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Plane curves

Let K be a field with algebraic closure K̄.

Let P2(K̄) be the projective plane over K̄:

P
2(K̄) = {[a : b : c] : (a, b, c) ∈ K̄3\{(0, 0, 0)}}/

([a:b:c]∼[a′:b′:c′]⇐⇒
(a, b, c) = λ(a′, b′, c′)
for some λ 6= 0

)
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Let P2(K̄) be the projective plane over K̄:

P
2(K̄) = {[a : b : c] : (a, b, c) ∈ K̄3\{(0, 0, 0)}}/
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for some λ 6= 0
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Affine curve

Let f (x, y) ∈ K[x, y].
The affine curve associated to f is the set of points

{(a, b) ∈ K̄2 : f (a, b) = 0}



Plane curves

Projective curve

Let F(X,Y,Z) ∈ K[X,Y,Z] be a homogeneous polynomial.
The projective curve associated to F is the set of points

XF = {(a : b : c) ∈ P
2(K̄) : F(a : b : c) = 0}



Homogenization and dehomogenization

Affine to projective

The homogenization of f ∈ K[x, y] is

f ∗(X,Y,Z) = Zdeg(f )f

(

X

Z
,

Y

Z

)

.

The points (a, b) ∈ K̄2 of the affine curve defined by f (x, y) correspond
to the points (a : b : 1) ∈ P

2(K̄) of Xf∗ .



Homogenization and dehomogenization

Projective to affine

A projective curve defined by a homogeneous polynomial F(X,Y,Z)
defines three affine curves with dehomogenized polynomials

F(x, y, 1), F(1, u, v), F(w, 1, z).

The points (X : Y : Z) with Z 6= 0 (resp. X 6= 0, Y 6= 0) of XF correspond
to the points of the affine curve defined by F(x, y, 1) (resp. F(1, u, v),

F(w, 1, z)). The points with Z = 0 are said to be at infinity.



Hermitian example (Xq+1 = YqZ + YZq)

Let q be a prime power.

The Hermitian curve Hq over Fq2 is defined by

xq+1 = yq + y and Xq+1 − YqZ − YZq = 0.
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Hermitian example (Xq+1 = YqZ + YZq)

Let q be a prime power.

The Hermitian curve Hq over Fq2 is defined by

xq+1 = yq + y and Xq+1 − YqZ − YZq = 0.

Exercise

Let q = 2, Fq2 = Z2/(x
2 + x + 1), α the class of x. Then,

F4 = {0, 1, α, α2 = 1 + α}.

Does H2 have points at infinity? Find all the points of H2.

The unique point at infinity is P∞ = (0 : 1 : 0). For the remaining points, notice that

0q+1 = 0 1q+1 = 1 αq+1 = 1 (α2)q+1 = 1

0q + 0 = 0 1q + 1 = 0 αq + α = 1 (α2)q + α2 = 1

Then the points are:

P1 = (0 : 0 : 1) ≡ (0, 0), P2 = (0 : 1 : 1) ≡ (0, 1), P3 = (1 : α : 1) ≡ (1, α), P4 = (1 : α2 : 1) ≡ (1, α2),

P5 = (α : α : 1) ≡ (α, α), P6 = (α : α2 : 1) ≡ (α, α2), P7 = (α2 : α : 1) ≡ (α2, α), P8 = (α2 : α2 : 1) ≡

(α2, α2)
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Irreducibility

If F can factor in a field extension of K then the curve is a proper
union of at least two curves.

Hence, we impose F to be irreducible in any field extension of K.

In this case we say that F is absolutely irreducible.
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G(X,Y,Z)− H(X,Y,Z) = mF(X,Y,Z) =⇒ G(a, b, c) = H(a, b, c) for all (a : b : c) ∈ XF.
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Function field

G(X,Y,Z)− H(X,Y,Z) = mF(X,Y,Z) =⇒ G(a, b, c) = H(a, b, c) for all (a : b : c) ∈ XF.

So, we consider

K(X,Y,Z)/(F) = {G(X,Y,Z) ∈ K(X,Y,Z)}/(G∼H⇐⇒G−H=mF)

Since F is irreducible, K(X,Y,Z)/(F) is an integral domain and we can
construct its field of fractions QF.

For evaluating one such fraction at a projective point we want the
result not to depend on the representative of the projective point.
Hence, we require the numerator and the denominator to have one
representative each, which is a homogeneous polynomial and both
having the same degree.

