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Using semi-group rings

9. Using semigroup rings

Report on joint work with Gnilke, Greferath,
Honold, and Zumbragel
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Semigroups

» Consider a finite semigroup: one associative
operation, written as multiplication.

» Main example for us: the multiplicative semigroup
of a finite ring R with 1.

» This semigroup has a 1 (a monoid) and a 0.
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Semigroup rings

» Analogous to group rings.
» We will use complex coefficients.
» One way: form C-vector space with basis e, r € R.

» Define multiplication of basis elements to be
e 6s = €55, Where rs is the product in R.

» Extend linearly.
» Note that Cey is a two-sided ideal
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Using semi-group rings

Equivalent approach

» Define R = {a: R — C} to be the C-vector space
of all C-valued functions on R; dimR = |R|.

» Product on R (“multiplicative convolution”):

(axB)(r)=>_a(s)B(t), reRr,

st=r

where the sum is over pairs s, t in R with st = r.
» Then a <+ >, g a(r)e, of other approach.
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R-modules induce R-modules

>

Let A be a finite left R-module.

Set A= {w:A— C}, a C-vector space with
dim A = |A|.

v

v

(w®a)(a) = Z w(ra)a(r), aecA.

rer

v

wR (axf)=(we®a)®p, we A o eR.
Similarly for right R-module; get left R-module.

v
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Some splittings

» Set R ={a€R:) ,.ga(r) =0}

» Ro is a two-sided ideal of R; R = Cey ® Ry.

» Set Ay ={w € A: w(0) =0}; Ap is a right
R-submodule, and A = C1® Aj, wherel € A is
the constant function 1.
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Using semi-group rings

Recall the extension property EP

» Recall that a weight w on an alphabet A is any
function w : A — C with w(0) = 0; i.e., w € A,.
» Recall that A has the extension property (EP) with
respect to a weight w if every linear w-isometry
f . C — A" extends to a monomial transformation
of A" that is a w-isometry.
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Isometries

Theorem
If f is a w-isometry, then f is a (w ® «)-isometry for any

a € R.

(w®a)(xf) = w(rf)a(r)

rer

=Y w()a(r) = (w ® a)(x)

rer
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Using semi-group rings

Connections to EP

Corollary
If A has EP with respect to w ® «, then A has EP with
respect to w.*

» If f is a w-isometry, then it is a (w ® «)-isometry.
By EP for w ® a, f extends to a monomial
transformation.

» *Fine print: need to worry about the right
symmetry groups being different: w ® o may have
more symmetry than w.
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Using semi-group rings

Case of bi-invariant weights over
Frobenius bimodules

» For the rest of today, let A be a Frobenius blmodule
over R. l.e., Ais a bimodule over R with A = R as
left and as right R-modules. Ex.: bimodule R.

» A admits a left generating character x, and x is also
a right generating character.

» a € R, w € A are bi-invariant if a(urv) = a(r),
w(uav) = w(a) for all r € R, a € A, and units
u,vel.
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Conditions on w

» Consider the poset {aR : a € A} of all cyclic right
R-submodules of A, under set inclusion.

» Mobius function (0, aR).
» Suppose w € Ay satisfies

S™ w(@)u(0, aR) # 0. (1)

aRCB

for all nonzero right R-submodules B C A.
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Using semi-group rings

Main results

Theorem

Suppose A is a Frobenius bimodule over R, and suppose
w is a bi-invariant weight in Ag satisfying (1), then A
has EP with respect to w.

Corollary

If R is a finite Frobenius ring and w is a bi-invariant

weight on R satisfying (1), then R has EP with respect
to w.

Tools July 13, 2017 13 /29



Fourier transform

» The generating character x of A is an element of A.

» Themap R = A, a— x ® q, is a Fourier
transform:

(x®a)(a) = > _ x(ra)a(r).

rer

» Invert: x ® w = w, where

|Z w(a)x(—ra)

acA
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Using semi-group rings

Homogeneous weight

» Recall that the homogeneous weight wyon, has EP
on any Frobenius bimodule.

» Right symmetry group of wyom is maximal: all of U.
» Recall that
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Inverting Wyom

» Define e € R:
—ﬁ, reu,
e(r)=41 r =0,
0, otherwise.

