Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics
Western Michigan University
http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory
CIMPA School
Ubatuba, Brazil
July 13, 2017

9. Using semigroup rings

- Report on joint work with Gnilke, Greferath, Honold, and Zumbrägel
- Semigroup rings
- Modules over semigroup rings
- Connections to EP
- The case of bi-invariant weights over Frobenius bimodules

Semigroups

- Consider a finite semigroup: one associative operation, written as multiplication.
- Main example for us: the multiplicative semigroup of a finite ring R with 1 .
- This semigroup has a 1 (a monoid) and a 0 .

Semigroup rings

- Analogous to group rings.
- We will use complex coefficients.
- One way: form \mathbb{C}-vector space with basis $e_{r}, r \in R$.
- Define multiplication of basis elements to be $e_{r} e_{s}=e_{r s}$, where $r s$ is the product in R.
- Extend linearly.
- Note that $\mathbb{C} e_{0}$ is a two-sided ideal

Equivalent approach

- Define $\mathcal{R}=\{\alpha: R \rightarrow \mathbb{C}\}$ to be the \mathbb{C}-vector space of all \mathbb{C}-valued functions on $R ; \operatorname{dim} \mathcal{R}=|R|$.
- Product on \mathcal{R} ("multiplicative convolution"):

$$
(\alpha * \beta)(r)=\sum_{s t=r} \alpha(s) \beta(t), \quad r \in R,
$$

where the sum is over pairs s, t in R with $s t=r$.

- Then $\alpha \leftrightarrow \sum_{r \in R} \alpha(r) e_{r}$ of other approach.

R-modules induce \mathcal{R}-modules

- Let A be a finite left R-module.
- Set $\mathcal{A}=\{w: A \rightarrow \mathbb{C}\}$, a \mathbb{C}-vector space with $\operatorname{dim} \mathcal{A}=|A|$.
- Then \mathcal{A} is a right \mathcal{R}-module via "right correlation":

$$
(w \circledast \alpha)(a)=\sum_{r \in R} w(r a) \alpha(r), \quad a \in A .
$$

- $w \circledast(\alpha * \beta)=(w \circledast \alpha) \circledast \beta, w \in \mathcal{A}, \alpha, \beta \in \mathcal{R}$.
- Similarly for right R-module; get left \mathcal{R}-module.

Some splittings

- Set $\mathcal{R}_{0}=\left\{\alpha \in \mathcal{R}: \sum_{r \in R} \alpha(r)=0\right\}$.
- \mathcal{R}_{0} is a two-sided ideal of $\mathcal{R} ; \mathcal{R}=\mathbb{C} e_{0} \oplus \mathcal{R}_{0}$.
- Set $\mathcal{A}_{0}=\{w \in \mathcal{A}: w(0)=0\} ; \mathcal{A}_{0}$ is a right \mathcal{R}-submodule, and $\mathcal{A}=\mathbb{C} 1 \oplus \mathcal{A}_{0}$, where $1 \in \mathcal{A}$ is the constant function 1 .

Recall the extension property EP

- Recall that a weight w on an alphabet A is any function $w: A \rightarrow \mathbb{C}$ with $w(0)=0$; i.e., $w \in \mathcal{A}_{0}$.
- Recall that A has the extension property (EP) with respect to a weight w if every linear w-isometry $f: C \rightarrow A^{n}$ extends to a monomial transformation of A^{n} that is a w-isometry.

Isometries

Theorem
If f is a w-isometry, then f is a $(w \circledast \alpha)$-isometry for any $\alpha \in \mathcal{R}$.

$$
\begin{aligned}
(w \circledast \alpha)(x f) & =\sum_{r \in R} w(r x f) \alpha(r) \\
& =\sum_{r \in R} w(r x) \alpha(r)=(w \circledast \alpha)(x)
\end{aligned}
$$

Connections to EP

Corollary

If A has $E P$ with respect to $w \circledast \alpha$, then A has $E P$ with respect to w.*

- If f is a w-isometry, then it is a $(w \circledast \alpha)$-isometry. By EP for $w \circledast \alpha, f$ extends to a monomial transformation.
- *Fine print: need to worry about the right symmetry groups being different: $w \circledast \alpha$ may have more symmetry than w.

Case of bi-invariant weights over

Frobenius bimodules

- For the rest of today, let A be a Frobenius bimodule over R. I.e., A is a bimodule over R with $A \cong \widehat{R}$ as left and as right R-modules. Ex.: bimodule \widehat{R}.
- A admits a left generating character χ, and χ is also a right generating character.
- $\alpha \in \mathcal{R}, w \in \mathcal{A}$ are bi-invariant if $\alpha($ urv $)=\alpha(r)$, $w($ uav $)=w(a)$ for all $r \in R, a \in A$, and units $u, v \in \mathcal{U}$.

