taking out one by one all
generators of Λ larger than its Frobenius number.



Tree of numerical semigroups

< 1 >

< 2, 3 >

< 3, 4, 5 >< 2, 5 >

< 4, 5, 6, 7 >< 3, 5, 7 >< 3, 4 >< 2, 7 >

< 5, 6, 7, 8, 9 >

...

< 4, 6, 7, 9 >

...

< 4, 5, 7 >

...

< 4, 5, 6 >

...

< 3, 7, 8 >

...

< 3, 5 >

...

< 2, 9 >

...

The descendants of a semigroup are obtained taking away one by one all

generators larger than its Frobenius number.



Tree of numerical semigroups

< 1 >

< 2, 3 >

< 3, 4, 5 >< 2, 5 >

< 4, 5, 6, 7 >< 3, 5, 7 >< 3, 4 >< 2, 7 >

< 5, 6, 7, 8, 9 >

...

< 4, 6, 7, 9 >

...

< 4, 5, 7 >

...

< 4, 5, 6 >

...

< 3, 7, 8 >

...

< 3, 5 >

...

< 2, 9 >

...

The descendants of a semigroup are obtained taking away one by one all

generators larger than its Frobenius number.

The parent of a semigroup Λ is Λ together with its Frobenius number.

[Rosales, García-Sánchez, García-García, Jiménez-Madrid, 2003]



Tree of numerical semigroups

Lemma

The ordinary semigroup of genus g has g + 1 descendants which in turn
have 0, 1, 2, . . . , g − 2, g, g + 2 descendants.



Tree of numerical semigroups

Lemma

The ordinary semigroup of genus g has g + 1 descendants which in turn
have 0, 1, 2, . . . , g − 2, g, g + 2 descendants.

Example

< 4, 5, 6, 7 >

< 5, 6, 7, 8, 9 >

...

< 4, 6, 7, 9 >

...

< 4, 5, 7 >

...

< 4, 5, 6 >

...



Tree of numerical semigroups

Lemma

Let λi ∈ Λ be a generator of Λ (non-ordinary) larger than its Frobenius
number. If λj > λi satisfies

λj is not a generator of Λ

λj is a generator of Λ \ {λi}

then λj = λ1 + λi.



Tree of numerical semigroups

Lemma

Let λi ∈ Λ be a generator of Λ (non-ordinary) larger than its Frobenius
number. If λj > λi satisfies

λj is not a generator of Λ

λj is a generator of Λ \ {λi}

then λj = λ1 + λi.

Proof: Since λj is not a generator of Λ, λj = λr + λs.
Since λj is a generator of Λ \ {λi}, λj = λi + λr.
Suppose r > 1. Then

λj = λ1 + λi + λr − λ1
︸ ︷︷ ︸

>0
︸ ︷︷ ︸

∈Λ\{λi}

, contradiction.



Tree of numerical semigroups

Corollary

If the generators of Λ (non-ordinary) that are larger than its Frobenius
number are {λi1 < λi2 < · · · < λik}, then the generators of Λ \ {λij} that are
larger than its Frobenius number are

{λij+1
< · · · < λik},

or
{λij+1

< · · · < λik} ∪ {λ1 + λij}



Tree of numerical semigroups

Corollary

If the generators of Λ (non-ordinary) that are larger than its Frobenius
number are {λi1 < λi2 < · · · < λik}, then the generators of Λ \ {λij} that are
larger than its Frobenius number are

{λij+1
< · · · < λik},

or
{λij+1

< · · · < λik} ∪ {λ1 + λij}

Corollary

If a node in the semigroup tree has k descendants, then its descendants have

at least 0, . . . , k − 1 descendants, respectively,

at most 1, . . . , k descendants, respectively.



