Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics
Western Michigan University
http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory
CIMPA School
Ubatuba, Brazil
July 14, 2017

10. Extension Problem for general weights

- Report on work of Dyshko for Lee weight (2017)
- Generalized to weights over modules
- Fourier transforms and linear independence of characters
- Recursive argument involving posets

Dyshko's work

- Sergii Dyshko has proved EP for the Lee weight over any $\mathbb{Z} / N \mathbb{Z}$ (2017)
- Part of his proof was a general criterion for any weight over $Z / N \mathbb{Z}$ to have EP.
- Dyshko's ideas can be generalized to module alphabets.

Set up: the alphabet

- R finite ring, A finite left R-module
- Assume A is pseudo-injective and has cyclic socle.
- Pseudo-injective: for any submodule $B \subseteq A$ and injective homomorphism $f: B \rightarrow A, f$ extends to isomorphism $A \rightarrow A$.
- Cyclic socle: implies that A injects into \widehat{R} and that \widehat{A} is a cyclic right R-module, with generating character χ.

Set up: the weight

- Let w be a weight on $A ; w: A \rightarrow \mathbb{C}, w(0)=0$.
- Symmetry groups

$$
\begin{aligned}
& G_{\mathrm{lt}}=\{u \in \mathcal{U}(R): w(u a)=w(a), a \in A\}, \\
& G_{\mathrm{rt}}=\left\{\phi \in \mathrm{GL}_{R}(A): w(a \phi)=w(a), a \in A\right\} .
\end{aligned}
$$

The problem

- Determine conditions on w that imply w has EP.
- EP: for $C \subseteq A^{n}$ and linear w-isometry $f: C \rightarrow A^{n}$, f extends to a $G_{r t}$-monomial transformation of A^{n}.

Some matrices

- For any submodule $B \subseteq A$, define a matrix $Q^{B}=\left(Q_{\phi, u}^{B}\right):$

$$
Q_{\phi, u}^{B}=\sum_{b \in B} w(b \phi) \chi(u b)
$$

where $\phi \in \operatorname{Stab}(B) \backslash \mathrm{GL}_{R}(A) / G_{\mathrm{rt}}$ and $u \in \operatorname{Stab}\left(\left.\chi\right|_{B}\right) \backslash \mathcal{U}(R) / G_{\mathrm{lt}}$.

- Here, $\operatorname{Stab}(B)=\left\{\phi \in \mathrm{GL}_{R}(A): b \phi=b, b \in B\right\}$ is the point-wise stabilizer of B.

Main result

- Condition: for each nonzero submodule $B \subseteq A$: the matrix Q^{B} has zero left nullspace.

Theorem
If (1) is satisfied, then w has EP.

Isometry condition

- Let $C \subseteq A^{n}$ be the image of $\Lambda: M \rightarrow A^{n}$, $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, with information module $M \cong C$.
- Set $N=\Lambda f: M \rightarrow A^{n}, N=\left(\nu_{1}, \ldots, \nu_{n}\right)$.
- f being a w-isometry means

$$
\sum_{i=1}^{n} w\left(x \lambda_{i}\right)=\sum_{j=1}^{n} w\left(x \nu_{j}\right), \quad x \in M
$$

- Goal: show that the numbers of λ_{i} and ν_{j} in a given G_{rt}-orbit are equal.
- Method: take Fourier transform and set up linear equations in these numbers.

Fourier transform calculation

- Each $\lambda_{i}, \nu_{j} \in \operatorname{Hom}_{R}(M, A)$.
- For arbitrary $\sigma \in \operatorname{Hom}_{R}(M, A)$, what is the Fourier transform of $f_{\sigma}: M \rightarrow \mathbb{C}, x \mapsto w(x \sigma)$?
- For $\pi \in \widehat{M}$,

$$
\hat{f}_{\sigma}(\pi)=\sum_{x \in M} \pi(x) f_{\sigma}(x)=\sum_{x \in M} \pi(x) w(x \sigma) .
$$

- Write in terms of sum over values $x \sigma \in \operatorname{im} \sigma$.

