Classification, Characterization and Counting of Semigroups

Maria Bras-Amorós

CIMPA Research School Algebraic Methods in Coding Theory Ubatuba, July 3-7, 2017

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Contents

- 1 Basic notions
 - Genus, conductor, gaps, non-gaps, enumeration
 - Generators, Apéry set
- 2 Classical problems
 - Frobenius' coin exchange problem
 - Hurwitz question
 - Wilf's conjecture
- 3 Classification
 - Symmetric and pseudo-symmetric numerical semigroups
 - Arf numerical semigroups
 - Numerical semigroups generated by an interval
 - Acute numerical semigroups
- 4 Characterization
 - Homomorphisms of semigroups
 - Characterization of a numerical semigroup by \oplus
 - Characterization of a numerical semigroup by ν and τ
- 5 Counting
 - Conjecture
 - Dyck paths and Catalan bounds
 - Semigroup tree and Fibonacci bounds
 - Ordinarization transform and ordinarization tree < => <=> <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> > <=> <

Basic notions

Definition

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $\bullet \ 0 \in \Lambda$
- $\blacksquare \ \Lambda + \Lambda \subseteq \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

Definition

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $\bullet \ 0 \in \Lambda$
- $\blacksquare \ \Lambda + \Lambda \subseteq \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

Gaps: $\mathbb{N}_0 \setminus \Lambda$, non-gaps: Λ .

Definition

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- $\bullet \ 0 \in \Lambda$
- $\blacksquare \ \Lambda + \Lambda \subseteq \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

Gaps: $\mathbb{N}_0 \setminus \Lambda$, non-gaps: Λ .

The third condition implies that there exist

Definition

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $\bullet \ 0 \in \Lambda$
- $\blacksquare \ \Lambda + \Lambda \subseteq \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

Gaps: $\mathbb{N}_0 \setminus \Lambda$, non-gaps: Λ .

The third condition implies that there exist

• Conductor := the unique integer *c* with $c - 1 \notin \Lambda$, $c + \mathbb{N}_0 \subseteq \Lambda$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Definition

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $\bullet \ 0 \in \Lambda$
- $\blacksquare \ \Lambda + \Lambda \subseteq \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

Gaps: $\mathbb{N}_0 \setminus \Lambda$, non-gaps: Λ .

The third condition implies that there exist

• Conductor := the unique integer *c* with $c - 1 \notin \Lambda$, $c + \mathbb{N}_0 \subseteq \Lambda$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

• Frobenius number := the largest gap = c - 1

Definition

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $\bullet \ 0 \in \Lambda$
- $\blacksquare \ \Lambda + \Lambda \subseteq \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

Gaps: $\mathbb{N}_0 \setminus \Lambda$, non-gaps: Λ .

The third condition implies that there exist

• Conductor := the unique integer *c* with $c - 1 \notin \Lambda$, $c + \mathbb{N}_0 \subseteq \Lambda$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- Frobenius number := the largest gap = c 1
- **Dominant** := the non-gap previous to *c*.

Cash point

The amounts of money one can obtain from a cash point (divided by 10)

Illustration: Agnès Capella Sala

amount		amount/10
0		0
10	impossible!	
20		2
30	impossible!	
40	+	4
50		5
60		6
70		7
80		8
90		9
100	an d + an d	10
110		11
÷	:	•

amount		amount/10
0		0
		gap
20	50-	2
		gap
40		4
50		5
60		6
70		7
80		8
90		9
100		10
110		11
•	· · · · · · · · · · · · · · · · · · ·	•

▲□▶▲御▶▲臣▶▲臣▶ 臣 のQ@

amount		amount/10
0		0
20	290 290	2
		(3)
40	+	4
50		5
60		6
70		7
80		8
90		9
100	an d + an d	10
110		11
•		•

amount		amount/10
0		0
20		2
40	+	4
50	50m	5
60		6
70		7
80		8
90		9
100	an d + an d	10
110		11
•		•

amount		amount/10
0		0
20		2
40	+	4
50	50m	5
60		6
70		7
80		8
90		9
100		10
110		11
•		•

Enumeration of a numerical semigroup

The inclusion $\Lambda \subseteq \mathbb{N}_0$ implies that there exists

The inclusion $\Lambda \subseteq \mathbb{N}_0$ implies that there exists

• Enumeration := the unique bijective increasing map $\lambda : \mathbb{N}_0 \to \Lambda$ $(\Lambda = \{\lambda_0 = 0 < \lambda_1 < \lambda_2 \dots\})$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Cash point

amount		amount/10	
0		0	λ_0
20		2	λ_1
40		4	λ_2
50	50m	5	λ_3
60		6	λ_4
70		7	λ_5
80		8	λ_6
90		9	λ_7
100		10	λ_8
110		11	λ_9
÷	:	:	1

Enumeration of a numerical semigroup

Lemma

Let Λ be a numerical semigroup with conductor *c*, genus *g*, and enumeration λ . The following are equivalent.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(i)
$$\lambda_i \ge c$$

(ii) $i \ge c - g$
(iii) $\lambda_i = g + i$

Enumeration of a numerical semigroup

Lemma

Let Λ be a numerical semigroup with conductor *c*, genus *g*, and enumeration λ . The following are equivalent.

(i)
$$\lambda_i \ge c$$

(ii) $i \ge c - g$
(iii) $\lambda_i = g + i$

Proof: Let g(i) be the number of gaps smaller than λ_i . Then $\lambda_i = g(i) + i$.

(i)
$$\Leftrightarrow$$
(iii) $\lambda_i \ge c \iff g(i) = g \iff g(i) + i = g + i \iff \lambda_i = g + i.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

(i) \Leftrightarrow (ii) $c = \lambda_{c-g}$ and $\lambda_i \ge c = \lambda_{c-g}$ if and only if $i \ge c-g$.

Generators

The generators of a numerical semigroup are those non-gaps which can not be obtained as a sum of two smaller non-gaps.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

amount		amount/10
0		0
20		2
40	+	4
50	50m	5
60		6
70		7
80		8
90		9
100	an d + an d	10
110		11
•	•	•

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

If a_1, \ldots, a_l are the generators of a semigroup Λ then

$$\Lambda = \{n_1a_1 + \dots + n_la_l : n_1, \dots, n_l \in \mathbb{N}_0\}$$

If a_1, \ldots, a_l are the generators of a semigroup Λ then

$$\Lambda = \{n_1a_1 + \dots + n_la_l : n_1, \dots, n_l \in \mathbb{N}_0\}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

So, a_1, \ldots, a_l are necessarily coprime.

If a_1, \ldots, a_l are the generators of a semigroup Λ then

$$\Lambda = \{n_1a_1 + \dots + n_la_l : n_1, \dots, n_l \in \mathbb{N}_0\}$$

So, a_1, \ldots, a_l are necessarily coprime.

If a_1, \ldots, a_l are coprime we define the semigroup generated by a_1, \ldots, a_l as

$$\langle a_1,\ldots,a_n\rangle:=\{n_1a_1+\cdots+n_la_l:n_1,\ldots,n_l\in\mathbb{N}_0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � �

The non-gap λ_1 is always a generator. It is called the **multiplicity** of Λ . For each integer *i* from 0 to $\lambda_1 - 1$ let w_i be the smallest non-gap in Λ that is congruent to *i* modulo λ_1 .

For each integer *i* from 0 to $\lambda_1 - 1$ let w_i be the smallest non-gap in Λ that is congruent to *i* modulo λ_1 .

Each non-gap of Λ can be expressed as $w_i + k\lambda_1$ for some $i \in \{0, ..., \lambda_1 - 1\}$ and some $k \in \mathbb{N}_0$.

For each integer *i* from 0 to $\lambda_1 - 1$ let w_i be the smallest non-gap in Λ that is congruent to *i* modulo λ_1 .

Each non-gap of Λ can be expressed as $w_i + k\lambda_1$ for some $i \in \{0, ..., \lambda_1 - 1\}$ and some $k \in \mathbb{N}_0$.

So, the generators different from λ_1 must be in $\{w_1, \ldots, w_{\lambda_1-1}\}$.