Subtree

Number of descendants of semigroups of genus 2

1 3

{0,2,4,5,. . . } {0,3,4,5,. . . }



Subtree

Lower bound for the number of descendants of semigroups of genus 3

1 3

0 0 1 2



Subtree

Lower bound for the number of descendants of semigroups of genus 3

1 3

0 0 1 2× 4



Subtree

Lower bound for the number of descendants of semigroups of genus 4

1 3

0 0 1 2× 4

0 1 0 1 2 3



Subtree

Lower bound for the number of descendants of semigroups of genus 4

1 3

0 0 1 2× 4

0 1 0 1 2 3× 5



Subtree

Lower bound for the number of descendants of semigroups of genus 5

1 3

0 0 1 2× 4

0 1 0 1 2 3× 5

0 0 0 1 2 0 1 2 3 4



Subtree

Lower bound for the number of descendants of semigroups of genus 5

1 3

0 0 1 2× 4

0 1 0 1 2 3× 5

0 0 0 1 2 0 1 2 3 4× 6



Subtree

Lower bound for the number of descendants of semigroups of genus 6

1 3

0 0 1 2× 4

0 1 0 1 2 3× 5

0 0 0 1 2 0 1 2 3 4× 6

0 0 1 0 0 1 0 1 2 3 0 1 2 3 4 5



Subtree

Lower bound for the number of descendants of semigroups of genus 6

1 3

0 0 1 2× 4

0 1 0 1 2 3× 5

0 0 0 1 2 0 1 2 3 4× 6

0 0 1 0 0 1 0 1 2 3 0 1 2 3 4 5× 7



Subtree

Lower bound for the number of descendants

1 3

0 0 1 2× 4

0 1 0 1 2 3× 5

0 0 0 1 2 0 1 2 3 4× 6

0 0 1 0 0 1 0 1 2 3 0 1 2 3 4 5× 7

...



Subtree

Lower bound for the number of descendants

1 3

0 0 1 2× 4

0 1 0 1 2 3× 5

0 0 0 1 2 0 1 2 3 4× 6

0 0 1 0 0 1 0 1 2 3 0 1 2 3 4 5× 7

...

Lemma

For g > 3,
2Fg 6 ng.



Supertree

Number of descendants of semigroups of genus 2

1 3



Supertree

Upper bound for the number of descendants of semigroups of genus 3

1 3

1 1 2 3



Supertree

Upper bound for the number of descendants of semigroups of genus 3

1 3

1 1 2 3× ×0 4



Supertree

Upper bound for the number of descendants of semigroups of genus 4

1 3

1 1 2 3× ×0 4

1 1 2 1 2 3 4



Supertree

Upper bound for the number of descendants of semigroups of genus 4

1 3

1 1 2 3× ×0 4

1 1 2 1 2 3 4× ×0 5



Supertree

Upper bound for the number of descendants of semigroups of genus 5

1 3

1 1 2 3× ×0 4

1 1 2 1 2 3 4× ×0 5

1 1 1 2 1 1 2 3 1 2 3 4 5



Supertree

Upper bound for the number of descendants of semigroups of genus 5

1 3

1 1 2 3× ×0 4

1 1 2 1 2 3 4× ×0 5

1 1 1 2 1 1 2 3 1 2 3 4 5× ×0 6



Supertree

Upper bound for the number of descendants of semigroups of genus 6

1 3

1 1 2 3× ×0 4

1 1 2 1 2 3 4× ×0 5

1 1 1 2 1 1 2 3 1 2 3 4 5× ×0 6

1 1 1 1 2 1 1 1 2 1 2 3 1 1 2 1 2 3 4 1 2 3 4 5 6



Supertree

Upper bound for the number of descendants of semigroups of genus 6

1 3

1 1 2 3× ×0 4

1 1 2 1 2 3 4× ×0 5

1 1 1 2 1 1 2 3 1 2 3 4 5× ×0 6

1 1 1 1 2 1 1 1 2 1 2 3 1 1 2 1 2 3 4 1 2 3 4 5 6× ×0 7



Supertree

Upper bound for the number of descendants

1 3

1 1 2 3× ×0 4

1 1 2 1 2 3 4× ×0 5

1 1 1 2 1 1 2 3 1 2 3 4 5× ×0 6

1 1 1 1 2 1 1 1 2 1 2 3 1 1 2 1 2 3 4 1 2 3 4 5 6× ×0 7

...



Supertree

Upper bound for the number of descendants

1 3

1 1 2 3× ×0 4

1 1 2 1 2 3 4× ×0 5

1 1 1 2 1 1 2 3 1 2 3 4 5× ×0 6

1 1 1 1 2 1 1 1 2 1 2 3 1 1 2 1 2 3 4 1 2 3 4 5 6× ×0 7

...

