Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics
Western Michigan University
http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory
CIMPA School
Ubatuba, Brazil
July 12, 2017

8. Isometries of additive codes

- Additive codes as linear codes over modules
- Failure of EP
- Monomial and isometry groups
- Examples
- Criteria in terms of multiplicity functions
- Structure of ker W
- Building codes with prescribed groups
- EP for short codes
- Extreme examples

Additive \mathbb{F}_{4}-codes

- There has been interest in additive codes with alphabet $A=\mathbb{F}_{4}$.
- Such codes are the same as R-linear codes over A with $R=\mathbb{F}_{2}$ and $A=\mathbb{F}_{4}$, regarding \mathbb{F}_{4} as an \mathbb{F}_{2}-vector space of dimension 2.
- Generalize to case of $R=M_{k \times k}\left(\mathbb{F}_{q}\right)$ and $A=M_{k \times \ell}\left(\mathbb{F}_{q}\right)$. Information module will be $M=M_{k \times m}\left(\mathbb{F}_{q}\right)$.
- Call this the matrix module context.

Failure of EP

- Recall that EP for Hamming weight fails in the matrix module context when $k<\ell$ and $k<m$.
- In terms of the W-map:

$$
W: F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right) \rightarrow F_{0}(\mathcal{O}, \mathbb{Q})
$$

fails to be injective for all information modules M.

Isometry group

- General set-up: ring R, alphabet A, weight w on A.
- Let $C \subseteq A^{n}$ be an R-linear code.
- Consider linear isometries $f: C \rightarrow C$; i.e., $w(c f)=w(c)$, for all $c \in C$.
- When C is given as the image of a parametrized code $\Lambda: M \rightarrow A^{n}$, we define the isometry group:

Isom $(C)=\left\{g \in \mathrm{GL}_{R}(M)\right.$: there exists a linear isometry $f: C \rightarrow C$ such that $g \Lambda=\Lambda f\}$.

- View isometries on M rather than C.

Monomial group

- Recall that the weight w on A has a right symmetry group $G_{\mathrm{rt}}=\left\{\phi \in \mathrm{GL}_{R}(A): w(a \phi)=w(a), a \in A\right\}$.
- For linear code $C \subseteq A^{n}$, define the monomial group
$\operatorname{Monom}(C)=\left\{T: A^{n} \rightarrow A^{n}, G_{r t}\right.$-monomial transformation, with $C T=C\}$.

Restriction map

- Any $T \in \operatorname{Monom}(C)$, when restricted to C, gives an isometry on C. By viewing the isometry on M, we get a group homomorphism

$$
\text { restr }: \operatorname{Monom}(C) \rightarrow \operatorname{Isom}(C)
$$

- Denote ker restr $=$ Monom $_{0}(C)$. Think of repeated columns in a generator matrix.
- If EP holds, then restr is surjective.

Main question

- When EP fails, restr may not be surjective for all linear codes C or information modules M.
- Then restr $(\operatorname{Monom}(C)) \subseteq \operatorname{Isom}(C) \subseteq \mathrm{GL}_{R}(M)$.
- What subgroups of $\mathrm{GL}_{R}(M)$ can occur as restr(Monom($C)$) and Isom (C) ?

Example 1 (a)

- Additive code over $\mathbb{F}_{4}=\mathbb{F}_{2}[\omega] /\left(\omega^{2}+\omega+1\right)$ with generator matrix G_{1} and list of codewords. $M=\mathbb{F}_{2}^{3}$.

$$
G_{1}=\left[\begin{array}{lll}
1 & \omega & 0 \\
\omega & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \begin{array}{lll}
0 & 0 & 0 \\
1 & \omega & 0 \\
\omega & 1 & 0 \\
\omega^{2} & \omega^{2} & 0 \\
1 & 0 & 1 \\
0 & \omega & 1 \\
\omega^{2} & 1 & 1 \\
\omega & \omega^{2} & 1
\end{array}
$$

Example 1 (b)

- Consider three elements of $\mathrm{GL}_{R}(M)=\mathrm{GL}\left(3, \mathbb{F}_{2}\right)$:
$f_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \quad f_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], \quad f_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.
- f_{1}, f_{2} generate restr(Monom $\left.(C)\right)$, a Klein 4-group. But f_{1}, f_{3} generate Isom (C), a dihedral group of order 8. $\left(f_{2}=f_{1} f_{3}^{2}\right.$.)
- Magma found only the cyclic 2-group generated by $f_{1} f_{2}$.