» Then Y ® € = Whom:

(x®e)(a) = Y x(ra)e(r) = whion(a).

rer
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Using semi-group rings

Outline of argument

v

Suppose we can find v € R such that w v = ¢.

v

Then w ® v = Whom:

wW®Y=(X®W)®7 = X®(W*7) = XBE = WHom-

v

Apply earlier result, as wyon has EP.

v

Condition (1) will allow us to solve w x v = ¢ for ~.
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Condition (1)

Theorem

Condition (1) is equivalent to
> w(b)x(b) #0, )
beB

for all nonzero right R-submodules B C A.
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Proof

» Break up into sum over right U-orbits.
» Using results from lecture 6:

> w(b)x(b) =Y _ > w(b)x(b)

beB aldCB beald

= > w(a)u(0, aR).

aRCB
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Solving wx vy = ¢

v

We want to solve w *x v = ¢ for 7.

v

Note that w and ¢ are bi-invariant and in Ry.

v

We want ~ to be bi-invariant and in Ry, too.

v

The equation, for any r € R, is

st=r

v

Solve recursively, starting with r € U.

Tools July 13, 2017 20 / 29



When r ¢ U

>

If r €U, then st = r implies s, t € .
Using bi-invariance of w and ~y, equation becomes

v

o= S () = (1) (1),
Ul

w(1) # 0 is the case B = A of (2).

So y(u) = —=1/([U*W(1)) for u e U.

v

v
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Using semi-group rings

Recursive step

» Suppose 7 has been defined to be bi-invariant and
to satisfy w x v = ¢ for some values of r € R.

» Let r € R be any element, neither zero nor a unit,
such that Rr is maximal among principal left ideals
of R where v is not defined on Ur.

» Consider (W *y)(r) =¢(r) =0.
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Recursive step, part 2

» If st = r, then Rr C Rt.

» If Rr C Rt, then maximality of Rr implies that ~y(t)
is already defined.

» Then (W * y)(r) = 0 becomes

0= w(s)(t)+ > w(s)(t).

st=r st=r
RrC Rt Rr=Rt
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Using semi-group rings

Recursive step, part 3

» Focus on sum with Rr = Rt.

» Then Ur =Ut, so t = ur for some u € U.

» Thus r = st = sur, so that (su — 1)r = 0.

> Let anni(r) = {q € R: qr = 0}, a left ideal of R.
» Then su—1 € anny(r).

» Every factorization st = r with Rr = Rt has the
form s = (q+ 1)u !, t = ur, with u € U and
g € anng(r).
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Recursive step, part 4

» Using bi-invariance, the sum with Rr = Rt becomes

Dot = Y w((g+1)u)y(ur)

st=r
= g<€anny(r)
Rr=Rt ueld

=Uh(r) > w(g+1)

g<€anny(r)
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Recursive step, part 5

> But D~ canny(r) W(g + 1) simplifies:

ALY W+ = > > w(ax(—(1+q)a)

g€anni(r) geanny(r) acA
= w(a)x(a) > x(qa).
acA geanny(r)

> What about > ... X(g2)?
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Using semi-group rings

Recursive step, part 6

> 2 geanny(r) X(Ga) is @ sum over the left submodule
anni(r)a C A.

» Since x is a generating character, this sum vanishes
unless anni(r)a = 0. In that case, the sum equals
lanni(r)|.

» Set B, = {a € A:anny(r)a = 0}, a right
submodule of A. Then

_Jlann(r)], a€ B,
> xl(qa) = {07 2B,

ge€anng(r)
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Recursive step, part 7

» Going back to ) yW(q + 1), we have

gE€anny(r

Al Y (g +1) = Jannk(r)] Y w(a)x(a).

g<€anny(r) aeB,

» This is nonzero: the B = B, case of (2). Thus,

\
y(r)y=—| > W) | /| Ul Y w(l+aq)

Rsrtgzlgt gcanny(r) /
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Using semi-group rings

Recursive step, part 8

Check that « is still bi-invariant.

v

Continue recursively. Eventually get to case r = 0.

v

v

Coefficient of v(0) term vanishes, so we are free to
define v(0) so that v € R,.

I'll spare you those details.

v
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