Lemma

For g > 3,
2Fg 6 ng 6 1 + 3 · 2g−3.



Bounds on ng

g 2Fg ng 1 + 3 · 2g−3 Cg

0 1 1
1 1 1
2 2 2 2
3 4 4 4 5
4 6 7 7 14
5 10 12 13 42
6 16 23 25 132
7 26 39 49 429
8 42 67 97 1430
9 68 118 193 4862

10 110 204 385 16796
11 178 343 769 58786
12 288 592 1537 208012
13 466 1001 3073 742900
14 754 1693 6145 2674440
15 1220 2857 12289 9694845
16 1974 4806 24577 35357670
17 3194 8045 49153 129644790
18 5168 13467 98305 477638700
19 8362 22464 196609 1767263190
20 13530 37396 393217 6564120420
21 21892 62194 786433 24466267020
22 35422 103246 1572865 91482563640
23 57314 170963 3145729 343059613650
24 92736 282828 6291457 1289904147324
25 150050 467224 12582913 4861946401452
26 242786 770832 25165825 18367353072152
27 392836 1270267 50331649 69533550916004
28 635622 2091030 100663297 263747951750360
29 1028458 3437839 201326593 1002242216651368
30 1664080 5646773 402653185 3814986502092304



Ordinarization transform and

ordinarization tree



Ordinary numerical semigroups

A numerical semigroup is ordinary if all its gaps are consecutive.
In this case multiplicity=Frobenius number + 1.

0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .



Ordinarization of semigroups

Ordinarization transform of a semigroup:
- Remove the multiplicity (smallest non-zero non-gap)

- Add the largest gap (the Frobenius number).
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Ordinarization of semigroups

Ordinarization transform of a semigroup:
- Remove the multiplicity (smallest non-zero non-gap)

- Add the largest gap (the Frobenius number).

0 4 5 8 9 10 12 13 14 15 16 17 18 19 20 . . .

0 5 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

The result is another numerical semigroup.

The genus is kept constant in all the transforms.

Repeating several times (:= ordinarization number) we obtain an
ordinary semigroup.
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The tree Tg

Define a graph with

nodes corresponding to semigroups of genus g

edges connecting each semigroup to its ordinarization transform
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Tree Tg of numerical semigroups of genus g

The tree Tg

Define a graph with

nodes corresponding to semigroups of genus g

edges connecting each semigroup to its ordinarization transform

Tg is a tree rooted at the unique ordinary semigroup of genus g.

Contrary to T , Tg has only a finite number of nodes (indeed, ng).



{0, 7, 8, 9, 10, 11, 12, . . . }0 7 8 9 10 11 12 13 . . .

{0, 4, 8, 9, 10, 11, 12, . . . }0 4 8 9 10 11 12 13 . . .

{0, 5, 8, 9, 10, 11, 12, . . . }0 5 8 9 10 11 12 13 . . .

{0, 6, 8, 9, 10, 11, 12, . . . }0 6 8 9 10 11 12 13 . . .

{0, 5, 7, 9, 10, 11, 12, . . . }0 5 7 9 10 11 12 13 . . .

{0, 6, 7, 9, 10, 11, 12, . . . }0 6 7 9 10 11 12 13 . . .

{0, 4, 7, 8, 10, 11, 12, . . . }0 4 7 8 10 11 12 13 . . .

{0, 5, 7, 8, 10, 11, 12, . . . }0 5 7 8 10 11 12 13 . . .

{0, 6, 7, 8, 10, 11, 12, . . . }0 6 7 8 10 11 12 13 . . .

{0, 4, 7, 8, 9, 11, 12, . . . }0 4 7 8 9 11 12 13 . . .

{0, 6, 7, 8, 9, 11, 12, . . . }0 6 7 8 9 11 12 13 . . .

{0, 5, 7, 8, 9, 10, 12, . . . }0 5 7 8 9 10 12 13 . . .

{0, 6, 7, 8, 9, 10, 12, . . . }0 6 7 8 9 10 12 13 . . .

{0, 4, 5, 8, 9, 10, 12, . . . }0 4 5 8 9 10 12 13 . . .