For each integer *i* from 0 to $\lambda_1 - 1$ let w_i be the smallest non-gap in Λ that is congruent to *i* modulo λ_1 .

Each non-gap of Λ can be expressed as $w_i + k\lambda_1$ for some $i \in \{0, ..., \lambda_1 - 1\}$ and some $k \in \mathbb{N}_0$.

So, the generators different from λ_1 must be in $\{w_1, \ldots, w_{\lambda_1-1}\}$.

In particular, there is always a finite number of generators.

For each integer *i* from 0 to $\lambda_1 - 1$ let w_i be the smallest non-gap in Λ that is congruent to *i* modulo λ_1 .

Each non-gap of Λ can be expressed as $w_i + k\lambda_1$ for some $i \in \{0, ..., \lambda_1 - 1\}$ and some $k \in \mathbb{N}_0$.

So, the generators different from λ_1 must be in $\{w_1, \ldots, w_{\lambda_1-1}\}$.

In particular, there is always a finite number of generators.

The set $\{w_0, w_1, \ldots, w_{\lambda_1-1}\}$ is called the Apéry set of Λ .

Exercise

Consider the set

 $H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, \dots\}.$

- **1** Prove that *H* is a numerical semigroup.
- 2 What are its parameters?
 - conductor,
 - Frobenius number,
 - genus,
 - dominant,
 - Apéry set,
 - generators.

Exercise

Consider the set

 $H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, \dots\}.$

- **1** Prove that *H* is a numerical semigroup.
- 2 What are its parameters?
 - conductor, 45
 - Frobenius number, 44
 - genus, 33
 - dominant, 43
 - Apéry set, {0, 49, 38, 51, 28, 53, 42, 19, 56, 45, 34, 47}

 $= \{0, 19, 28, 34, (38 = 19 + 19), 42, 45, (47 = 19 + 28), 49, 51, (53 = 19 + 34), (56 = 28 + 28)\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

■ generators. {12, 19, 28, 34, 42, 45, 49, 51}

Classical problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Frobenius' coin exchange problem

Frobenius' problem

What is the largest monetary amount that can not be obtained using only coins of specified denominations a_1, \ldots, a_n .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●
Frobenius' coin exchange problem

Frobenius' problem

What is the largest monetary amount that can not be obtained using only coins of specified denominations a_1, \ldots, a_n .

If a_1, \ldots, a_n are coprime then the set of amounts that can be obtained is the semigroup $\langle a_1, \ldots, a_n \rangle$ and the question is determining the Frobenius number.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Frobenius' coin exchange problem

Frobenius' problem

What is the largest monetary amount that can not be obtained using only coins of specified denominations a_1, \ldots, a_n .

If a_1, \ldots, a_n are coprime then the set of amounts that can be obtained is the semigroup $\langle a_1, \ldots, a_n \rangle$ and the question is determining the Frobenius number.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

n = 2: Sylvester's formula $a_1a_2 - a_1 - a_2$.

Frobenius' coin exchange problem

Frobenius' problem

What is the largest monetary amount that can not be obtained using only coins of specified denominations a_1, \ldots, a_n .

If a_1, \ldots, a_n are coprime then the set of amounts that can be obtained is the semigroup $\langle a_1, \ldots, a_n \rangle$ and the question is determining the Frobenius number.

n = 2: Sylvester's formula $a_1a_2 - a_1 - a_2$. n > 2?

Theorem (Curtis)

There is no finite set of polynomials $\{f_1, \ldots, f_n\}$ such that for each choice of $a_1, a_2, a_3 \in \mathbb{N}$, there is some *i* such that the Frobenius number of a_1, a_2, a_3 is $f_i(a_1, a_2, a_3)$.

Some refences on Frobenius' coin exchange problem:

J. L. Ramírez Alfonsín. The Diophantine Frobenius problem, volume 30 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2005.

Frank Curtis. On formulas for the Frobenius number of a numerical semi- group. Math. Scand., 67(2):190–192, 1990.

▲日▶▲□▶▲□▶▲□▶ □ のQ@

Hurwitz question

Hurwitz problems

 Determining whether there exist non-Weierstrass numerical semigroups, (Buchweitz gave a positive answer)

Characterizing Weierstrass semigroups

Some references:

Fernando Torres. On certain N -sheeted coverings of curves and numerical semigroups which cannot be realized as Weierstrass semigroups. Comm. Algebra, 23(11):4211–4228, 1995.

Seon Jeong Kim. Semigroups which are not Weierstrass semigroups. Bull. Korean Math. Soc., 33(2):187–191, 1996.

Jiryo Komeda. Non-Weierstrass numerical semigroups. Semigroup Forum, 57(2):157–185, 1998.

N. Kaplan and L. Ye. The proportion of Weierstrass semigroups, J. Algebra 373:377–391, 2013.

Wilf's conjecture

The number e of generators of a numerical semigroup of genus g and conductor c satisfies

$$e \geqslant \frac{c}{c-g}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Wilf's conjecture

The number e of generators of a numerical semigroup of genus g and conductor c satisfies

$$e \geqslant \frac{c}{c-g}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○○

Example: If c = 2g (symmetric semigroups) then $\frac{c}{c-g} = \frac{2g}{g} = 2$.

Some references:

H. Wilf. A circle-of-lights algorithm for the money-changing problem, American Mathematical Monthly 85 (1978) 562–565.

D. E. Dobbs, G. L. Matthews. On a question of Wilf concerning numerical semigroups. International Journal of Commutative Rings, 3(2), 2003.

A. Zhai. An asymptotic result concerning a question of Wilf Alex Zhai, arXiv:1111.2779.

A. Sammartano. Numerical semigroups with large embedding dimension satisfy Wilf's conjecture, Semigroup Forum 85 (2012) 439–447.

N. Kaplan. Counting numerical semigroups by genus and some cases of a question of Wilf, J. Pure Appl. Algebra 216 (2012) 1016–1032.

A. Moscariello, A. Sammartano. On a conjecture by Wilf about the Frobenius number, Math. Z. 280 (2015) 47–53.

S. Eliahou. Wilf's conjecture and Macaulay's theorem. arXiv:1703.01761

M. Delgado, On a question of Eliahou and a conjecture of Wilf. arXiv:1608.01353 $\,$

For brute approach:

M. Bras-Amorós. Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum, *76*(2):379–384, 2008.

J. Fromentin, F. Hivert. Exploring the tree of numerical semigroups. Mathematics of Computation 85 (2016), no. 301, 2553–2568.

Exercise

Check Wilf's conjecture for $H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, \ldots\}.$

Exercise

Check Wilf's conjecture for $H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, \ldots\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$e = 8$$

• $\frac{c}{c-g} = \frac{45}{45-33} = \frac{45}{12} \leq 4$

Classification

Symmetric semigroups

Definition

A numerical semigroup with conductor *c* and genus *g* is symmetric if c = 2g.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Symmetric semigroups

Definition

A numerical semigroup with conductor *c* and genus *g* is symmetric if c = 2g.

Example:

The Weierstrass semigroup at point P_{∞} of the Hermitian curve \mathcal{H}_4 is symmetric.

Its conductor is c = 12 and its genus is g = 6.

i	λ_i	
0	0	
		\leftarrow 3 gaps
1	4	
2	5	
		\leftarrow 2 gaps
3	8	
4	9	
5	10	
		← 1 gap
6	12	$\leftarrow c = 12$
7	13	
8	14	
9	15	
10	16	
:	:	

Definition

Semigroups generated by two integers are the semigroups of the form

$$\Lambda = \langle a, b \rangle = \{ ma + nb : a, b \in \mathbb{N}_0 \}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

Semigroups generated by two integers are the semigroups of the form

$$\Lambda = \langle a, b \rangle = \{ ma + nb : a, b \in \mathbb{N}_0 \}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Hermitian's curve \mathcal{H}_4 has Weierstrass semigroup equal to $\langle 4, 5 \rangle$.

Definition

Semigroups generated by two integers are the semigroups of the form

$$\Lambda = \langle a, b \rangle = \{ ma + nb : a, b \in \mathbb{N}_0 \}$$

Hermitian's curve \mathcal{H}_4 has Weierstrass semigroup equal to $\langle 4, 5 \rangle$. Geil's norm-trace curve over $\mathbb{F}_{a'}$ is defined by the affine equation

$$x^{(q^r-1)/(q-1)} = y^{q^{r-1}} + y^{q^{r-2}} + \dots + y$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

where *q* is a prime power.