The function field of XF, denoted K(XF), is the set of elements of QF

admitting one such representation.

Its elements are the rational functions of XF.
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Regular functions

We say that a rational function f ∈ K(XF) is regular in a point P if

there exists a representation of it as a fraction G(X,Y,Z)
H(X,Y,Z) with H(P) 6= 0.

In this case we define

f (P) =
G(P)

H(P)
.

The ring of all rational functions regular in P is denoted OP.

Again it is an integral domain and this time its field of fractions is
K(XF).
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Singularities

Let P ∈ XF be a point. If all the partial derivatives FX, FY, FZ vanish at
P then P is said to be a singular point. Otherwise it is said to be a
simple point.

Curves without singular points are called non-singular, regular or
smooth curves.

The tangent line at a singular point P of XF is defined by the equation

FX(P)X + FY(P)Y + FZ(P)Z = 0.

From now on we will assume that F is absolutely irreducible and that
XF is smooth.
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Hermitian example (Xq+1 = YqZ + YZq)

Let q be a prime power.

The Hermitian curve Hq over Fq2 is defined by

xq+1 = yq + y and Xq+1 − YqZ − YZq = 0.

Exercise

Find the partial derivatives of Hq FX = Xq, FY = −Zq, FZ = −Yq

Are there singular points? No

What is the tangent line at P∞?
FX(P∞)X + FY(P∞)Y + FZ(P∞)Z = −Z = 0.
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Genus

The genus of a smooth plane curve XF may be defined as

g =
(deg(F) − 1)(deg(F) − 2)

2
.

For general curves the genus is defined using differentials on a curve.

Exercise

What is in general the genus of Hq? q(q−1)
2



Weierstrass semigroup
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Theorem
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for any non-zero f ∈ K(XF) there exists a unique integer vP(f ) with

f = tvP(f )u

for some u ∈ OP with u(P) 6= 0.
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Valuation at a point

Theorem

Consider a point P in the projective curve XF. There exists t ∈ OP such that
for any non-zero f ∈ K(XF) there exists a unique integer vP(f ) with

f = tvP(f )u

for some u ∈ OP with u(P) 6= 0.

The value vP(f ) depends only on XF, P.

If G(X,Y,Z) and H(X,Y,Z) are two homogeneous polynomials of
degree 1 such that G(P) = 0, H(P) 6= 0, and G is not a constant
multiple of FX(P)X + FY(P)Y + FZ(P)Z, then we can take t to be the

class in OP of G(X,Y,Z)
H(X,Y,Z) .
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Valuation at a point

An element such as t is called a local parameter.

The value vP(f ) is called the valuation of f at P.

The point P is said to be a zero of multiplicity m if vP(f ) = m > 0 and
a pole of multiplicity −m if vP(f ) = m < 0.

The valuation satisfies that vP(f ) > 0 if and only if f ∈ OP and that in
this case vP(f ) > 0 if and only if f (P) = 0.



Valuation at a point

Lemma

1 vP(f ) = ∞ if and only if f = 0

2 vP(λf ) = vP(f ) for all non-zero λ ∈ K

3 vP(fg) = vP(f ) + vP(g)

4 vP(f + g) > min{vP(f ), vP(g)} and equality holds if vP(f ) 6= vP(g)

5 If vP(f ) = vP(g) > 0 then there exists λ ∈ K such that
vP(f − λg) > vP(f ).
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Valuation at a point

Let L(mP) be the set of rational functions having only poles at P and
with pole order at most m.

Let A =
⋃

m>0 L(mP), that is, A is the ring of rational functions having
poles only at P.

L(mP) is a K-vector space and so we can define l(mP) = dimK(L(mP)).

One can prove that l(mP) is either l((m − 1)P) or l((m − 1)P) + 1 and

l(mP) = l((m − 1)P) + 1 ⇐⇒ ∃f ∈ A with vP(f ) = −m

Define Λ = {−vP(f ) : f ∈ A \ {0}}.

Obviously, Λ ⊆ N0.