{0, 3, 6, 9, 10, 11, 12, . . . }0 3 6 9 10 11 12 13 . . .

{0, 5, 6, 9, 10, 11, 12, . . . }0 5 6 9 10 11 12 13 . . .

{0, 4, 6, 8, 10, 11, 12, . . . }0 4 6 8 10 11 12 13 . . .

{0, 5, 6, 8, 10, 11, 12, . . . }0 5 6 8 10 11 12 13 . . .

{0, 3, 6, 8, 9, 11, 12, . . . }0 3 6 8 9 11 12 13 . . .

{0, 4, 6, 8, 9, 10, 12, . . . }0 4 6 8 9 10 12 13 . . .

{0, 3, 6, 7, 9, 10, 12, . . . }0 3 6 7 9 10 12 13 . . .

{0, 5, 6, 7, 10, 11, 12 . . . }0 5 6 7 10 11 12 13 . . .

{0, 2, 4, 6, 8, 10, 12, . . . }0 2 4 6 8 10 12 13 . . .



Tg and T

Lemma

If Λ1 is a descendant of Λ2 in T then Λ′
1 is a descendant of Λ′

2 in T .

Lemma

If two non-ordinary semigroups Λ1 and Λ2 with the same genus g have the
same parent in T then they also have the same parent in Tg.



Tree Tg of numerical semigroups of genus g

The depth of a semigroup of genus g in Tg is its ordinarization
number.



Tree Tg of numerical semigroups of genus g

The depth of a semigroup of genus g in Tg is its ordinarization
number.

Lemma

1 The ordinarization number of a numerical semigroup of genus g is the
number of its non-zero non-gaps which are 6 g.

2 The maximum ordinarization number of a semigroup of genus g is ⌊
g
2⌋.

3 The unique numerical semigroup of genus g and ordinarization
number ⌊ g

2⌋ is {0, 2, 4, . . . , 2g, 2g + 1, 2g + 2, . . . }.



Conjecture

ng,r: number of semigroups of genus g and ordinarization number r.

Conjecture

ng,r 6 ng+1,r

Equivalently, the number of semigroups in Tg at a given depth is
at most the number of semigroups in Tg+1 at the same depth.
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Conjecture

ng,r: number of semigroups of genus g and ordinarization number r.

Conjecture

ng,r 6 ng+1,r

Equivalently, the number of semigroups in Tg at a given depth is
at most the number of semigroups in Tg+1 at the same depth.

This conjecture would prove ng 6 ng+1. This result is proved for the
lowest and largest depths.



Computational evidence

r\ g g=0 g=1 g=2 g=3 g=4 g=5 g=6 g=7 g=8 g=9 g=10 g=11 g=12 g=13 g=14 g=15 g=16 g=17 g=18 g=19 g=20 g=21
r=0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r=1 1 3 5 9 12 18 22 30 35 45 51 63 70 84 92 108 117 135 145 165
r=2 1 2 9 19 39 70 118 196 281 432 586 838 1080 1490 1835 2449 2956 3804
r=3 1 1 4 16 47 97 228 442 844 1462 2447 4017 6127 9516 13693 20152
r=4 1 1 2 3 28 60 180 442 1083 2202 4611 8579 15830 27493
r=5 1 1 2 2 9 27 93 215 721 1685 4417 9633
r=6 1 1 2 2 7 9 45 89 319 889
r=7 1 1 2 2 7 7 25 47
r=8 1 1 2 2 7 7
r=9 1 1 2 2

r=10 1 1

r\ g g=22 g=23 g=24 g=25 g=26 g=27 g=28 g=29 g=30 g=31 g=32 g=33 g=34 g=35 g=36 g=37
r=0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r=1 176 198 210 234 247 273 287 315 330 360 376 408 425 459 477 513
r=2 4498 5690 6582 8162 9352 11370 12879 15480 17317 20569 22877 26812 29610 34454 37739 43538
r=3 27768 39726 52312 72494 93341 125600 157758 208370 255661 331626 401389 510031 608832 764927 899285 1114817
r=4 46615 76616 120795 189550 285103 429618 618555 905721 1255646 1790138 2418323 3354611 4425179 6031518 7767784 10392180
r=5 21378 41912 83951 153896 281388 487211 831654 1374366 2218771 3524257 5445975 8352388 12435320 18555615 26695019 38853706
r=6 2635 6446 17582 39214 90574 188007 394521 756910 1469758 2662254 4823002 8344482 14314198 23747986 38898550 62372773
r=7 142 340 1266 3483 10171 26489 69692 161111 382713 816457 1763299 3533977 7088495 13371197 25321828 45500820
r=8 23 24 96 157 553 1570 5281 14835 43790 113548 294908 701946 1652408 3632809 7973030 16368101
r=9 7 7 23 23 69 95 301 627 2457 7168 23475 68223 194677 512838 1323375 3178140