Conditions on w

- Consider the poset $\{a R: a \in A\}$ of all cyclic right R-submodules of A, under set inclusion.
- Möbius function $\mu(0, a R)$.
- Suppose $w \in \mathcal{A}_{0}$ satisfies

$$
\begin{equation*}
\sum_{a R \subseteq B} w(a) \mu(0, a R) \neq 0 \tag{1}
\end{equation*}
$$

for all nonzero right R-submodules $B \subseteq A$.

Main results

Theorem
Suppose A is a Frobenius bimodule over R, and suppose w is a bi-invariant weight in \mathcal{A}_{0} satisfying (1), then A has $E P$ with respect to w.
Corollary
If R is a finite Frobenius ring and w is a bi-invariant weight on R satisfying (1), then R has $E P$ with respect to w.

Fourier transform

- The generating character χ of A is an element of \mathcal{A}.
- The map $\mathcal{R} \rightarrow \mathcal{A}, \alpha \mapsto \chi \circledast \alpha$, is a Fourier transform:

$$
(\chi \circledast \alpha)(a)=\sum_{r \in R} \chi(r a) \alpha(r)
$$

- Invert: $\chi \circledast \tilde{w}=w$, where

$$
\tilde{w}(r)=\frac{1}{|A|} \sum_{a \in A} w(a) \chi(-r a)
$$

Homogeneous weight

- Recall that the homogeneous weight $w_{\text {Hom }}$ has EP on any Frobenius bimodule.
- Right symmetry group of $w_{\text {Hom }}$ is maximal: all of \mathcal{U}.
- Recall that

$$
w_{\text {Hom }}(a)=1-\frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \chi(a u), \quad a \in A
$$

Inverting $w_{\text {Hom }}$

- Define $\varepsilon \in \mathcal{R}$:

$$
\varepsilon(r)= \begin{cases}-\frac{1}{\mid \mathcal{U}}, & r \in \mathcal{U} \\ 1, & r=0 \\ 0, & \text { otherwise }\end{cases}
$$

- Then $\chi \circledast \varepsilon=w_{\text {Hom }}$:

$$
(\chi \circledast \varepsilon)(a)=\sum_{r \in R} \chi(r a) \varepsilon(r)=w_{\text {Hom }}(a) .
$$

Outline of argument

- Suppose we can find $\gamma \in \mathcal{R}$ such that $\tilde{w} * \gamma=\varepsilon$.
- Then $w \circledast \gamma=w_{\text {Hom }}$:

$$
w \circledast \gamma=(\chi \circledast \tilde{w}) \circledast \gamma=\chi \circledast(\tilde{w} * \gamma)=\chi \circledast \varepsilon=w_{\text {Hom }} .
$$

- Apply earlier result, as $w_{\text {Hom }}$ has EP.
- Condition (1) will allow us to solve $\tilde{w} * \gamma=\varepsilon$ for γ.

Condition (1)

Theorem
Condition (1) is equivalent to

$$
\begin{equation*}
\sum_{b \in B} w(b) \chi(b) \neq 0 \tag{2}
\end{equation*}
$$

for all nonzero right R-submodules $B \subseteq A$.

Proof

- Break up into sum over right \mathcal{U}-orbits.
- Using results from lecture 6:

$$
\begin{aligned}
\sum_{b \in B} w(b) \chi(b) & =\sum_{a \mathcal{U} \subseteq B} \sum_{b \in a \mathcal{U}} w(b) \chi(b) \\
& =\sum_{a R \subseteq B} w(a) \mu(0, a R)
\end{aligned}
$$

Solving $\tilde{w} * \gamma=\varepsilon$

- We want to solve $\tilde{w} * \gamma=\varepsilon$ for γ.
- Note that \tilde{w} and ε are bi-invariant and in \mathcal{R}_{0}.
- We want γ to be bi-invariant and in \mathcal{R}_{0}, too.
- The equation, for any $r \in R$, is

$$
\sum_{s t=r} \tilde{w}(s) \gamma(t)=\varepsilon(r)
$$

- Solve recursively, starting with $r \in \mathcal{U}$.

When $r \in \mathcal{U}$

- If $r \in \mathcal{U}$, then $s t=r$ implies $s, t \in \mathcal{U}$.
- Using bi-invariance of \tilde{w} and γ, equation becomes

$$
-\frac{1}{|\mathcal{U}|}=\sum_{t \in \mathcal{U}} \tilde{w}\left(r t^{-1}\right) \gamma(t)=|\mathcal{U}| \tilde{w}(1) \gamma(1)
$$

- $\tilde{w}(1) \neq 0$ is the case $B=A$ of (2).
- So $\gamma(u)=-1 /\left(|\mathcal{U}|^{2} \tilde{w}(1)\right)$ for $u \in \mathcal{U}$.