Weierstrass semigroup

Lemma

The set Λ ⊆ N0 satisfies

1 0 ∈ Λ

2 m + m′ ∈ Λ whenever m,m′ ∈ Λ

3 N0 \ Λ has a finite number of elements

Proof:

1 Constant functions f = a have no poles and satisfy vP(a) = 0 for
all P ∈ XF. Hence, 0 ∈ Λ.



Weierstrass semigroup

Lemma

The set Λ ⊆ N0 satisfies

1 0 ∈ Λ

2 m + m′ ∈ Λ whenever m,m′ ∈ Λ

3 N0 \ Λ has a finite number of elements

Proof:

2 If m,m′ ∈ Λ then there exist f , g ∈ A with vP(f ) = −m,
vP(g) = −m′.
vP(fg) = −(m + m′) =⇒ m + m′ ∈ Λ.



Weierstrass semigroup

Lemma

The set Λ ⊆ N0 satisfies

1 0 ∈ Λ

2 m + m′ ∈ Λ whenever m,m′ ∈ Λ

3 N0 \ Λ has a finite number of elements

Proof:

3 The well-known Riemann-Roch theorem implies that

l(mP) = m + 1 − g

if m > 2g − 1.
On one hand this means that m ∈ Λ for all m > 2g, and on the
other hand, this means that l(mP) = l((m − 1)P) only for g values
of m.
=⇒ #(N0 \ Λ) = g.
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The set Λ ⊆ N0 satisfies

1 0 ∈ Λ

2 m + m′ ∈ Λ whenever m,m′ ∈ Λ
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The three properties of a subset of N0 in the lemma constitute the
definition of a numerical semigroup.



Weierstrass semigroup

Lemma

The set Λ ⊆ N0 satisfies

1 0 ∈ Λ

2 m + m′ ∈ Λ whenever m,m′ ∈ Λ

3 N0 \ Λ has a finite number of elements

The three properties of a subset of N0 in the lemma constitute the
definition of a numerical semigroup.

The particular numerical semigroup of the lemma is called the
Weierstrass semigroup at P and the elements in N0 \ Λ are called the
Weierstrass gaps.
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Numerical semigroups

Example: What amounts can be withdrawn?

0e, 20e, 40e, 50e, 60e, 70e, 80e, 90e, 100e, . . .

0 in the set

s, s′ in the set =⇒ s + s′ in the set

If we just consider multiples of 10 then

only 10e, 30e are not in the set (#(N0 \ (S/10)) < ∞)
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Hermitian example (Xq+1 = YqZ + YZq)

Let q be a prime power.

The Hermitian curve Hq over Fq2 is defined by

xq+1 = yq + y and Xq+1 − YqZ − YZq = 0.

FX = Xq, FY = −Zq, FZ = −Yq =⇒ no singular points.

P∞ = (0 : 1 : 0) is the unique point of Hq at infinity (with Z = 0).

t = X
Y is a local parameter at P∞ since FX(P∞)X + FY(P∞)Y + FZ(P∞)Z = −Z.

X
Z , Y

Z are regular everywhere except at P∞ (⇒ X
Z ,

Y
Z ∈ ∪m>0L(mP∞)).
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The Hermitian curve Hq over Fq2 is defined by

xq+1 = yq + y and Xq+1 − YqZ − YZq = 0.

FX = Xq, FY = −Zq, FZ = −Yq =⇒ no singular points.

P∞ = (0 : 1 : 0) is the unique point of Hq at infinity (with Z = 0).

t = X
Y is a local parameter at P∞ since FX(P∞)X + FY(P∞)Y + FZ(P∞)Z = −Z.
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Z are regular everywhere except at P∞ (⇒ X
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Z ∈ ∪m>0L(mP∞)).

To find their valuation...

tq+1 =
(

Z
Y

)q
+ Z

Y ⇒ vP∞
(
(

Z
Y

)q
+ Z

Y ) = q + 1 ⇒ vP∞
(Z

Y ) = q + 1 ⇒

vP∞
(Y

Z ) = −(q + 1).

(

X
Z

)q+1
=

(

Y
Z

)q
+ Y

Z ⇒ (q + 1)vP∞
(X

Z ) = −q(q + 1) ⇒ vP∞
(X

Z ) = −q.
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Hermitian example (Xq+1 = YqZ + YZq)

⇒ q, q + 1 ∈ Λ.

⇒ Λ contains what we will call later the semigroup generated by
q, q + 1.

The complement in N0 of the semigroup generated by q, q + 1 has
q(q−1)

2 = g elements.

Exercise

Can you prove that? The number of gaps is (q − 1) + (q − 2) + · · · + 1 =
q(q−1)

2

Since we know that the complement of Λ in N0 also has g elements,
this means that both semigroups are the same.
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Klein example (X3Y + Y3Z + Z3X = 0)

The Klein quartic over Fq is defined by

x3y + y3 + x = 0 and X3Y + Y3Z + Z3X = 0

FX = 3X2Y + Z3, FY = 3Y2Z + X3, FZ = 3Z2X + Y3.