Definition

Semigroups generated by two integers are the semigroups of the form

$$\Lambda = \langle a, b \rangle = \{ ma + nb : a, b \in \mathbb{N}_0 \}$$

Hermitian's curve \mathcal{H}_4 has Weierstrass semigroup equal to $\langle 4, 5 \rangle$.

Geil's norm-trace curve over \mathbb{F}_{q^r} is defined by the affine equation

$$x^{(q^r-1)/(q-1)} = y^{q^{r-1}} + y^{q^{r-2}} + \dots + y$$

where *q* is a prime power.

It has a single rational point P_∞ at infinity and the Weierstrass semigroup at P_∞ is

$$\langle (q^r-1)/(q-1), q^{r-1} \rangle.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Lemma (Sylvester)

The conductor of ⟨a, b⟩ is (a − 1)(b − 1)
 The genus of ⟨a, b⟩ is (a−1)(b−1)/2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma (Sylvester)

Hence, semigroups generated by two integers are symmetric.

Symmetric semigroups

Lemma

A numerical semigroup Λ is symmetric if and only if for any non-negative integer i,

$$i \notin \Lambda \iff c - 1 - i \in \Lambda.$$

Pseudo-symmetric semigroups

Definition

A numerical semigroup with conductor *c* and genus *g* is pseudo-symmetric if c = 2g - 1.

Pseudo-symmetric semigroups

Definition

A numerical semigroup with conductor *c* and genus *g* is pseudo-symmetric if c = 2g - 1.

Example:

The Weierstrass semigroup at point P_0 of the Klein curve is pseudo-symmetric.

Its conductor is c = 5 and its genus is g = 3.

i	λ_i	
0	0	
1	3	$\leftarrow 2\mathrm{gaps}$
2	5	$ \stackrel{\leftarrow 1 \text{ gaps}}{\leftarrow c = 5} $
3	6	
4	7	
5	8	
:	÷	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Pseudo-symmetric semigroups

Lemma

A numerical semigroup Λ with odd conductor c is pseudo-symmetric if and only if for any integer i different from (c-1)/2,

$$i
ot\in \Lambda \iff c - 1 - i \in \Lambda$$
.

1	λ_i	
0	0	
		4-3
		(c-1)/2
1	3	
		4-0
2	5	
3	6	
4	7	
5	8	
:	:	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Irreducible semigroups are the semigroups that can not be expressed as a proper intersection of two numerical semigroups.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Irreducible semigroups are the semigroups that can not be expressed as a proper intersection of two numerical semigroups.

Theorem (Rosales, Branco, 2003)

The set of irreducible semigroups is the union of the set of symmetric semigroups and the set of pseudo-symmetric semigroups.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Arf semigroups

Definition

A numerical semigroup Λ is Arf if for any $a, b, c \in \Lambda$ with $a \ge b \ge c$ we have $a + b - c \in \Lambda$.

Arf semigroups

Definition

A numerical semigroup Λ is Arf if for any $a, b, c \in \Lambda$ with $a \ge b \ge c$ we have $a + b - c \in \Lambda$.

Example

The Weierstrass semigroup at point *P* of the Klein quartic is Arf.

<i>i</i> 0	λ_i 0	
1	3	
2	5	
3	6	
4		
5	8	
6	9	$7+5-3=9\in\Lambda$
7	10	
:	:	

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Lemma

Suppose Λ is Arf. If $i, i + j \in \Lambda$ for some $i, j \in \mathbb{N}_0$, then $i + kj \in \Lambda$ for all $k \in \mathbb{N}_0$. Consequently, if Λ is Arf and $i, i + 1 \in \Lambda$, then $i \ge c$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma

Suppose Λ is Arf. If $i, i + j \in \Lambda$ for some $i, j \in \mathbb{N}_0$, then $i + kj \in \Lambda$ for all $k \in \mathbb{N}_0$. Consequently, if Λ is Arf and $i, i + 1 \in \Lambda$, then $i \ge c$.

Proof: Let us prove this by induction on *k*. It is obvious for k = 0 and k = 1. If k > 0 and $i, i + j, i + kj \in \Lambda$ then $(i + j) + (i + kj) - i = i + (k + 1)j \in \Lambda$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Lemma

Suppose Λ is Arf. If $i, i + j \in \Lambda$ for some $i, j \in \mathbb{N}_0$, then $i + kj \in \Lambda$ for all $k \in \mathbb{N}_0$. Consequently, if Λ is Arf and $i, i + 1 \in \Lambda$, then $i \ge c$.

Proof: Let us prove this by induction on *k*. It is obvious for k = 0 and k = 1. If k > 0 and $i, i + j, i + kj \in \Lambda$ then $(i + j) + (i + kj) - i = i + (k + 1)j \in \Lambda$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Consequently, Arf semigroups are sparse semigroups [Munuera, Torres, Villanueva, 2008], that is, there are no two consecutive non-gaps smaller than the conductor.

Hyperelliptic numerical semigroups are the numerical semigroups generated by 2 and an odd integer.

Hyperelliptic numerical semigroups are the numerical semigroups generated by 2 and an odd integer.

They are of the form

$$\Lambda = \{0, 2, 4, \dots, 2k - 2, 2k, 2k + 1, 2k + 2, 2k + 3, \dots\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for some positive integer *k*.

Hyperelliptic numerical semigroups are the numerical semigroups generated by 2 and an odd integer.

They are of the form

$$\Lambda = \{0, 2, 4, \dots, 2k - 2, 2k, 2k + 1, 2k + 2, 2k + 3, \dots\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

for some positive integer *k*.

Lemma (Campillo, Farran, Munuera, 2000)

The unique Arf symmetric semigroups are hyperelliptic semigroups.

Semigroups generated by an interval

Definition

A numerical semigroup is generated by an interval if its set of generators is $\{i, i + 1, ..., j\}$ for some $i, j \in \mathbb{N}_0$.

Semigroups generated by an interval

Definition

A numerical semigroup is generated by an interval if its set of generators is $\{i, i + 1, ..., j\}$ for some $i, j \in \mathbb{N}_0$.

Example

The Weierstrass semigroup at point P_{∞} of the Hermitian curve \mathcal{H}_4 is generated by the interval $\{4,5\}$.

i	λ_i	
0	0	
1	4	
2		
2	3	
3	8	= 4 + 4
4	9	= 4 + 5
5	10	= 5 + 5
9	10	0,0
6	12	= 4 + 4 + 4
7	13	= 4 + 4 + 5
8	14	=4+5+5
9	15	= 5 + 5 + 5
10	16	= 4 + 4 + 4 + 4
:	:	:
Exercise

Lemma

The unique numerical semigroups which are generated by an interval and Arf, are the semigroups which are equal to $\{0\} \cup \{i \in \mathbb{N}_0 : i \ge c\}$ for some non-negative integer *c*.

Lemma

The unique Arf pseudo-symmetric semigroups are $\{0, 3, 4, 5, 6, ...\}$ *and* $\{0, 3, 5, 6, 7, ...\}$ *(corresponding to the Klein quartic).*

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Exercise

Lemma

The unique numerical semigroup which is pseudo-symmetric and generated by an interval is $\{0, 3, 4, 5, 6, ...\}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma

$$\Lambda_{\{i,...,j\}}$$
 is symmetric if and only if $i \equiv 2 \mod j - i$.

Definition

A numerical semigroup is ordinary if it is equal to

```
\{0\} \cup \{i \in \mathbb{N}_0 : i \ge c\},\
```

for some non-negative integer *c*.

Definition

A numerical semigroup is ordinary if it is equal to

```
\{0\} \cup \{i \in \mathbb{N}_0 : i \ge c\},\
```

for some non-negative integer *c*.