r=10 2 2 7 7 23 23 68 70 228 309 1142 2994 10901 33846 109619 318308
r=11 1 1 2 2 7 7 23 23 68 68 202 232 740 1249 4843 14332
r=12 1 1 2 2 7 7 23 23 68 68 200 201 649 759
r=13 1 1 2 2 7 7 23 23 68 68 200 200
r=14 1 1 2 2 7 7 23 23 68 68
r=15 1 1 2 2 7 7 23 23
r=16 1 1 2 2 7 7
r=17 1 1 2 2
r=18 1 1

r\ g g=38 g=39 g=40 g=41 g=42 g=43 g=44 g=45 g=46 g=47 g=48 g=49
r=0 1 1 1 1 1 1 1 1 1 1 1 1
r=1 532 570 590 630 651 693 715 759 782 828 852 900
r=2 47510 54320 58986 67072 72419 81855 88142 98946 106170 118716 126844 141164
r=3 1299978 1590237 1836517 2226669 2545983 3059220 3477286 4134725 4669073 5518427 6185260 7256830
r=4 13180451 17322789 21616641 28040199 34458068 44142389 53663689 67788397 81530366 102094609 121404838 150477267
r=5 54507523 77486888 106094921 148091995 198378083 272201928 358476988 483240666 626315811 833944191 1063739070 1397557241
r=6 98298482 152816803 232801607 352797809 521753229 772496765 1114488292 1614321267 2277566111 3242295418 4478817624 6268430457
r=7 81612546 140878791 241699680 402445891 664483703 1072569052 1711738040 2688862529 4165828031 6388426599 9636305171 14462411903
r=8 33550240 65385970 126969443 235541563 436401532 777427260 1380117648 2375549463 4064063006 6774823275 11221522599 18200647631
r=9 7487630 16760501 36890000 77385799 160762381 319996692 631894288 1203245544 2273796763 4158339885 7567139870 13367227712

r=10 899807 2383461 6101724 14810797 34997273 79159902 175168573 373545010 782283651 1585487022 3171168252 6150909456
r=11 51663 164512 519339 1509557 4237829 11221868 28679326 70097864 166062233 379419480 845334246 1824208237
r=12 2527 5652 21994 71261 252707 803934 2492982 7226212 20114114 53281902 136131501 334153690
r=13 616 649 1925 2679 9947 27432 106780 361575 1245778 3945659 12053243 34718395
r=14 200 200 615 617 1800 1939 6144 11138 43824 140489 537134 1835716
r=15 68 68 200 200 615 615 1766 1804 5254 6320 22087 52194
r=16 23 23 68 68 200 200 615 615 1764 1765 5102 5278
r=17 7 7 23 23 68 68 200 200 615 615 1764 1764
r=18 2 2 7 7 23 23 68 68 200 200 615 615
r=19 1 1 2 2 7 7 23 23 68 68 200 200
r=20 1 1 2 2 7 7 23 23 68 68
r=21 1 1 2 2 7 7 23 23
r=22 1 1 2 2 7 7
r=23 1 1 2 2
r=24 1 1



Lemma (Bernardini and Torres (2017))

The sequence fγ given by

f0 = 1,

f1 = 2,

f2 = 7,

f3 = 23,

f4 = 68,

f5 = 200,

f6 = 615,

f7 = 1764,

f8 = 5060,

f9 = 14626,

. . .

also counts the number of semigroups of genus 3γ and γ even gaps.

Conjecture (Bernardini,Torres)

fγ ∼ ϕ2γ
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