If the characteristic of Fq2 is 3 then FX = FY = FZ = 0 implies

X3 = Y3 = Z3 = 0 ⇒ X = Y = Z = 0 ⇒K has no singularities.

If the characteristic of Fq2 is different than 3 then FX = FY = FZ = 0

implies X3Y = −3Y3Z and Z3X = −3X3Y = 9Y3Z.

From the equation of the curve −3Y3Z + Y3Z + 9Y3Z = 7Y3Z = 0.
If gcd(q, 7) = 1 then either

Y = 0 ⇒

{

X = 0 if FY = 0
Z = 0 if FX = 0

or Z = 0 ⇒

{

X = 0 if FY = 0
Y = 0 if FZ = 0

so, there are no singular points.
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P0 = (0 : 0 : 1) ∈ K.

t = Y
Z is a local parameter at P0 since

FX(P0)X + FY(P0)Y + FZ(P0)Z = X.

(

X
Y

)3
+ Z

Y +
(

Z
Y

)3 X
Y = 0 ⇒ or







3vP0
(X

Y ) = vP0
(Z

Y )
3vP0

(X
Y ) = 3vP0

(Z
Y ) + vP0

(X
Y )

vP0
(Z

Y ) = 3vP0
(Z

Y ) + vP0
(X

Y )

vP0
(Z

Y ) = −1 ⇒ or







3vP0
(X

Y ) = −1
3vP0

(X
Y ) = −3 + vP0

(X
Y )

−1 = −3 + vP0
(X

Y )

⇒ or







vP0
(X

Y ) = −1/3
vP0

(X
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P0 = (0 : 0 : 1) ∈ K.

t = Y
Z is a local parameter at P0 since

FX(P0)X + FY(P0)Y + FZ(P0)Z = X.

(

X
Z

)3 Y
Z +

(

Y
Z

)3
+ X

Z = 0 ⇒ or







3vP0
(X

Z ) + vP0
(Y

Z ) = 3vP0
(Y

Z )
3vP0

(X
Z ) + vP0

(Y
Z ) = vP0

(X
Z )

3vP0
(Y

Z ) = vP0
(X

Z )

vP0
(Y

Z ) = 1 ⇒ or







3vP0
(X

Z ) + 1 = 3
3vP0

(X
Z ) + 1 = vP0

(X
Z )

3 = vP0
(X

Z )

⇒ or







vP0
(X

Z ) = 2/3
vP0

(X
Z ) = −1/2

vP0
(X

Z ) = 3
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Now we want to see under which conditions

fij =
YiZj

Xi+j
∈ ∪m>0L(mP0).

We have
vP0

(fij) = −2i − 3j

The poles of fij have X = 0 ⇒ only may be at P0 = (0 : 0 : 1),
P1 = (0 : 1 : 0).

Symmetries of K ⇒
vP1

( Y
X ) = −1

vP1
( Z

X ) = 2

}

⇒ vP1
(fij) = −i + 2j.

⇒ fij ∈ ∪m>0L(mP0) if and only if −i + 2j > 0.

Then Λ contains {2i + 3j : i, j > 0, 2j > i} = {0, 3, 5, 6, 7, 8, . . .}.

This has 3 gaps which is exactly the genus of K. So,

Λ = {0, 3, 5, 6, 7, 8, 9, 10, . . .}.



Klein example (X3Y + Y3Z + Z3X = 0)

It is left as an exercise to prove that all this can be generalized to the
curve Km with defining polynomial

F = XmY + YmZ + ZmX,

provided that gcd(1,m2 − m + 1) = 1. In this case

vP0
(fij) = −(m − 1)i − mj

and
fij ∈ ∪m>0L(mP0) if and only if − i + (m − 1)j > 0.

Since (m − 1)i + mj = (m − 1)i′ + mj′ for some (i′, j′) 6= (i, j) if and only
if i > m or j > m − 1 we deduce that

{−vP0
(fij) : fij ∈ ∪m>0L(mP0)} =

{(m − 1)i + mj : (i, j) 6= (1, 0), (2, 0), . . . , (m − 1, 0)}.