Definition

A numerical semigroup is acute if it is ordinary or if its last interval of gaps is smaller than or equal to the previous one.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Acute semigroups

Example

The Weierstrass semigroup at point P_0 of the Klein quartic is acute.

i	λ_i	
0	0	
		\leftarrow 2 gaps
1	3	
		$\leftarrow 1 \text{ gap}$
2	5	
3	6	
4	7	
5	8	
6	9	
7	10	
8	11	
9	12	
÷		

Acute semigroups

Example

The Weierstrass semigroup at point P_{∞} of the Hermitian curve \mathcal{H}_4 is acute.

i	λ_i	
0	0	
1	4	
2	5	
		\leftarrow 2 gaps
3	8	
4	9	
5	10	
		$\leftarrow 1$ gap
6	12	
7	13	
8	14	
:	:	

Lemma

All symmetric semigroups are acute.

Proof: Let Λ be a non-ordinary symmetric semigroup.

Since $1 \notin \Lambda$, by the lemma on symmetric semigroups $c - 2 \in \Lambda$.

Thus, the last interval of gaps consists of one gap (c - 1).

The semigroup must therefore be acute.

Arf semigroups are acute

Lemma

All Arf semigroups are acute.

Proof: Let Λ be a non-ordinary Arf semigroup.

Consider *c*, *c*', *d*, *d*' as in the example, where c', c' + 1, ..., d is the last interval of non-gaps before the conductor.

$$d \ge c' > d' \Longrightarrow d + c' - d' \in \Lambda.$$

$$\left. \begin{array}{l} d+c'-d' \in \Lambda \\ d+c'-d' > d \end{array} \right\} \Longrightarrow d+c'-d' \geqslant c \Longrightarrow c-d \leqslant c'-d'.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Semigroups generated by an interval are acute

Lemma

[García-Sánchez, Rosales, 1999]

The numerical semigroup $\Lambda_{\{i,...,j\}}$ *generated by the interval* $\{i, i + 1, ..., j\}$ *satisfies*

$$\Lambda_{\{i,\ldots,j\}} = \bigcup_{k \ge 0} \{ki, ki+1, ki+2, \ldots, kj\}.$$

Lemma

All semigroups generated by an interval are acute.

Proof: It is enough to see that the length of the gap intervals strictly decreases.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Theorem

 The set of acute semigroups is a proper subset of the whole set of numerical semigroups.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

- It properly includes
 - Symmetric and pseudo-symmetric semigroups,
 - Arf semigroups,
 - Semigroups generated by an interval.

Characterization

Homomorphisms

Definition

Homomorphisms of numerical semigroups are the maps *f* such that

$$f(a+b) = f(a) + f(b).$$

Homomorphisms

Definition

Homomorphisms of numerical semigroups are the maps *f* such that

$$f(a+b) = f(a) + f(b).$$

Lemma

Homomorphisms of numerical semigroups are exactly the scale maps f(a) = ka for all a, for some constant k,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

2 The unique surjective homomorphism is the identity.

Homomorphisms

Definition

Homomorphisms of numerical semigroups are the maps *f* such that

$$f(a+b) = f(a) + f(b).$$

Lemma

- **1** Homomorphisms of numerical semigroups are exactly the scale maps f(a) = ka for all a, for some constant k,
- 2 The unique surjective homomorphism is the identity.

Indeed, if *f* is a homomorphism then $\frac{f(a)}{a}$ is constant since $f(ab) = a \cdot f(b) = b \cdot f(a)$.

Furthermore, for a semigroup Λ , the set $k\Lambda$ is a numerical semigroup only if k = 1.

\oplus operation

Definition

Given a numerical semigroup Λ define the associated \oplus operation

 $\oplus_\Lambda:\mathbb{N}_0\times\mathbb{N}_0\to\mathbb{N}_0$

by

$$i \oplus_{\Lambda} j = \lambda^{-1} (\lambda_i + \lambda_j).$$

Equivalently,

$$\lambda_i + \lambda_j = \lambda_{i \oplus \Lambda j}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• operation

Definition

Given a numerical semigroup Λ define the associated \oplus operation

 $\oplus_\Lambda:\mathbb{N}_0\times\mathbb{N}_0\to\mathbb{N}_0$

by

$$i \oplus_{\Lambda} j = \lambda^{-1} (\lambda_i + \lambda_j).$$

Equivalently,

$$\lambda_i + \lambda_j = \lambda_{i \oplus \Lambda j}.$$

The operation \oplus is compatible with the natural order of \mathbb{N}_0 . That is,

$$a < b \Rightarrow \begin{cases} a \oplus c < b \oplus c \\ c \oplus a < c \oplus b \end{cases} \text{ for any } c \in \mathbb{N}_0.$$

Example

For the numerical semigroup $\Lambda = \{0, 4, 5, 8, 9, 10, 12, 13, 14, ...\}$ the first values of \oplus are given in the next table:

\oplus	0	1	2	3	4	5	6	7	
0	0	1	2	3	4	5	6	7	
1	1	3	4	6	7	8	10	11	
2	2	4	5	7	8	9	11	12	
3	3	6	7	10	11	12	14	15	
4	4	7	8	11	12	13	15	16	
5	5	8	9	12	13	14	16	17	
6	6	10	11	14	15	16	18	19	
7	7	11	12	15	16	17	19	20	
÷	÷	÷	÷	:	:	:	÷	÷	·

Lemma

The \oplus *operation uniquely determines a semigroup.*

Lemma

The \oplus operation uniquely determines a semigroup.

Proof: Suppose that $\Lambda = \{\lambda_0 < \lambda_1 < ...\}$ and $\Lambda' = \{\lambda'_0 < \lambda'_1 < ...\}$ have the same associated operation \oplus .

Define the map

$$f(\lambda_i) = \lambda'_i.$$

It is obviously surjective and it is a homomorphism since

$$f(\lambda_i + \lambda_j) = f(\lambda_{i \oplus j}) = \lambda'_{i \oplus j} = \lambda'_i + \lambda'_j = f(\lambda_i) + f(\lambda_j)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

So, $\Lambda = \Lambda'$.

Lemma

Define $\Lambda' = d\Lambda \cup \{i \in \mathbb{N} : i \ge d\lambda_{a \oplus b}\}.$

Then $i \oplus_{\Lambda'} j = i \oplus_{\Lambda} j$ *for all* $i \leq a$ *and all* $j \leq b$ *, and* $\Lambda' \neq \Lambda$ *.*

Lemma

Define $\Lambda' = d\Lambda \cup \{i \in \mathbb{N} : i \ge d\lambda_{a \oplus b}\}.$

Then $i \oplus_{\Lambda'} j = i \oplus_{\Lambda} j$ *for all* $i \leq a$ *and all* $j \leq b$ *, and* $\Lambda' \neq \Lambda$ *.*

Proof:

Let λ, λ' be the enumerations of Λ, Λ' .

For all $k \leq a \oplus_{\Lambda} b$, $\lambda'_k = d\lambda_k$.

In particular, if $i \leq a$ and $j \leq b$ then $\lambda'_i = d\lambda_i$ and $\lambda'_j = d\lambda_j$.

Hence, $\lambda'_{i \oplus_{\Lambda'} j} = \lambda'_i + \lambda'_j = d\lambda_i + d\lambda_j = d\lambda_{i \oplus_{\Lambda} j} = \lambda'_{i \oplus_{\Lambda} j}.$

This implies $i \oplus_{\Lambda'} j = i \oplus_{\Lambda} j$.

Lemma

Define $\Lambda' = d\Lambda \cup \{i \in \mathbb{N} : i \ge d\lambda_{a \oplus b}\}.$

Then $i \oplus_{\Lambda'} j = i \oplus_{\Lambda} j$ *for all* $i \leq a$ *and all* $j \leq b$ *, and* $\Lambda' \neq \Lambda$ *.*

Proof:

Let λ, λ' be the enumerations of Λ, Λ' .

For all $k \leq a \oplus_{\Lambda} b$, $\lambda'_k = d\lambda_k$.

In particular, if $i \leq a$ and $j \leq b$ then $\lambda'_i = d\lambda_i$ and $\lambda'_j = d\lambda_j$.

Hence,
$$\lambda'_{i\oplus_{\Lambda'}j} = \lambda'_i + \lambda'_j = d\lambda_i + d\lambda_j = d\lambda_{i\oplus_{\Lambda}j} = \lambda'_{i\oplus_{\Lambda}j}$$
.