Re-write sum

- For $\pi \in \widehat{M}$,

$$
\hat{f}_{\sigma}(\pi)=\sum_{a \in \operatorname{im} \sigma} \sum_{x: x \sigma=a} \pi(x) w(a)=\sum_{a \in \operatorname{im} \sigma} w(a) \sum_{x: x \sigma=a} \pi(x) .
$$

- Because σ is a homomorphism, $\sum_{x: x \sigma=a} \pi(x)$ is a sum over a coset of $\operatorname{ker} \sigma$.
- Let $x_{a} \in M$ be one element with $x_{a} \sigma=a$. Then every $x \in M$ with $x \sigma=a$ has the form $x=x_{a}+k$ with $k \in \operatorname{ker} \sigma$.

Simplify character sum

$$
\begin{aligned}
\sum_{x: x \sigma=a} \pi(x) & =\sum_{k \in \text { ker } \sigma} \pi\left(x_{a}+k\right) \\
& =\pi\left(x_{a}\right) \sum_{k \in \operatorname{ker} \sigma} \pi(k) \\
& = \begin{cases}|\operatorname{ker} \sigma| \pi\left(x_{a}\right), & \pi \in(\widehat{M}: \operatorname{ker} \sigma), \\
0, & \pi \notin(\widehat{M}: \operatorname{ker} \sigma) .\end{cases}
\end{aligned}
$$

Summary of calculation

- For $\pi \in \widehat{M}$,

$$
\hat{f}_{\sigma}(\pi)= \begin{cases}|\operatorname{ker} \sigma| \sum_{a \in \operatorname{im} \sigma} w(a) \pi\left(x_{a}\right), & \pi \in(\widehat{M}: \operatorname{ker} \sigma), \\ 0, & \pi \notin(\widehat{M}: \operatorname{ker} \sigma) .\end{cases}
$$

- When $\pi \in(\widehat{M}: \operatorname{ker} \sigma)$, the value of $\pi\left(x_{a}\right)$ depends only on a: π descends to well-defined character on $M / \operatorname{ker} \sigma \cong \operatorname{im} \sigma$.
- When $\pi \in(\widehat{M}: \operatorname{ker} \sigma)$, write $\left(\mathcal{F}_{\text {im } \sigma} w\right)(\pi)=$ $\sum_{a \in \operatorname{im} \sigma} w(a) \pi\left(x_{a}\right)=\sum_{x \in M / \operatorname{ker} \sigma} w(x \sigma) \pi(x)$.

Dual maps

- For $\sigma \in \operatorname{Hom}_{R}(M, A), \sigma: M \rightarrow A$, there is the dual $\operatorname{map} \hat{\sigma}: \widehat{A} \rightarrow \widehat{M}$ with image im $\hat{\sigma}$.
- Remember that \widehat{A} is a cyclic right R-module, so $\operatorname{im} \hat{\sigma}$ is also cyclic.
- $\operatorname{im} \hat{\sigma}=(\widehat{M}: \operatorname{ker} \sigma)$.
- If $\psi \in \widehat{A}, x \in \operatorname{ker} \sigma, \hat{\sigma}(\psi)(x)=\psi(x \sigma)=\psi(0)=1$.
- If $\pi \in(\widehat{M}: \operatorname{ker} \sigma), \pi$ descends to well-defined character on $M / \operatorname{ker} \sigma \cong \operatorname{im} \sigma \subseteq A$. Any lift $\tilde{\pi}$ of π under $\widehat{A} \rightarrow(\operatorname{im} \sigma)$ has $\hat{\sigma}(\tilde{\pi})=\pi$.