Example 2 (a)

- Additive code over \mathbb{F}_{4} with generator matrix G_{2} and list of codewords. Again, $M=\mathbb{F}_{2}^{3}$.

$$
G_{2}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & \omega & \omega \\
\omega & \omega & 1 & 0 & \omega^{2}
\end{array}\right], \begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & \omega & \omega \\
1 & 1 & 0 & \omega^{2} & \omega^{2} \\
\omega & \omega & 1 & 0 & \omega^{2} \\
\omega & \omega^{2} & 0 & 1 & \omega \\
\omega^{2} & \omega & 0 & \omega & 1 \\
\omega^{2} & \omega^{2} & 1 & \omega^{2} & 0
\end{array}
$$

Example 2 (b)

- Consider three elements of $\mathrm{GL}_{R}(M)=\mathrm{GL}\left(3, \mathbb{F}_{2}\right)$:
$f_{4}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], \quad f_{5}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right], \quad f_{6}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$.
- These elements generate restr $(\operatorname{Monom}(C)) \cong \Sigma_{4}$, the symmetric group on 4 elements, while Isom $(C)=G L\left(3, \mathbb{F}_{2}\right)$, the simple group of order 168 .
- Magma found only a cyclic 4-group generated by $f=f_{4} f_{5} f_{6} f_{4} f_{5} f_{4} f_{6}$.

Closure for group actions

- Some of the hypotheses of the main result involve a notion of closure with respect to a group action.
- This idea goes back at least to Wielandt, 1964.
- Suppose a finite group G acts on a set X.
- A subgroup $H \subseteq G$ partitions X into H-orbits.
- Define the closure of H with respect to the action:

$$
\bar{H}=\left\{g \in G: g \operatorname{orb}_{H}(x)=\operatorname{orb}_{H}(x), x \in X\right\} .
$$

- Subgroup $H \subseteq G$ is closed with respect to the action if $\bar{H}=H$.

Closure conditions

- Usual set-up: ring R, alphabet A, weight w, information module M. Orbit spaces \mathcal{O} and \mathcal{O}^{\sharp}.
- $\mathcal{O}=G_{\mathrm{It}} \backslash M: \mathrm{GL}_{R}(M)$ acts on the right of \mathcal{O}, and on the left of $F_{0}(\mathcal{O}, \mathbb{Q})$.
- $\mathcal{O}^{\sharp}=\operatorname{Hom}_{R}(M, A) / G_{\mathrm{rt}}: \mathrm{GL}_{R}(M)$ acts on the left, and on the right of $F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right):(\eta f)([\lambda])=\eta([f \lambda])$.
- For $H_{1} \subseteq H_{2} \subseteq G L_{R}(M)$, will want H_{1} to be closed for the \mathcal{O}^{\sharp}-action and H_{2} closed for the \mathcal{O}-action.
- "Not every subgroup gets to be an isometry group."

Statement of main result

Theorem
Matrix module context with $k<\ell<m$. For any choice of subgroups $H_{1} \subseteq H_{2} \subseteq G L_{R}(M)$ with H_{1} closed for the \mathcal{O}^{\sharp}-action and H_{2} closed for the \mathcal{O}-action, there exists a linear code C modeled on M such that $H_{1}=\operatorname{restr}(\operatorname{Monom}(C))$ and $H_{2}=\operatorname{Isom}(C)$.

Corollary

Same matrix module context. There exists a linear code C modeled on M with $\operatorname{restr}(\operatorname{Monom}(C))=\left\{\mathbb{F}_{q}^{\times} \cdot \mathrm{id}_{M}\right\}$ and $\operatorname{Isom}(C)=\mathrm{GL}_{R}(M)$.

Using multiplicity functions

- Up to $G_{r t}$-monomial transformations, a parametrized code $\Lambda: M \rightarrow A^{n}$ is determined by its multiplicity function $\eta_{\wedge} \in F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{N}\right)$.
- Recall the W-map: $W: F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right) \rightarrow F_{0}(\mathcal{O}, \mathbb{Q})$.
- Recall the right action of $\mathrm{GL}_{R}(M)$ on $F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right)$: $(\eta f)([\lambda])=\eta([f \lambda])$.
- For $f \in \mathrm{GL}_{R}(M), f \in \operatorname{restr}(\operatorname{Monom}(\eta))$ if and only if $\eta f=\eta$.
- For $f \in \mathrm{GL}_{R}(M), f \in \operatorname{Isom}(\eta)$ if and only if $\eta f-\eta \in \operatorname{ker} W$.

Structure of ker W (a)

- In the matrix module context, \mathcal{O}^{\sharp} is the set of CRE matrices of size $m \times \ell$, while \mathcal{O} is the set of RRE matrices of size $k \times m$.
- Remember $k<\ell<m$. By dimension counting,

$$
\operatorname{ker} W \geq \sum_{i=k+1}^{\ell}\left[\begin{array}{c}
m \tag{1}\\
i
\end{array}\right]_{q}
$$

using the q-binomial coefficients.

Structure of ker W (b)

- The orbit space \mathcal{O}^{\sharp} is partitioned by rank.
- By explicit constructions, one produces independent elements $\eta_{[\lambda]} \in \operatorname{ker} W$. For each $i=k+1, \ldots, \ell$, one produces $\left[\begin{array}{c}m \\ i\end{array}\right]_{q}$ of them, each $\eta_{[\lambda]}$ supported on [λ] of rank i and on specific elements of smaller rank. ("Triangular.") This produces as many independent elements of ker W as the sum in (1).
- Separately, one shows that W is surjective, so there is equality in (1), and we have an explicit basis for ker W.