This implies $i \oplus_{\Lambda'} j = i \oplus_{\Lambda} j$.

Consequently Λ is not determined by any finite subset of \oplus values.

▲日▶▲□▶▲□▶▲□▶ □ のQ@

ν sequence

Given a numerical semigroup Λ define its ν sequence as

$$\nu_i = \#\{j \in \mathbb{N}_0 : \lambda_i - \lambda_j \in \Lambda\}$$

ν sequence

Given a numerical semigroup Λ define its ν sequence as

$$\nu_i = \#\{j \in \mathbb{N}_0 : \lambda_i - \lambda_j \in \Lambda\}$$

Example

Klein quartic

i	λ_i	ν_i	
0	0	1	{0}
1	3	2	{0,3}
2	5	2	{0,5}
3	6	3	{0, 3, 6]
4	7	2	$\{0,7\}$
5	8	4	{0, 3, 5.
6	9	4	{0, 3, 6,
7	10	5	{0, 3, 5,
8	11	6	{0, 3, 5,
9	12	7	{0, 3, 5,
10	13	8	$\{0, 3, 5,$
	•		
		1.1	

8} 9} 7, 10} 6, 8, 11} 6, 7, 9, 12} 6, 7, 8, 10, 13}

τ sequence

Given a numerical semigroup Λ define its τ sequence as

 $\tau_i = \max\{j \in \mathbb{N}_0 : \text{ exists } k \text{ with } j \leq k \text{ and } \lambda_j + \lambda_k = \lambda_i\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � �

τ sequence

Given a numerical semigroup Λ define its τ sequence as

 $\tau_i = \max\{j \in \mathbb{N}_0 : \text{ exists } k \text{ with } j \leq k \text{ and } \lambda_j + \lambda_k = \lambda_i\}$

Example

Klein quartic

i	λ_i	i	τ_i	
0	0	0	0	0 + 0 = 0
1	3	1	0	0 + 3 = 3
2	5	2	0	0 + 5 = 5
3	6	3	1	3 + 3 = 6
4	7	4	0	0 + 7 = 7
5	8	5	1	3 + 5 = 8
6	9	6	1	3 + 6 = 9
7	10	7	2	5 + 5 = 10
8	11	8	2	5 + 6 = 11
9	12	9	3	6 + 6 = 12
10	13	10	3	6 + 7 = 13
	•		1.1	•
			1.1	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exercise

Find the ν -sequence and the τ -sequence of $H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, ... \}.$

Exercise

i	λ_i	$\{\lambda_j : \lambda_i - \lambda_j \in \Lambda\}$	ν	τ
0	0	{ 0 }	1	0
1	12	{0, 12}	2	0
2	19	{0, 19}	2	0
3	24	$\{0, 12, 24\}$	3	1
4	28	{0, 28}	2	0
5	31	$\{0, 12, 19, 31\}$	4	1
6	34	{0, 34}	2	0
7	36	$\{0, 12, 24, 36\}$	4	1
8	38	{0, 19, 38}	3	2
9	40	$\{0, 12, 28, 40\}$	4	1
10	42	$\{0, 42\}$	2	0
11	43	$\{0, 12, 19, 24, 31, 43\}$	6	2
12	45	$\{0, 43\}$	4	0
13	46	$\{0, 12, 34, 46\}$	4	1
14	47	$\{0, 19, 28, 47\}$	4	2
15	48	$\{0, 12, 24, 36, 48\}$	5	3
10	49	$\{0, 49\}$	2	0
17	50	{0, 12, 19, 51, 58, 50}	2	2
10	52		6	2
20	53	$\begin{bmatrix} 0, 12, 24, 20, 40, 52 \end{bmatrix}$	4	2
21	54	$\{0, 12, 34\}$	4	1
22	55	$\{0, 12, 19, 24, 31, 36, 43, 55\}$	8	3
23	56	{0, 12, 13, 13, 00, 10, 00}	3	4
24	57	$\{0, 12, 19, 38, 45, 57\}$	6	2
25	58	$\{0, 12, 24, 34, 46, 58\}$	6	3
26	59	$\{0, 12, 19, 28, 31, 40, 47, 59\}$	8	4
27	60	$\{0, 12, 24, 36, 48, 60\}$	6	3
28	61	$\{0, 12, 19, 42, 49, 61\}$	6	2
29	62	$\{0, 12, 19, 24, 28, 31, 34, 38, 43, 50, 62\}$	11	5
30	63	$\{0, 12, 51, 63\}$	4	1
31	64	$\{0, 12, 19, 24, 28, 36, 40, 45, 52, 64\}$	10	4
32	65	$\{0, 12, 19, 31, 34, 46, 53, 65\}$	8	5
33	66	$\{0, 12, 19, 24, 28, 38, 42, 66\}$	8	4
34	67	$\{0, 12, 19, 24, 31, 36, 43, 48, 55, 67\}$	10	5
35	68	$\{0, 12, 19, 28, 34, 40, 49, 56, 68\}$	9	6
36	69	$\{0, 12, 19, 24, 31, 38, 45, 50, 57, 69\}$	10	5
37	70	$\{0, 12, 19, 24, 28, 34, 36, 42, 46, 51, 58, 70\}$	12	6
38	71	$\int 0$ 12 19 24 28 31 40 43 47 52 59 71	12	5

Theorem

A numerical semigroup is completely determined by its τ sequence.

Proof: We can construct a numerical semigroup Λ from its τ sequence as follows:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

• Let *k* be the minimum integer such that for all $i \in \mathbb{N}_0$,

$$\tau_{k+2i} = \tau_{k+2i+1}$$

$$\tau_{k+2i+2} = \tau_{k+2i+1} + 1$$

Set

$$c = k - \tau_k + 1$$
$$g = k - 2\tau_k$$

This determines λ_i for all $i \ge c - g$

• For
$$i = c - g - 1$$
 to 1, $\lambda_i = \frac{1}{2} \min\{\lambda_j : \tau_j = i\}$

Theorem

A numerical semigroup is completely determined by its ν sequence.

Proof: We can construct a numerical semigroup Λ from its ν sequence as follows:

If
$$\nu_i = i + 1$$
 for all $i \in \mathbb{N}_0$ then $\Lambda = \mathbb{N}_0$

• Otherwise let $k = \max\{j : \nu_j = \nu_{j+1}\}$ (it exists and it is unique)

• Set
$$g = k + 2 - \nu_k$$
 and $c = \frac{k+g+2}{2}$
• $0 \in \Lambda, 1, c - 1 \notin \Lambda$
• For all $i \ge c, i \in \Lambda$
• For $i = c - 2$ to $i = 2$,
• Define $\tilde{D}(i) = \{l \in \Lambda^c : c - 1 + i - l \in \Lambda^c, i < l < c - 1\}$

•
$$i \in \Lambda$$
 if and only if $\nu_{c-1+i-g} = c + i - 2g + \#\tilde{D}(i)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem

No numerical semigroup can be determined by any finite subset of

- ν values
- $\bullet \tau$ values
- $\blacksquare \oplus values$

Theorem

No numerical semigroup can be determined by any finite subset of

- ν values
- $\bullet \tau$ values
- $\blacksquare \oplus values$

Exercise

Prove the theorem.

▲ロト▲園ト▲目ト▲目ト 目 のへの

Counting semigroups by genus

Let n_g denote the number of numerical semigroups of genus g.

Counting semigroups by genus

Let n_g denote the number of numerical semigroups of genus g.

■ $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●
Let n_g denote the number of numerical semigroups of genus g.

■ $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

■ $n_1 = 1$, since the unique numerical semigroup of genus 1 is $\mathbb{N}_0 \setminus \{1\}$

Let n_g denote the number of numerical semigroups of genus g.

- $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0
- $n_1 = 1$, since the unique numerical semigroup of genus 1 is $\mathbb{N}_0 \setminus \{1\}$
- $n_2 = 2$. Indeed the unique numerical semigroups of genus 2 are

 $\{0,3,4,5,\dots\},\$ $\{0,2,4,5,\dots\}.$

Let n_g denote the number of numerical semigroups of genus g.