Recursive step

- Suppose γ has been defined to be bi-invariant and to satisfy $\tilde{w} * \gamma=\varepsilon$ for some values of $r \in R$.
- Let $r \in R$ be any element, neither zero nor a unit, such that $R r$ is maximal among principal left ideals of R where γ is not defined on \mathcal{U} r.
- Consider $(\tilde{w} * \gamma)(r)=\varepsilon(r)=0$.

Recursive step, part 2

- If $s t=r$, then $R r \subseteq R t$.
- If $\operatorname{Rr} \subsetneq R t$, then maximality of $R r$ implies that $\gamma(t)$ is already defined.
- Then $(\tilde{w} * \gamma)(r)=0$ becomes

$$
0=\sum_{\substack{s t=r \\ R r \subseteq R t}} \tilde{w}(s) \gamma(t)+\sum_{\substack{s t=r \\ R r=R t}} \tilde{w}(s) \gamma(t) .
$$

Recursive step, part 3

- Focus on sum with $R r=R t$.
- Then $\mathcal{U r}=\mathcal{U} t$, so $t=u r$ for some $u \in \mathcal{U}$.
- Thus $r=s t=s u r$, so that $(s u-1) r=0$.
- Let $\mathrm{ann}_{\mathrm{lt}}(r)=\{q \in R: q r=0\}$, a left ideal of R.
- Then $s u-1 \in \operatorname{ann}_{\mathrm{lt}}(r)$.
- Every factorization $s t=r$ with $R r=R t$ has the form $s=(q+1) u^{-1}, t=u r$, with $u \in \mathcal{U}$ and $q \in \operatorname{ann}_{\text {lt }}(r)$.

Recursive step, part 4

- Using bi-invariance, the sum with $R r=R t$ becomes

$$
\begin{aligned}
\sum_{\substack{s t=r \\
R r=R t}} \tilde{w}(s) \gamma(t) & =\sum_{\substack{q \in \operatorname{ann}_{I_{l t}(r)}^{u}(r) \mathcal{U}}} \tilde{w}\left((q+1) u^{-1}\right) \gamma(u r) \\
& =|\mathcal{U}| \gamma(r) \sum_{q \in \operatorname{ann}_{I t}(r)} \tilde{w}(q+1)
\end{aligned}
$$

Recursive step, part 5

- But $\sum_{q \in \operatorname{ann}_{\mathrm{lt}}(r)} \tilde{w}(q+1)$ simplifies:

$$
\begin{aligned}
|A| \sum_{q \in \mathrm{ann}_{\mathrm{l}_{\mathrm{t}}(r)}} \tilde{w}(q+1) & =\sum_{q \in \mathrm{ann}_{\mathrm{l}_{\mathrm{t}}(r)}} \sum_{a \in A} w(a) \chi(-(1+q) a) \\
& =\sum_{a \in A} w(a) \chi(a) \sum_{q \in \mathrm{ann}_{\mathrm{lt}}(r)} \chi(q a) .
\end{aligned}
$$

- What about $\sum_{q \in \text { ann }_{\mathrm{lt}}(r)} \chi(q a)$?

Recursive step, part 6

- $\sum_{q \in a n n_{t}(r)} \chi(q a)$ is a sum over the left submodule $\mathrm{ann}_{\mathrm{lt}}(r) a \subseteq A$.
- Since χ is a generating character, this sum vanishes unless $\mathrm{ann}_{\mathrm{lt}}(r) a=0$. In that case, the sum equals \mid ann $_{l t}(r) \mid$.
- Set $B_{r}=\left\{a \in A: \operatorname{ann}_{\mathrm{lt}}(r) a=0\right\}$, a right submodule of A. Then

$$
\sum_{q \in \mathrm{ann}_{\mathrm{lt}}(r)} \chi(q a)= \begin{cases}\left|\mathrm{ann}_{\mathrm{lt}}(r)\right|, & a \in B_{r} \\ 0, & a \notin B_{r}\end{cases}
$$

Recursive step, part 7

- Going back to $\sum_{q \in a n n_{\mathrm{It}}(r)} \tilde{w}(q+1)$, we have

$$
|A| \sum_{q \in \mathrm{ann}_{\mathrm{lt}}(r)} \tilde{w}(q+1)=\left|\mathrm{ann}_{\mathrm{lt}}(r)\right| \sum_{a \in B_{r}} w(a) \chi(a) .
$$

- This is nonzero: the $B=B_{r}$ case of (2). Thus,

$$
\gamma(r)=-\left(\sum_{\substack{s t=r \\ R r \subseteq R t}} \tilde{w}(s) \gamma(t)\right) /\left(|\mathcal{U}| \sum_{q \in \operatorname{ann}_{n_{t} t}(r)} \tilde{w}(1+q)\right)
$$

Recursive step, part 8

- Check that γ is still bi-invariant.
- Continue recursively. Eventually get to case $r=0$.
- Coefficient of $\gamma(0)$ term vanishes, so we are free to define $\gamma(0)$ so that $\gamma \in \mathcal{R}_{0}$.
- I'll spare you those details.