Aside: EP for short codes

- Serhii Dyshko (Toulon) has shown that EP holds even when $k<\ell$, provided n is sufficiently small $(n \leq q$ when $k=1)$.
- Elements of ker W affect the length of the code.
- The exact details of this need to be better understood.

Idea of proof (a)

- Elements $[x] \in \mathcal{O}$ have a well-defined rank, $\mathrm{rk}[x]$. The $\mathrm{GL}_{R}(M)$-action preserves this rank.
- Pick a function w on \mathcal{O} that (1) is constant on each and separates the H_{2}-orbits on \mathcal{O} and (2) is an increasing function of rk[x].
- Because W is surjective, there exists η with $W(\eta)=w$. A priori, η has rational values.
- Can modify η to have non-negative integer values and still satisfy (1) and (2).

Idea of proof (b)

- Replace η by an averaged version so that η is also constant on the H_{2}-orbits on \mathcal{O}^{\sharp}. This does not change $W(\eta)$. Clear denominators of η, which scales everything.
- At this point, η has non-negative integer values, is constant on H_{2}-orbits on \mathcal{O}^{\sharp}, and is constant on and separates H_{2}-orbits on \mathcal{O}.

Idea of proof (c)

- Claim restr $(\operatorname{Monom}(\eta))=\operatorname{lsom}(\eta)=H_{2}$.
- From η constant on H_{2}-orbits on \mathcal{O}^{\sharp}, $H_{2} \subseteq \operatorname{restr}(\operatorname{Monom}(\eta))$.
- We always have restr $(\operatorname{Monom}(\eta)) \subseteq \operatorname{Isom}(\eta)$.
- Suppose $f \in \operatorname{Isom}(\eta)$. Because $w=W(\eta)$ separates H_{2}-orbits on $\mathcal{O}, w(x f)=w(x)$ implies $f \in \bar{H}_{2}$. The closure hypothesis implies $f \in H_{2}$.

Idea of proof (d)

- Modify η using $\eta_{[\lambda]} \in \operatorname{ker} W$ to separate H_{1}-orbits on \mathcal{O}^{\sharp} (rank-by-rank, from rank ℓ down to rank $k+1$).
- Because of "triangular" form of $\eta_{[\lambda]}$, a change at rank i does not disturb changes at higher ranks.
- The final η preserves H_{1}-orbits on \mathcal{O}^{\sharp}, so $H_{1} \subseteq \operatorname{restr}(\operatorname{Monom}(\eta))$. Conversely, any $f \in \operatorname{restr}(\operatorname{Monom}(\eta))$ preserves H_{1}-orbits on $\mathcal{O}^{\sharp}(\eta$ separates), so $f \in \bar{H}_{1}$. Closure implies $f \in H_{1}$.
- Because modifications were made by $\eta_{[\lambda]} \in \operatorname{ker} W$, $W(\eta)$ has not changed. We still have Isom $(\eta)=H_{2}$.

Extreme example (a)

- $R=\mathbb{F}_{2}, A=\mathbb{F}_{4}, M=\mathbb{F}_{2}^{3}$. Multiplicities as indicated. Length $n=28$.

multiplicity	1	4	2	2	4	1	3	5	6
G	1	0	0	1	1	1	1	1	1
	0	1	1	ω	ω	ω	ω	0	1
	1	0	1	0	ω	1	ω^{2}	ω	ω

- All codewords have weight 22, so $\operatorname{Isom}(C)=G L\left(3, \mathbb{F}_{2}\right)$, while $\operatorname{restr}(\operatorname{Monom}(C))=\left\{\operatorname{id}_{M}\right\}$.

Extreme example (b)

- Additive code over $\mathbb{F}_{9}=\mathbb{F}_{3}[\omega] /\left(\omega^{2}-\omega-1\right)$.

molt.	5	3	6	1	1	1	2	2	2	4	3	2
G_{3}	0	0	0	1	1	1	1	1	1	1	1	1
	0	1	1	0	0	0	1	1	1	-1	-1	-1
	1	1	-1	0	1	-1	0	1	-1	0	1	-1

6	3	7	8	9	6	4	5	2	3	1
1	1	1	1	1	1	1	1	1	1	1
0	1	ω								

Extreme example (b) continued

- Code has length $n=86$; all codewords have weight 72.
- $\operatorname{Isom}(C)=G L\left(3, \mathbb{F}_{3}\right)$, of order 11, 232.
- $\operatorname{restr}(\operatorname{Monom}(C))=\left\{ \pm \mathrm{id}_{M}\right\}$ is minimum possible.

Other alphabets

- Most of the result carries over to any alphabet with non-cyclic socle, such as non-Frobenius rings.
- Get restr $(\operatorname{Monom}(\eta)) \subseteq H_{1}$ only, but still have $H_{2}=\operatorname{Isom}(\eta)$.
- This is enough to get the extreme cases.