- $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0
- $n_1 = 1$, since the unique numerical semigroup of genus 1 is $\mathbb{N}_0 \setminus \{1\}$
- $n_2 = 2$. Indeed the unique numerical semigroups of genus 2 are

 $\{0,3,4,5,\dots\},\$ $\{0,2,4,5,\dots\}.$

 $n_{3} = 4$ $n_{4} = 7$ $n_{5} = 12$ $n_{6} = 23$ $n_{7} = 39$ $n_{8} = 67$

Conjecture

[Bras-Amorós, 2008]

1
$$n_g \ge n_{g-1} + n_{g-2}$$

2 Is $\lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1$
Is $\lim_{g \to \infty} \frac{n_g}{n_{g-1}} = \phi$

8	n_g	$n_{g-1} + n_{g-2}$	$\frac{n_{g-1}+n_{g-2}}{n_e}$	$\frac{n_g}{n_{d-1}}$	
0	1				
1	1			1	
2	2	2	1	2	
3	4	3	0.75	2	
4	7	6	0.857143	1.75	
5	12	11	0.916667	1.71429	
6	23	19	0.826087	1.91667	
7	39	35	0.897436	1.69565	
8	67	62	0.925373	1.71795	
9	118	106	0.898305	1.76119	
10	204	185	0.906863	1.72881	
11	343	322	0.938776	1.68137	
12	592	547	0.923986	1.72595	
13	1001	935	0.934066	1.69088	
14	1693	1593	0.940933	1.69131	
15	2857	2694	0.942947	1.68754	
16	4806	4550	0.946733	1.68218	
17	8045	7663	0.952517	1.67395	
18	13467	12851	0.954259	1.67396	
19	22464	21512	0.957621	1.66808	
20	37396	35931	0.960825	1.66471	
21	62194	59860	0.962472	1.66312	
22	103246	99590	0.964589	1.66006	
23	170963	165440	0.967695	1.65588	
24	282828	274209	0.969526	1.65432	
25	467224	453791	0.971249	1.65197	
26	770832	750052	0.973042	1.64981	
27	1270267	1238056	0.974642	1.64792	
28	2091030	2041099	0.976121	1.64613	
29	3437839	3361297	0.977735	1.64409	
30	5646773	5528869	0.979120	1.64254	
31	9266788	9084612	0.980341	1.64108	
32	15195070	14913561	0.981474	1.63973	
33	24896206	24461858	0.982554	1.63844	
34	40761087	40091276	0.983567	1.63724	
35	66687201	65657293	0.984556	1.63605	1
36	109032500	107448288	0.985470	1.63498	
37	178158289	175719701	0.986312	1.63399	
38	290939807	287190789	0.987114	1.63304	
39	474851445	469098096	0.987884	1.63213	
40	774614284	765791252	0.988610	1.63128	$\langle \Box \rangle$

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の < (~)

▲ロト▲御と▲臣と▲臣と 臣 のなぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

What is known

 Upper and lower bounds for n_g
 Dyck paths and Catalan bounds (w. de Mier), semigroup tree and Fibonacci bounds, Elizalde's improvements, and others

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

What is known

 Upper and lower bounds for n_g
 Dyck paths and Catalan bounds (w. de Mier), semigroup tree and Fibonacci bounds, Elizalde's improvements, and others

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

■
$$\lim_{g\to\infty} \frac{n_g}{n_{g-1}} = \phi$$

Alex Zhai (2013) with important contributions of Nathan Kaplan, Yufei Zhao, and others

What is known

 Upper and lower bounds for n_g
 Dyck paths and Catalan bounds (w. de Mier), semigroup tree and Fibonacci bounds, Elizalde's improvements, and others

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

■ $\lim_{g\to\infty} \frac{n_g}{n_{g-1}} = \phi$ Alex Zhai (2013) with important contributions of Nathan Kaplan, Yufei Zhao, and others

Weaker unsolved conjecture

■ *n_g* is increasing

- ロ > - 4 日 > - 4 三 > - 4 三 > - 9 へ(や

Definition

A Dyck path of order *n* is a staircase walk from (0, 0) to (n, n) that lies over the diagonal x = y.

Definition

A Dyck path of order *n* is a staircase walk from (0,0) to (n,n) that lies over the diagonal x = y.

Example

Definition

A Dyck path of order *n* is a staircase walk from (0,0) to (n,n) that lies over the diagonal x = y.

The number of Dyck paths of order n is given by the Catalan number

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Definition

The square diagram of a numerical semigroup is the path

$$e(i) = \begin{cases} \rightarrow & \text{if } i \in \Lambda, \\ \uparrow & \text{if } i \notin \Lambda, \end{cases} \quad \text{for } 1 \leqslant i \leqslant 2g.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Definition

The square diagram of a numerical semigroup is the path

$$e(i) = \begin{cases} \rightarrow & \text{if } i \in \Lambda, \\ \uparrow & \text{if } i \notin \Lambda, \end{cases} \quad \text{for } 1 \leqslant i \leqslant 2g.$$

It always goes from (0, 0) to (g, g).

Definition

The square diagram of a numerical semigroup is the path

$$e(i) = \begin{cases} \rightarrow & \text{if } i \in \Lambda, \\ \uparrow & \text{if } i \notin \Lambda, \end{cases} \quad \text{for } 1 \leqslant i \leqslant 2g.$$

It always goes from (0, 0) to (g, g).

Example

The square diagram of the numerical semigroup $\{0,4,5,8,9,10,12,\dots\}$ is

Example

The square diagram of the numerical semigroup $\{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, \ldots\}$ is

Lemma

[Bras-Amorós, de Mier, 2007] The square diagram of a numerical semigroup is a Dyck path.

Lemma

[Bras-Amorós, de Mier, 2007] The square diagram of a numerical semigroup is a Dyck path.

Corollary

The number of numerical semigroups of genus g is bounded by the Catalan number $C_g = \frac{1}{g+1} {2g \choose g}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Semigroup tree and Fibonacci bounds

From genus *g* to genus g - 1

A semigroup of genus *g* together with its Frobenius number is another semigroup of genus g - 1.

$$\{0, 2, 4, 5, \dots\} \mapsto \{0, 2, 3, 4, 5, \dots\}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

From genus *g* to genus g - 1

A semigroup of genus *g* together with its Frobenius number is another semigroup of genus g - 1.

$$\{0, 2, 4, 5, \dots\} \mapsto \{0, 2, 3, 4, 5, \dots\}$$

A set of semigroups may give the same semigroup when adjoining their Frobenius numbers.

$$\{0,2,4,5,\ldots\} \\ \{0,3,4,5,\ldots\} \mapsto \{0,2,3,4,5,\ldots\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

From genus g - 1 to genus g

All semigroups giving Λ when adjoining to them their Frobenius number can be obtained from Λ by taking out one by one all generators of Λ larger than its Frobenius number.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The descendants of a semigroup are obtained taking away one by one all generators larger than its Frobenius number.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The descendants of a semigroup are obtained taking away one by one all generators larger than its Frobenius number.

The parent of a semigroup Λ is Λ together with its Frobenius number. [Rosales, García-Sánchez, García-García, Jiménez-Madrid, 2003]

Lemma

The ordinary semigroup of genus g has g + 1 *descendants which in turn have* $0, 1, 2, \ldots, g - 2, g, g + 2$ *descendants.*

Lemma

The ordinary semigroup of genus g has g + 1 *descendants which in turn have* $0, 1, 2, \ldots, g - 2, g, g + 2$ *descendants.*

◆□> <畳> < Ξ> < Ξ> < Ξ</p>

Lemma

Let $\lambda_i \in \Lambda$ be a generator of Λ (non-ordinary) larger than its Frobenius number. If $\lambda_j > \lambda_i$ satisfies

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- λ_j is not a generator of Λ
- λ_j is a generator of $\Lambda \setminus \{\lambda_i\}$

then $\lambda_j = \lambda_1 + \lambda_i$.

Lemma

Let $\lambda_i \in \Lambda$ be a generator of Λ (non-ordinary) larger than its Frobenius number. If $\lambda_j > \lambda_i$ satisfies

- λ_j is not a generator of Λ
- λ_j is a generator of $\Lambda \setminus \{\lambda_i\}$

then $\lambda_j = \lambda_1 + \lambda_i$.