This set has exactly m(m−1)
2 gaps which is the genus of Km. So it is

exactly the Weierstrass semigroup at P0.
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Bounding the number of points of a curve

Depending on the genus of the curve:

Serre-Hasse-Weil bound
Let X be a curve of genus g over Fq. Then the number of points
with coordinates in Fq satisfies

#Nq(g) 6 q + 1 + g [2
√

q]



Bounding the number of points of a curve

Depending on Weierstrass semigroups:

1 Geil-Matsumoto:
Nq(Λ) 6 GMq(Λ) = #(Λ \ ∪λi generator of Λ(qλi + Λ)) + 1

Pros and cons:

+ Best known bound related to Weierstrass semigroups (for some
values it is better than Serre-Hasse-Weil bound).
- not simple.
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Example with q = 3 and Λ = 〈5, 7〉

GMq(Λ) = #(Λ \ ∪λi generator of Λ(qλi + Λ)) + 1

Λ:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...

q5 + Λ:

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 ...

q7 + Λ:

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47 ...

Λ \ {(q5 + Λ) ∪ (q7 + Λ)}:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...

GMq (Λ) = # {0,5,7,10,12,14,17,19,24}+ 1 = 10



Bounding the number of points of a curve

Depending on Weierstrass semigroups:

2 Lewittes:
Nq(Λ) 6 Lq(Λ) = qλ1 + 1

Pros and cons:

- Weaker than Geil-Matsumoto.
+ simpler.



Example with q = 3 and Λ = 〈5, 7〉

Nq(Λ) 6 Lq(Λ) = qλ1 + 1

Lq (Λ) = 3 · 5 + 1 = 16

A lot more faster!!



Results obtained using numerical semigroup

techniques (in Albert Vico’s PhD thesis)

A closed formula for the Geil-Matsumoto bound for Weierstrass
semigroups generated by two integers (i.e. hyperelliptic,
Hermitian, Geil’s norm-trace, etc.).

An analysis of the semigroups for which the Geil-Matsumoto
bound equals the Lewittes’ bound.

A result that (in some cases) simplifies the computation of the
Geil-Matsumoto bound.



1st Result: A closed formula for GM bound for

semigroups with two generators

Lemma

The Geil-Matsumoto bound for the semigroup generated by a and b with
a < b is:

GMq(〈a, b〉) = 1 +

a−1
∑

n=0

min

(

q,

⌈

q − n

a

⌉

· b

)

=







1 + qa if q 6 ⌊
q
a⌋b

1 + (q mod a)q + (a − (q mod a))⌊ q
a⌋b if ⌊ q

a⌋b < q 6 ⌈ q
a⌉b

1 + ab⌈
q
a⌉ − (a − (q mod a))b if q > ⌈

q
a⌉b



2nd Result: coincidences of GM(Λ) = L(Λ)

We proved that:
GMq(〈a, b〉) = Lq(〈a, b〉) if and only if q 6 ⌊ q

a⌋b.

Otherwise the Geil-Matsumoto bound always gives an
improvement with respect to the Lewittes’s bound.

We would wish to generalize this to semigroups with any
number of generators.



2nd Result: coincidences of GM(Λ) = L(Λ)

Lemma

It holds

GMq(〈λ1, λ2, . . . , λn〉) = Lq(〈λ1, λ2, . . . , λn〉) = qλ1 + 1

if and only if q(λi − λ1) ∈ Λ for all i with 2 6 i 6 n

Lemma

If q 6

⌊

q
λ1

⌋

λ2 then

GMq(〈λ1, λ2, . . . , λn〉) = Lq(〈λ1, λ2, . . . , λn〉) = qλ1 + 1



3rd Result: Simplifying computation of GM bound

Lemma

Let Λ = 〈λ1, λ2, . . . , λn〉 and let I be and index set included in {1, . . . , n},
the next statements are equivalent:

1 Λ \ ∪n
i=1(qλi + Λ) = Λ \ ∪i∈I(qλi + Λ)

2 For all i 6∈ I there exists 1 6 j 6 n, j ∈ I such that q(λi − λj) ∈ Λ.



3rd Result: Simplifying computation of GM bound

Lemma

Let Λ = 〈λ1, . . . , λn〉 with λ1 < λ2 < . . . < λn and λ1 < q.

1 Let λj be the maximum generator strictly smaller than
q

⌊

q
λ1

⌋ then

Λ \ ∪n
i=1(qλi + Λ) = Λ \ ∪

j
i=1(qλi + Λ).

2 Let λj be the maximum generator strictly smaller than 2λ1 − 1 then

Λ \ ∪n
i=1(qλi + Λ) = Λ \ ∪

j
i=1(qλi + Λ).
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