Fourier transform of isometry condition

- Let the indicator function of a subset $S \subseteq \widehat{M}$ be δ_{S} : value 1 on S, value 0 elsewhere.
- Isometry condition: $\sum_{i=1}^{n} w\left(x \lambda_{i}\right)=\sum_{j=1}^{n} w\left(x \nu_{j}\right)$.
- Fourier transform: an equation of functions on \widehat{M} :

$$
\sum_{i=1}^{n}\left|\operatorname{ker} \lambda_{i}\right|\left(\mathcal{F}_{\mathrm{im} \lambda_{i}} w\right) \delta_{\mathrm{im} \hat{\lambda}_{i}}=\sum_{j=1}^{n}\left|\operatorname{ker} \nu_{j}\right|\left(\mathcal{F}_{\mathrm{im} \nu_{j}} w\right) \delta_{\mathrm{im} \hat{\nu}_{j}}
$$

Picking a maximal submodule

- The character module \widehat{M} is partially ordered by set inclusion.
- Among the submodules im $\hat{\lambda}_{i}$, im $\hat{\nu}_{j} \subseteq \widehat{M}$, choose one that is maximal under set inclusion. Refer to it as $\operatorname{im} \hat{\sigma}$, with $\sigma \in \operatorname{Hom}_{R}(M, A)$.
- Recall that im $\hat{\sigma}$ is a cyclic right R-module. Denote by $\mathcal{U}(\operatorname{im} \hat{\sigma})$ the set of all generators of $\operatorname{im} \hat{\sigma}$. We restrict the Fourier transform equation to $\mathcal{U}(\operatorname{im} \hat{\sigma}) \subseteq \widehat{M}$.

Exploiting the Fourier transform

- If $\pi \in \mathcal{U}(\operatorname{im} \hat{\sigma})$, evaluating the Fourier transform equation at π yields nonzero terms only when $\pi \in \operatorname{im} \hat{\lambda}_{i}$ or $\pi \in \operatorname{im} \hat{\nu}_{j}$.
- Because π generates $\operatorname{im} \hat{\sigma}$, this means $\operatorname{im} \hat{\sigma} \subseteq \operatorname{im} \hat{\lambda}_{i}$ or $\operatorname{im} \hat{\sigma} \subseteq \operatorname{im} \hat{\nu}_{j}$.
- But im $\hat{\sigma}$ was chosen to be maximal, so $\operatorname{im} \hat{\sigma}=\operatorname{im} \hat{\lambda}_{i}$ or $\operatorname{im} \hat{\sigma}=\operatorname{im} \hat{\nu}_{j}$.
- Thus $(\widehat{M}: \operatorname{ker} \sigma)=\left(\widehat{M}: \operatorname{ker} \lambda_{i}\right)$ or $(\widehat{M}: \operatorname{ker} \sigma)=\left(\widehat{M}: \operatorname{ker} \nu_{j}\right) ; \operatorname{ker} \sigma=\operatorname{ker} \lambda_{i}$ or $\operatorname{ker} \sigma=\operatorname{ker} \nu_{j}$.

When are kernels equal?

- Let A be pseudo-injective. For $\sigma, \tau \in \operatorname{Hom}_{R}(M, A)$, $\operatorname{ker} \sigma=\operatorname{ker} \tau$ if and only if $\sigma=\tau \phi$ for some $\phi \in \mathrm{GL}_{R}(A)$.
- If $\sigma=\tau \phi$, then $x \sigma=0$ iff $x \tau=0$, as ϕ is invertible.
- If $\operatorname{ker} \sigma=\operatorname{ker} \tau, \sigma, \tau$ descend to well-defined injective maps $\bar{\sigma}, \bar{\tau}: M / \operatorname{ker} \tau \rightarrow A$. Set $B=\operatorname{im} \bar{\tau} \subseteq A$. Then $\bar{\tau}^{-1} \bar{\sigma}: B \rightarrow A$ is injective.
- By pseudo-injectivity, $\bar{\tau}^{-1} \bar{\sigma}$ extends to $\phi \in \mathrm{GL}_{R}(A)$; then $\bar{\sigma}=\bar{\tau} \phi$ and $\sigma=\tau \phi$.