Proof: Since λ_j is not a generator of Λ , $\lambda_j = \lambda_r + \lambda_s$. Since λ_j is a generator of $\Lambda \setminus {\lambda_i}$, $\lambda_j = \lambda_i + \lambda_r$. Suppose r > 1. Then

$$\lambda_j = \lambda_1 + \lambda_i + \underbrace{\lambda_r - \lambda_1}_{\geq 0}, \text{ contradiction.}$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ の�?

Corollary

If the generators of Λ (non-ordinary) that are larger than its Frobenius number are $\{\lambda_{i_1} < \lambda_{i_2} < \cdots < \lambda_{i_k}\}$, then the generators of $\Lambda \setminus \{\lambda_{i_j}\}$ that are larger than its Frobenius number are

$$\{\lambda_{i_{j+1}} < \cdots < \lambda_{i_k}\},\$$

or

$$\{\lambda_{i_{j+1}} < \cdots < \lambda_{i_k}\} \cup \{\lambda_1 + \lambda_{i_j}\}$$

(日)

Corollary

If the generators of Λ (non-ordinary) that are larger than its Frobenius number are $\{\lambda_{i_1} < \lambda_{i_2} < \cdots < \lambda_{i_k}\}$, then the generators of $\Lambda \setminus \{\lambda_{i_j}\}$ that are larger than its Frobenius number are

$$\{\lambda_{i_{j+1}} < \cdots < \lambda_{i_k}\},\$$

or

$$\{\lambda_{i_{j+1}} < \cdots < \lambda_{i_k}\} \cup \{\lambda_1 + \lambda_{i_j}\}$$

Corollary

If a node in the semigroup tree has k descendants, then its descendants have

- at least $0, \ldots, k-1$ descendants, respectively,
- at most $1, \ldots, k$ descendants, respectively.

Number of descendants of semigroups of genus 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � �

1 3 {0,2,4,5,...} {0,3,4,5,...}

Lower bound for the number of descendants of semigroups of genus 3

Lower bound for the number of descendants of semigroups of genus 3

 $\begin{bmatrix} 1 & & 3 \\ 0 & & 0 \\ & & 2 \\ 4 \end{bmatrix}$

Lower bound for the number of descendants of semigroups of genus 4

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●
Lower bound for the number of descendants of semigroups of genus 4

・ロト・西・・田・・田・・日・ うらぐ

 $\begin{array}{c}
1\\
0\\
0\\
0\\
1\\
0\\
1\\
0\\
1\\
0\\
1\\
3\\
5
\end{array}$

Lower bound for the number of descendants of semigroups of genus 5

Lower bound for the number of descendants of semigroups of genus 5

6

Lower bound for the number of descendants of semigroups of genus 6

Lower bound for the number of descendants of semigroups of genus 6

7

(ロ) (個) (E) (E) (E)

Lower bound for the number of descendants

÷

7

Lower bound for the number of descendants

Lemma

For $g \ge 3$,

$$2F_g \leqslant n_g$$
.

UNIDERSENCE 990

Number of descendants of semigroups of genus 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � �

Upper bound for the number of descendants of semigroups of genus 3

 $1 \qquad 3 \\ 1 \qquad 1 \qquad 2 \qquad 3$

Upper bound for the number of descendants of semigroups of genus 3

 $\begin{array}{c|c}
1 & 3 \\
0 & 1 & 2 & 4
\end{array}$

Upper bound for the number of descendants of semigroups of genus 4

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Upper bound for the number of descendants of semigroups of genus 4

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Upper bound for the number of descendants of semigroups of genus 5

Upper bound for the number of descendants of semigroups of genus 5

ヘロト 人間 とくほとく ほとう

æ

Upper bound for the number of descendants of semigroups of genus 6

(ロ) (部) (日) (日)

æ

Upper bound for the number of descendants of semigroups of genus 6

(ロ) (部) (日) (日)

Ξ.

Upper bound for the number of descendants

÷

Upper bound for the number of descendants

Lemma

For $g \ge 3$,

$$2F_g \leqslant n_g \leqslant 1 + 3 \cdot 2^{g-3}.$$

Bounds on *n*_g

8	$2F_g$	n_g	$1 + 3 \cdot 2^{g-3}$	C_{g}			
0		1		1	1		
1		1		1			
2	2	2		2			
3	4	4	4	5			
4	6	7	7	14			
5	10	12	13	42			
6	16	23	25	132			
7	26	39	49	429			
8	42	67	97	1430			
9	68	118	193	4862			
10	110	204	385	16796			
11	178	343	769	58786			
12	288	592	1537	208012			
13	466	1001	3073	742900			
14	754	1693	6145	2674440			
15	1220	2857	12289	9694845			
16	1974	4806	24577	35357670			
17	3194	8045	49153	129644790			
18	5168	13467	98305	477638700			
19	8362	22464	196609	1767263190			
20	13530	37396	393217	6564120420			
21	21892	62194	786433	24466267020			
22	35422	103246	1572865	91482563640			
23	57314	170963	3145729	343059613650			
24	92736	282828	6291457	1289904147324			
25	150050	467224	12582913	4861946401452			
26	242786	770832	25165825	18367353072152			
27	392836	1270267	50331649	69533550916004			
28	635622	2091030	100663297	263747951750360			
29	1028458	3437839	201326593	1002242216651368			
30	1664080	5646773	402653185	3814986502092304		-	

Ordinarization transform and ordinarization tree

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

A numerical semigroup is ordinary if all its gaps are consecutive. In this case multiplicity=Frobenius number + 1.

Ordinarization transform of a semigroup:

- Remove the multiplicity (smallest non-zero non-gap)

- Add the largest gap (the Frobenius number).

Ordinarization transform of a semigroup:

- Remove the multiplicity (smallest non-zero non-gap)
- Add the largest gap (the Frobenius number).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○○

Ordinarization transform of a semigroup:

- Remove the multiplicity (smallest non-zero non-gap)
- Add the largest gap (the Frobenius number).

Ordinarization transform of a semigroup:

- Remove the multiplicity (smallest non-zero non-gap)
- Add the largest gap (the Frobenius number).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Ordinarization transform of a semigroup:

- Remove the multiplicity (smallest non-zero non-gap)
- Add the largest gap (the Frobenius number).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

• The result is another numerical semigroup.

Ordinarization transform of a semigroup:

- Remove the multiplicity (smallest non-zero non-gap)
- Add the largest gap (the Frobenius number).

- The result is another numerical semigroup.
- The genus is kept constant in all the transforms.

Ordinarization transform of a semigroup:

- Remove the multiplicity (smallest non-zero non-gap)
- Add the largest gap (the Frobenius number).

- The result is another numerical semigroup.
- The genus is kept constant in all the transforms.
- Repeating several times (:= ordinarization number) we obtain an ordinary semigroup.

The tree \mathcal{T}_g

Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its ordinarization transform

The tree \mathcal{T}_g

Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its ordinarization transform

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

 T_g is a tree rooted at the unique ordinary semigroup of genus *g*.

The tree \mathcal{T}_g

Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its ordinarization transform

 \mathcal{T}_g is a tree rooted at the unique ordinary semigroup of genus g. Contrary to \mathcal{T} , \mathcal{T}_g has only a finite number of nodes (indeed, n_g).

・ロト・日本・ エー・ エー・ シック ()

Lemma

If Λ_1 is a descendant of Λ_2 in \mathcal{T} then Λ'_1 is a descendant of Λ'_2 in \mathcal{T} .

Lemma

If two non-ordinary semigroups Λ_1 and Λ_2 with the same genus g have the same parent in T then they also have the same parent in T_g .

The depth of a semigroup of genus g in T_g is its ordinarization number.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The **depth** of a semigroup of genus *g* in T_g is its ordinarization number.

Lemma

- **1** The ordinarization number of a numerical semigroup of genus g is the number of its non-zero non-gaps which are $\leq g$.
- **2** The maximum ordinarization number of a semigroup of genus g is $\lfloor \frac{g}{2} \rfloor$.

The unique numerical semigroup of genus g and ordinarization number L^g/₂ j is {0,2,4,...,2g,2g+1,2g+2,...}.

 $n_{g,r}$: number of semigroups of genus *g* and ordinarization number *r*.

Conjecture $n_{g,r} \leq n_{g+1,r}$

■ Equivalently, the number of semigroups in *T*_g at a given depth is at most the number of semigroups in *T*_{g+1} at the same depth.
$n_{g,r}$: number of semigroups of genus *g* and ordinarization number *r*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

This conjecture would prove $n_g \leq n_{g+1}$.

 $n_{g,r}$: number of semigroups of genus *g* and ordinarization number *r*.

This conjecture would prove $n_g \leq n_{g+1}$. This result is proved for the lowest and largest depths.

Computational evidence

r	g g=0	g=1	8-2	z=3 g=4	8-5	g=6	g-7	g=8 ;	g=9	g=10	g=11	g=12	g=13	g=14	g=15	g=16	g=17	g=18	g-19	9 g=20	g=21	
r=	0 1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
r-	1		1	3 5	9	12	18	22	30	35	45	51	63	70	84	92	108	117	135	145	165	
r-	2			1	2	9	19	39	70	118	196	281	432	586	838	1080	1490	1835	2445	2956	3804	
1-	r=4							-	10	2	3/	220	442	190	1402	1092	2202	4611	9510	1592	20132	
r-	r=5							•	•	ĩ	1	2	2	9	27	93	215	721	1685	4417	9633	
r-	6											1	1	2	2	7	9	45	89	319	889	
r	r=7													1	1	2	2	7	7	25	47	
r-	8															1	1	2	2	7	7	
r-	9																	1	1	2	2	
r=	10	_																		1	1	
r\g	g=22	g=23	g=24	g=25	g=26	g=26 g=3		g=28		g=29		g=30 g=3		1 g=32		g=33		g=3	(=35 g=3		g=37	
r=0	1	1	1	1	1	1		1		1	1	1		1	1		1	1		1	1	_
r=1	176 198		210	234	247	247 273		287		315		30 360		376	408		425		,	477	513	
r=2	4498 5690		6582	8162	9352	352 1133		12879		15480		7317 2056		22877	26812		29610	344	54	37739	43538	1
r=3	27768 3972		52312	72494	9334	3341 1236 5102 4296		1 15/758		208370 .		55646 1790		20 401389		51 6	435170	7649	27	899285	1111481	7
-5	21278	41912	\$2951	152894	28128	8 497	211	\$21654	127	1266	221877	252/	1257	5445075	\$2522	88 11	425220	19555	415	26605010	2885270	ñ6
r=6	2635	6446	17582	39214	90574	1 188	007	394521	756	5910	146975	3 2663	254	4823002	83444	82 14	1314198	23747	986	3889855	6237277	73
r=7	142	340	1266	3483	1017	264	189	69692	161	1111	382713	816	457	1763299	35339	77 7	088495	13371	197	2532182	4550082	20
r=8	23	24	96	157	553	15	70	5281	14	835	43790	113	548	294908	70194	16 1	652408	3632	309	7973030	1636810	J1
r=9	7 7		23	23	69	9	5	301	6	27	2457	71	68	23475	6822	3 1	94677 51		2838 132335		317814	0
r=10	2 2		~	2	23	2	3	23		23		30	19	1142	2994		740 12		40 109619		318508	5
r=12	1	1	ź	1	2			7	-	7	23	2	3	68	68		200	201	, ,	649	759	•
r=13			-		1	1		2		2	7	1 3		23	23		68	68		200	200	
r=14								1		1	2	- 2		7	7		23	23		68	68	
r=15											1	1	1	2	2		7	7		23	23	
r=16														1	1		2	2		7	7	
r=17																	1	1		2	2	
1-10				1		_														•		_
r\g	g=38		g=39	g-40	8	g-41		g=42		g=43		g=44		g=45		6	8-47		8-4	18	8-49	
r=0	1		1			1		1		1		1		1			1 878		1		1	
r=1	532		570	590		630		651 72419		693		×15 88142		759		2	828		852		900	
r=3	129997	18 1	14320 190237	183651	7 22	26669	25	15983	30	3059220		3477286		4134725		173	5518427		6185260		7256830	
r-4	131804	51 17	322789	216166	1 280	40199	344	58068	443	44142389		53663689		67788397		366	102094609		121404838		150477267	7
r=5	54507523		486888	1060949	148	148091995		198378083		272201928		358476988		483240666		5811	833944191		1063739070		139755724	1
r=6	982984	82 15:	816803	2328016	352	797809	5213	1753229 7		772496765		1114488292		1614321267		6111	3242295418		4478817624		626843045	7
r=7	816125	46 14	1878791 265070	2416996	90 402	445891	6644	4483/03		1072569052		1711738040		862529	4160828031		6388426599		9636305171		446241190	13
r=8 r=9	330002	40 65 10 16	363970 760501	368900	0 235	341363 185799	4364	40153Z 762381	319	319996692		631894288		1203245544		6763	4158339885		7567139870		336722771	>1 12
r=10	89980	7 2	83461	610172	6101724 148		349	97273	79	159902	175	168573	373	545010	782283651		1585487022		3171168252		615090945	6
r=11	51663	1	64512	51933	519339 150		42	37829	11221868		286	28679326		97864	166062233		379419480		845334246		182420823	7
r=12	2527		5652	21994	1994 712		25	2707	803934		245	2492982		7226212		20114114		02	136131501		334153690	3
r=13	616		649	1925	25 263		9	947	27432		10	106780		361575		778	3945659		12053243		34718395	
r=14	200		200	615		617	1	800	1939		6	6144		11138		24	140489		537134		1835716	
r=15	68		22	200		68	61			615		1/66		1804			6320		22087		52194	
r=17	7		7	23	23 27		6		68		1 3	200	200		615		615		1764		1764	
r=18	2		2	7	7 3		1	23		23	1	68	1	68	201	200			615		615	
r=19	1		1	2	2		1	7	7			23		23 68			68		200		200	
r=20				1		1	1	2	2			7	7		23		23		68		68	
r=21							1	1		1		2		2		7			23		23	
r=22							1					1				2			2		2	
-24			1																1		î	

Lemma (Bernardini and Torres (2017))

The sequence f_{γ} *given by*

also counts the number of semigroups of genus 3γ and γ even gaps.

Conjecture (Bernardini, Torres)

$$f_{\gamma} \sim \varphi^{2\gamma}$$

Further contributions on counting

Maria Bras-Amoróos and Anna de Mier. Representation of numerical semigroups by Dyck paths. Semigroup Forum, 75(3):677-682, 2007.

Maria Bras-Amorós. Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum, 76(2):379-384, 2008.

Maria Bras-Amorós. Bounds on the number of numerical semigroups of a given genus. J. Pure Appl. Algebra, 213(6):997-1001, 2009.

Maria Bras-Amorós and Stanislav Bulygin. Towards a better understanding of the semigroup tree. Semigroup Forum, 79(3):561-574, 2009.

Sergi Elizalde. Improved bounds on the number of numerical semigroups of a given genus. Journal of Pure and Applied Algebra, 214:1404-1409, 2010.

Yufei Zhao. Constructing numerical semigroups of a given genus. Semigroup Forum, 80(2):242-254, 2010.

Víctor Blanco, Pedro A. García-Sánchez, and Justo Puerto. Counting numerical semigroups with short generating functions, Internat. J. Algebra Comput. 21:1217–1235, 2011.

Nathan Kaplan. Counting numerical semigroups by genus and some cases of a question of Wilf, J. Pure Appl. Algebra 216: 1016–1032, 2012.

Maria Bras-Amorós. The ordinarization transform of a numerical semigroup and semigroups with a large number of intervals, J. Pure Appl. Algebra 216:2507–2518, 2012.

Evan O'Dorney. Degree asymptotics of the numerical semigroup tree, Semigroup Forum 87:601-616, 2013.

Matheus Bernardini and Fernando Torres. Counting numerical semigroups by genus and even gaps. arXiv:1612.01212, 2016.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Nathan Kaplan. Counting numerical semigroups. To appear in Amer. Math. Monthly, 2017.