Summary of exploitation

- Evaluating the Fourier transform equation at $\pi \in \mathcal{U}(\operatorname{im} \hat{\sigma})$ yields

$$
\sum_{\lambda_{i} \in \sigma G L_{R}(A)}\left(\mathcal{F}_{\mathrm{im} \lambda_{i}} w\right)(\pi)=\sum_{\nu_{j} \in \sigma \mathrm{GL}_{R}(A)}\left(\mathcal{F}_{\mathrm{im} \nu_{i}} w\right)(\pi)
$$

- The factors of $\left|\operatorname{ker} \lambda_{i}\right|=|\operatorname{ker} \sigma|=\left|\operatorname{ker} \nu_{j}\right|$ cancel.

Next steps

- Write equations in terms of G_{rt}-orbits, not just $\mathrm{GL}_{R}(A)$-orbits.
- Vary $\pi \in \mathcal{U}(\operatorname{im} \hat{\sigma})$: get different equations for different $G_{l t}$-orbits.
- How does the Fourier transform equation depend on these orbits?

Dependency on orbits

- Remember that for each $\pi \in \mathcal{U}(\operatorname{im} \hat{\sigma})$, we have

$$
\sum_{\in \sigma G L_{R}(A)}\left(\mathcal{F}_{\mathrm{im} \lambda_{i}} w\right)(\pi)=\sum_{\nu_{j} \in \sigma \mathrm{GL}_{R}(A)}\left(\mathcal{F}_{\mathrm{im} \nu_{i}} w\right)(\pi)
$$

- The right $\mathrm{GL}_{R}(A)$-orbit of σ is a disjoint unit of G_{rt}-orbits, parametrized by elements of $\operatorname{Stab}(\sigma) \backslash \mathrm{GL}_{R}(A) / G_{\mathrm{rt}}$.
- The generators $\mathcal{U}(\operatorname{im} \hat{\sigma})$ equal the right \mathcal{U}-orbit of π, which is a disjoint union of $\mathcal{G}_{\mathrm{tt}}$-orbits, parametrized by elements of $\operatorname{Stab}(\pi) \backslash \mathcal{U} / G_{\mathrm{lt}}$.

What does $\left(\mathcal{F}_{\text {im } \lambda_{i}} w\right)\left(\pi^{u}\right)$ depend on?

- Fix σ and $\pi \in \mathcal{U}(\operatorname{im} \hat{\sigma})$. Let $\xi \in \operatorname{Stab}(\sigma)$,
$\phi \in \mathrm{GL}_{R}(A), \psi \in G_{\mathrm{rt}}, s \in \operatorname{Stab}(\pi), u \in \mathcal{U}$, and
$v \in G_{\mathrm{lt}}$. Then (with $y=v x$),

$$
\left(\mathcal{F}_{\mathrm{im} \sigma \xi \phi \psi} w\right)\left(\pi^{s u v}\right)=\sum_{x \in M / \operatorname{ker} \sigma} w(x \sigma \xi \phi \psi) \pi^{\text {suv }}(x)
$$

$$
=\sum_{x \in M / \operatorname{ker} \sigma} w(x \sigma \phi) \pi^{u}(v x)
$$

$$
=\sum_{y \in M / \operatorname{ker} \sigma} w\left(v^{-1} y \sigma \phi\right) \pi^{u}(y)
$$

$$
=\left(\mathcal{F}_{\mathrm{im} \sigma \phi} w\right)\left(\pi^{u}\right)
$$

Re-write the Fourier transform equation

- Remember that for each $\pi \in \mathcal{U}(\operatorname{im} \hat{\sigma})$, we have

$$
\sum_{\lambda_{i} \in \sigma G L_{R}(A)}\left(\mathcal{F}_{\mathrm{im} \lambda_{i}} w\right)(\pi)=\sum_{\nu_{j} \in \sigma \mathrm{GL}_{R}(A)}\left(\mathcal{F}_{\mathrm{im} \nu_{i}} w\right)(\pi)
$$

- Break up sum into pieces that depend on the G_{rt}-orbits of σ.
- Get an equation for each generator of the form π^{u}, as π^{u} varies over different $G_{l t}$-orbits of π.

Counting functions

- For each $\tau \in \operatorname{Stab}(\sigma) \backslash \mathrm{GL}_{R}(A) / G_{\mathrm{rt}}$, set

$$
\beta(\tau)=\left|\left\{i: \lambda_{i} \in \sigma \tau G_{\mathrm{rt}}\right\}\right|-\left|\left\{j: \nu_{j} \in \sigma \tau G_{\mathrm{rt}}\right\}\right| .
$$

- At $\pi^{u}, u \in \operatorname{Stab}(\pi) \backslash \mathcal{U} / G_{\mathrm{lt}}$, Fourier transform equation becomes

$$
\sum_{\tau} \beta(\tau)\left(\mathcal{F}_{\text {im } \sigma \tau} w\right)\left(\pi^{u}\right)=0
$$

- View as matrix equation with rows given by τ and columns given by u.

Bringing in condition (1)

- Condition (1) had $Q_{\phi, u}^{B}=\sum_{b \in B} w(b \phi) \chi(u b)$.
- Recall: $\left(\mathcal{F}_{\mathrm{im} \sigma \tau} w\right)\left(\pi^{u}\right)=\sum_{x \in M / \operatorname{ker} \sigma} w(x \sigma \tau) \pi^{u}(x)$.
- Use $(\widehat{M}: \operatorname{ker} \sigma) \cong(M / \operatorname{ker} \sigma)^{\wedge} \cong(\operatorname{im} \sigma)$: $\pi \in(\widehat{M}: \operatorname{ker} \sigma) \leftrightarrow \rho \in(\operatorname{im} \sigma) \widehat{\text {, }}$, with $\pi(x)=\rho(x \sigma)$ or $\rho(b)=\pi\left(x_{b}\right)$ where $x_{b} \sigma=b$.
- Then $\left(\mathcal{F}_{\text {im } \sigma \tau} w\right)\left(\pi^{u}\right)=\sum_{b \in \operatorname{im} \sigma} w(b \tau) \rho(u b)$.
- This is condition (1) for $B=\operatorname{im} \sigma$.
- Generating character χ for \widehat{A} restricts to a generator for any \widehat{B}.

Applying condition (1)

- By condition (1), we have $\beta(\tau)=0$ for all τ. I.e.,

$$
\left|\left\{i: \lambda_{i} \in \sigma \tau \mathcal{G}_{\mathrm{rt}}\right\}\right|=\left|\left\{j: \nu_{j} \in \sigma \tau G_{\mathrm{rt}}\right\}\right|, \text { any } \tau
$$

- Choose a matching: for any of these j, there is an $i=P(j)$ and $\phi_{j} \in G_{r t}$ such that $\nu_{j}=\lambda_{P(j)} \phi_{j}$.
- Then $w\left(x \nu_{j}\right)=w\left(x \lambda_{P(j)} \phi_{j}\right)=w\left(x \lambda_{P(j)}\right), x \in M$.
- Subtract these terms from the isometry condtion, and proceed recursively.
- From remaining $\operatorname{im} \hat{\lambda}_{i}$, im $\hat{\nu}_{j}$, choose one that is maximal, etc. Repeat.

Dyshko's result on Lee weight

- Consider $R=\mathbb{Z} / N \mathbb{Z}$ with the Lee weight.
- By some clever estimates, Dyshko shows that (a permutation of) the matrix Q^{B} is diagonally dominant, hence invertible.
- Uses fact that for $a b=c, \mathbb{Z} / a \mathbb{Z} \hookrightarrow \mathbb{Z} / c \mathbb{Z}, x \mapsto b x$, the restriction of the Lee weight of $\mathbb{Z} / c \mathbb{Z}$ to $b(\mathbb{Z} / a \mathbb{Z})$ is b times the Lee weight of $\mathbb{Z} / a \mathbb{Z}$.
- I won't go into the details.

Thank you

- Thank you for your kind attention during this series of lectures.
- Thanks again to the organizers for all their work and their hospitality.

